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Abstract
Sandwich compression of wood that can control the density and position of compressed layer(s) in the compressed wood 
provides a promising pathway for full valorization of low-density plantation wood. This study aims at investigating the effects 
of preheating temperatures (60–210 °C) on sandwich compression of wood, with respect to density distribution, position 
and thickness of the compressed layer(s). Poplar (Populus tomentosa) lumbers with moisture content below 10.0% were first 
soaked in water for 2 h and stored in a sealed plastic bag for 18 h, the surface-wetted lumbers were preheated on hot plates 
at 60–210 °C and further compressed from 25 to 20 cm under 6.0 MPa at the same temperature on the radial direction. The 
compressed lumbers were characterized in terms of density distribution, position and thickness of compressed layer(s). It 
was found that depending on preheating temperatures, sandwich compressed wood with three structural modes, namely, 
surface compressed wood, internal compressed wood and central compressed wood can be formed. Density of the compressed 
layer(s) in wood increased gradually as a result of the elevated preheating temperatures. Higher preheating temperatures 
gave rise to bigger distance between compressed layer(s) and the surface, and preheating temperature elevation from 90 to 
120 °C contributed to a maximal distance increase of 2.71 mm. In addition, higher preheating temperatures resulted in bigger 
thickness of compressed layer(s) over 60–150 °C and temperature elevation from 120 to 150 °C lead to the layers integration 
from two into one. Further temperature elevation over 150 °C reduced the thickness of the compressed layer in wood. SEM 
scanning suggested that cell wall bucking rather than cell wall crack occurred in compressed layer(s) and transition layer(s).

Keywords Sandwich compression · Preheating temperature · Position of the compressed layer(s) · Thickness of the 
compressed layer(s) · Density distribution

Introduction

Traditional wood compression involving whole wood com-
pression has been widely used to modify solid wood for 
improved physical and mechanical properties. In traditional 
wood compression, high compression ratio is required for 

the satisfactory properties of compressed wood in terms of 
surface density and hardness [1]. While wood surface com-
pression is an essential pathway for enhancing the density 
and hardness of wood surfaces [2–6]. It has been reported 
that polar wood preheated at 180 °C for 350 s can be sof-
tened and thus compressed into the required compressed 
wood with a relatively high surface density [2], but cell 
walls inside the compressed wood are also compressed as 
well. Air dried wood with surface sprayed with water can 
be compressed at 160 °C or 180 °C and compression for 
0.4 min can yield surface compressed wood with peak den-
sities of 650–800 kg/m3 [3]. However, the thickness of the 
compressed layers is very small and the density distribution 
is not controllable.

In our previous research [4], we developed a technol-
ogy for sandwich compression of solid wood, which can 
control both the thickness of compressed layer(s) and den-
sity distribution. The most important advantage of this 
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technology is that the compressed layer(s) position is con-
trollable. Furthermore, this technology can be scaled up 
very easily. In this technology, solid wood was first soaked 
in water to wet the surface, then wood was preheated and 
hot compressed 180 °C in the radial direction. Compressed 
woods with compressed layer(s) either on the wood sur-
faces or inside wood were obtained, and the position of 
compressed layer(s) can be controlled at wood surfaces, 
1 or 3 mm below wood surface, or at the center of wood 
by adjusting the preheating time (10, 40, 240 and 420 s). 
Sandwich compression is achieved by moving water from 
wood surface(s) to wood interior, and transferring heat 
from wood surface(s) to wood core. Water and tempera-
ture are the determining factors for solid wood softening 
[5, 6]. Temperature is an extremely important parameter 
affecting the moisture diffusion in wood [7, 8]. When the 
temperature is 90 °C, the radial moisture diffusion coef-
ficient in wood is over twice of that at 60 °C [9]. When 
the temperature is above 100 °C, water in wood transforms 
into vapor. For wood with a moisture content of 24%, heat-
ing at 120, 160 and 200 °C contributes to steam pressures 
of 0.20, 0.45 and 0.60 MPa inside wood, respectively [10], 
which accelerates moisture migration in wood [11, 12]. 
In addition, temperature also affects the heat conductivity 
of wood.

Based on our previous studies on the formation of wood 
sandwich compression [4] and fixation of sandwich-com-
pressed wood under atmospheric pressure and pressurized 
steam condition [13], this study further investigated the 
effects of preheating temperatures on the compression 
layer(s) formation and density distribution in sandwich-
compressed wood. Moreover, the density and thickness of 
compressed layer(s) and the distance between compressed 
layer(s) and wood surface were analyzed, to explore the 
thermal heating conditions for better controlling the 
position, thickness as well as density of the compressed 
layer(s).

Materials and methods

Materials

Twenty-five-year-old white poplar (Populus tomentosa) 
trees, with diameters of 25–35 cm at breast height were har-
vested from a plantation forest in Guan county, Shandong 
province, China. Clear lumbers with the size of 500 mm 
(L) × 150 mm (T) × 50 mm (R) were cut from 5 poplar logs. 
The lumbers were then kiln-dried to moisture content (MC) 
levels under 10.0% and further processed into the dimen-
sion of 400 mm (L) × 120 mm (T) × 25 mm (R) for sandwich 
compression.

Methods

Wood compression process

The detailed poplar wood compression process follows 
the procedures applied in our previous study [13]. Before 
compression, poplar wood specimens were first coated 
with paraffin on the transverse sections, then soaked in 
water for 2 h and stored in sealed plastic bags for 18 h 
(MC = 18.3%). The specimens were then preheated at 
60, 90, 120, 150, 180 or 210 °C, respectively for 12 min. 
After the preheating process, intermittent compression was 
applied on the preheated wood with a pressure of 6.0 MPa. 
Each intermittent compression cycle consists of 3 s com-
pression time and 10 s unloading time. The specimens 
were compressed from the original thickness of 25 to 
20 mm after 5 compressing cycles. The final compression 
thickness of 20 mm was maintained at the compressing 
temperatures for 30 min, then the compression was hold 
till the complete cooling down of the wood specimen. Five 
replicates were performed at each preheating and com-
pressing temperature.

Characterizations of sandwich compressed wood

Density distribution Specimens with a dimension of 50 mm 
(L) × 50 mm (T) × 20 mm (R) were cut from the middle of the 
width of the sandwich-compressed wood for density distri-
bution tests. The density distribution was measured using a 
cross-sectional X-ray densitometer (D-31785 Hameln) with 
a step of 20 µm scanning from the top surface to the bottom 
surface. Before density distribution tests, all the specimens 
were conditioned in 65% relative humidity at 20 °C to con-
stant weights.

Determination of  compressed layer(s) The mean density 
and maximal density of poplar wood control specimen is 
0.44 and 0.49  g/cm3, respectively. Compressed layer(s) 
was determined as described in our previous study [13]. 
For sandwich-compressed wood, the compressed layer is 
identified as the part with density of 20% higher than the 
maximal density of the control specimen; the region whose 
density is less than the maximal density of the control is 
considered as the uncompressed layer; regions between the 
compressed layer and uncompressed layer is defined as the 
transition layer. In this paper, the densities of compressed 
layer, uncompressed layer and transition layer were in the 
ranges of > 0.59  g/cm3, < 0.49  g/cm3, 0.49–0.59  g/cm3, 
respectively. Position of compressed layer(s) is defined as 
the distance from the edge of compressed layer(s) to the 
associated surface(s) of the compressed wood.
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Morphological structure All the compressed woods and 
control specimen were scanned by scanning electric micro-
scope (SEM) to investigate the morphological structure 
change. Specimens consisting of compressed layer, transi-
tion layer and uncompressed layer were cut from the trans-
verse section. The cutting surfaces were sputter-coated gold 
and scanned in an S4800 SEM with the magnifications of 
40× and 200×, to observe the cell wall deformation.

Results and discussion

Formation of compressed layers 
in sandwich‑compressed wood

Figure 1 shows the photographs (left) and the associated soft 
X-ray images (right) of transverse section in sandwich-com-
pressed wood. The compressed layer(s) is shown as the dark 
layer(s) in the photographs of transverse section, while in the 
soft X-ray images, the compressed layer(s) is the high lumi-
nance layer(s). As shown in Fig. 1, the sandwich-compressed 
wood with typical compressed layer(s) is observed after 
soaking in water and preheating/compressed at 60–210 °C. 
Moreover, the distance between the compressed layer(s) and 
the corresponding wood surface increases gradually with 
the elevated preheating temperatures. When preheating tem-
perature is below 120 °C, two compressed layers can be 
observed. At 60 °C, the compressed layers are formed on 
the surface while at 90 and 120 °C, two compressed layers 
exist inside wood. Further preheating temperature elevation 

to 150 °C integrates the two compressed layers into one. 
When the preheating temperature further elevates to 180 or 
210 °C, the only one compressed layer narrows down, with 
an increased density as evidenced by the soft X-ray images.

SEM was employed to investigate the morphologic struc-
ture of the transverse section in the compressed wood. As 
illustrated in Fig. 2, both compressed layer and uncom-
pressed layer can be observed in a thickness range of 5 mm 
in the transverse section. Cell lumens in compressed layer 
almost disappear and the cell walls completely deform, 
while in the uncompressed layer, wood cell wall and lumen 
are both intact. In the compressed layer region, most of the 
vessels and cell lumen of wood fiber disappear, and only a 
few lumens of the deformed cell are incompletely closed 
in the low-magnification image, while some cell lumens 
of wood fiber are still observable even in the high-magni-
fication image. In the transition region, vessels and wood 
fibers deform to some extent, but the cell lumens are still 
clearly visible. As for the uncompressed layer, there are no 
cell deformations on the vessels or wood fiber cells. Even 
though buckling deformation occurs on the wood cells of the 
compressed layer and the transition layer, no cracks of the 
cell walls are found, which could be attributed to the fully-
softening of wood during the 12 min preheating process at 
150 °C.

Based on the above discussion and the positions of 
compressed layer(s) in compressed wood, three types of 
sandwich-compressed wood are proposed as Fig. 3 shows, 
which are respectively surface compressed wood, internal 
compressed wood (the compressed layer(s) located between 
the surface and the wood center line) and central compressed 
wood.

Density distribution in sandwich compressed wood

Density distribution in sandwich-compressed wood as deter-
mined by X-ray profile densitometer is shown in Fig. 4. 
When the preheating temperature is 60 °C, both top and 
bottom surfaces are compressed. As the preheating tempera-
ture elevates, the compressed layers gradually move towards 
the center and the two separate compressed layers integrate 
into one central compressed layer with two density peaks 
at 150 °C. When the temperature further elevates from 150 
to 180 °C, two density peaks integrate into one, yielding 
one central compressed layer with characteristic high core 
density but low surface density. It is interesting that in our 
previous study [4], we found that when the compressing 
time extended from 10 to 420 s, a similar change in density 
distribution of compressed wood that was preheated and 
compressed at 180 °C took place, demonstrating that the 
compressing time and the preheating temperature exert simi-
lar effects on the formation of sandwich-compressed layer 
in compressed wood.

Control

˚C

90˚C

120˚C

150˚C

180˚C

210˚C

Control

˚C

90˚C

120˚C

150˚C

180˚C

210˚C

Fig. 1  Photograph images (left) and soft X-ray images (right) of 
transverse section of sandwich compressed wood preheated at differ-
ent temperatures
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Table 1 displays the thickness, mean density and maximal 
density of the compressed layer(s) in sandwich-compressed 
wood. As for the total thickness of the compressed layer(s), 
it increases first, then decreases as a result of preheating 
temperature elevation (Table 1). When the preheating tem-
perature is 60 °C, the thickness of the compressed layer 
is 6.90 mm. When the temperature is 150 °C, the top and 
bottom compressed layers transform into one, with a maxi-
mal thickness of 8.10 mm. Further temperature elevation 
decreases the thickness of the compressed layer. The mean 
density and maximal density of the compressed layers in the 
wood compressed at higher temperature are both higher than 
that of the compressed layers in the wood compressed at 
lower temperatures, but both higher than 0.61 g/cm3. When 

the preheating temperature is 210 °C, the average density 
and the maximal density of the compressed layer reach to the 
highest values of 0.71 and 0.75 g/cm3, respectively, which 
are 61.3 and 70.5% higher than that of the control. F test 
shows that, at 5% significant level, preheating temperature 
exerts significant effects on the mean density (p = 0.006) and 
maximal density (p = 0.002) of the compressed layers.

Position and thickness of the compressed layer

Figure 5 illustrates the effects of preheating temperatures on 
the position and maximal density of the compressed layer(s) 
in sandwich–compressed wood. The distance between the 
compressed layer(s) and wood surface gradually increases 

Fig. 2  Soft X-ray image and 
SEM micrographs of transverse 
section of sandwich compressed 
wood at 150 °C. a image of soft 
X-ray; b the whole micrograph 
of SEM; c Magnifications of 
compressed layer; d transition 
layer; e uncompressed layer
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Fig. 3  Formation schematic 
diagram of the sandwich com-
pressed wood. a populus tomen-
tosa log; b flat-sawn lumber; c 
three structural models of the 
sandwich compressed wood
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Fig. 4  Effects of preheating temperatures on the density distribution of the sandwich compressed wood

Table 1  Thickness, mean 
density and maximal density 
of the compressed layer(s) in 
sandwich-compressed wood

Values in () are the standard deviation of 5 runs

Preheating tempera-
ture (°C)

The characteristic parameters of compressed layer(s)

Number Thickness (mm) Mean density (g/cm3) Maximum 
density (g/
cm3)

60 2 4.92 (0.22) 0.61 (0.01) 0.63 (0.01)
90 2 5.13 (0.31) 0.61 (0.02) 0.66 (0.03)
120 2 5.64 (0.65) 0.63 (0.01) 0.66 (0.01)
150 1 8.10 (0.05) 0.64 (0.01) 0.68 (0.01)
180 1 5.49 (0.49) 0.68 (0.01) 0.71 (0.01)
210 1 4.59 (0.33) 0.71 (0.01) 0.75 (0.01)



756 Journal of Wood Science (2018) 64:751–757

1 3

with the elevated preheating temperature. When the pre-
heating temperature is 60 °C, compressed layers locate on 
the surfaces of the compressed wood, while for compressed 
wood preheated at 210 °C, the distance between the com-
pressed layer and the compressed wood surface is 7.70 mm. 
At 60–210 °C, temperature elevation of 30 °C results in 
distance (between the compressed layer(s) and compressed 
wood surface) increase of 0.45–2.71 mm. At the tempera-
tures below 120 °C, the distance change as a result of 30 °C 
elevation at higher temperatures is bigger than that as a 
result of 30 °C elevation at lower temperature levels. Tem-
perature elevation from 90 to 120 °C results in the biggest 
distance change of 2.71 mm. Above 120 °C, every 30 °C 
elevation leads to less distance change. The distance changes 
could be attributed to relatively slow movement of moisture 
and temperature at the comparatively low temperatures, and 
100 °C is a phase change point for water that consumes more 
energy. When the preheating temperature is above 120 °C, 
the resulted difference of the steam pressure accelerates 
the moisture migration and temperature transfer [11, 12]. 
When the preheating temperature reaches to 180 °C, the top 
and bottom density peaks integrate into one in wood center, 
which is the maximal density in this study, namely 9.98 mm 
below the surface along the thickness direction. For poplar 
lumber compressed from 25 to 20 cm, temperature eleva-
tion to 210 °C does not result in density peak change, while 
the distance between compressed layer and wood surface 
slightly increases.

In this study, the sandwich compressing technology is 
further developed, which is realized via several steps. These 
steps involve lumber drying, soaking in water to wet the lum-
ber surfaces, storing in plastic bags to form comparatively 

big moisture gradient from the surfaces to the centre of wood 
(namely high moisture on wood surfaces and low MC in 
wood centre). The wood is then preheated and compressed. 
Preheating of wood in this study can be considered as the 
hydrothermal softening process. During the preheating pro-
cess, water on wood surfaces can either vaporizes into air 
or moves into wood [14]. After preheating, wood surfaces 
are dried while inside wood, both moisture content and tem-
perature increase, forming a new moisture gradient from the 
center to the surfaces, namely low moisture content on the 
surfaces but high moisture content in the center of wood.

MC and temperature are the most important parameters 
on which wood softening and yield stress are dependent. 
Among the chemical components in wood, content and sof-
tening properties of lignin are the determining factors for 
wood softening [5, 15]. Lignin softening properties is related 
to moisture content. For instance, the softening temperature 
of oven-dried lignin is around 150 °C, but for lignin with 
moisture content of 20%, the softening temperature is only 
80 °C [5].

For woods with the same moisture content, preheating 
contributes to a higher temperature elevation rate on the 
surface than that in wood center, forming a big tempera-
ture gradient along wood thickness. And higher preheating 
temperature results in bigger temperature gradients [16–18]. 
Also, preheating temperature affects moisture diffusion co-
efficiency and thus changes the moisture distribution along 
wood thickness [8, 19]. Accordingly, for wood preheated at 
different temperatures, different temperature gradient and 
moisture content gradient are both formed on the thickness 
direction, leading to yield stress gradient on the direction of 
thickness. Since some regions are of high moisture content 
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and high temperature in wood, the corresponding yield stress 
is much smaller and these regions can be compressed much 
easier [20]. Accordingly, preheating at various temperatures 
contributes to three types of compressed layers, namely sur-
face compressed layer, internal compressed layer and central 
compressed layer. These are the reasons behind our find-
ings that our developed technology can produce sandwich 
compressed wood with controllable positions, thickness, and 
density of compressed layer(s), via optimizing water absorb-
ance amount on wood surface, preheating temperature and 
time during the whole process.

Conclusion

Poplar lumbers [400 mm (L) × 120 mm (T) × 25 mm (R)] 
with surfaces wetted in water can be compressed into sand-
wich compressed wood after preheating at 60–210 °C for 
12 min. Depending on preheating temperature, sandwich 
compressed wood with three structural modes, namely, 
surface compressed wood, internal compressed wood and 
central compressed wood can be formed. Density of the 
compressed layer(s) in wood increased gradually as results 
of the elevated preheating temperatures. Distance between 
compressed layer(s) and the wood surface was bigger when 
the preheating temperature was at higher levels, and preheat-
ing temperature elevation from 90 to 120 °C contributed to 
a maximal distance increase of 2.71 mm. In addition, higher 
preheating temperatures resulted in bigger thickness of com-
pressed layer(s) over 60–150 °C and temperature elevation 
from 120 to 150 °C lead to the layers integration from two 
into one. Further temperature elevation over 150 °C reduced 
the thickness of the compressed layer in wood. Moreover, 
cell wall bucking rather than cell wall crack occurred in 
compressed layer and transition layer.
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