Aalborg Universitet

Lifetime Evaluation of a Battery Storage System used for Residential Electricity Supply in East Africa

Stroe, Daniel-Ioan; Schaltz, Erik

Publication date: 2019

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Stroe, D-I., & Schaltz, E. (2019). Lifetime Evaluation of a Battery Storage System used for Residential Electricity Supply in East Africa. Poster presented at 13th International Renewable Energy Storage Conference (IRES 2019), .

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

IRES 2019 Poster Exhibition 13th International Renewable Energy Storage Conference

Lifetime Evaluation of a Battery Storage System used for Residential Electricity Supply in East Africa

D.-I. Stroe (dis@et.aau.dk), E. Schaltz

Department of Energy Technology, Aalborg University, Aalborg, Denmark

- The lifetime is a key indicator for the battery performance in every application
- The battery lifetime is greatly influenced by the operating conditions to which the battery is subjected
- In this work, we have evaluated the lifetime of a Lithium-ion (Li-ion) battery, which is used for providing electricity for a residential home located in East Africa.
- The battery is recharged at least once per week from a photovoltaic panel.
- Different operating scenarios were used to evaluate the battery lifetime, by varying the battery recharging interval, the load profile, and the minimum and maximum allowed battery SOC \rightarrow 23 study cases
- The battery capacity was selected as the indicator for the battery lifetime; a 20% decrease in battery capacity = end-of-life reached
- Li-ion batteries based on LCO chemistry are used

 $Cf_{cvc} = 0.0839 \cdot e^{-0.01943 \cdot SOC} \cdot cd^{0.7162} \cdot nc^{0.5}$

Lifetime Evaluation

SOC interval	Lifetime	Cap. fade - idling	Cap. fade - cycling
100% - 0%	44 months	12.90 %	7.24 %
90% - 0%	45 months	12.34 %	7.66 %
80% - 0%	41 months	11.63 %	8.61 %
70% - 0%	43 months	11.38 %	8.92 %

SOC interval	Lifetime	Cap. fade - idling	Cap. fade - cycling
100 % - 30%	56 months	17.65 %	2.59 %
100 % - 20%	51 months	14.88 %	5.50 %
100 % - 10%	51 months	14.60 %	5.50 %
100 % - 0%	44 months	12.90 %	7.24 %

X_load	Lifetime	Cap. fade - idling	Cap. fade - cycling
1	44 months	12.90 %	7.24 %
2	31 months	10 63 %	Q /1 %

For the considered scenarios, lifetime expectances between 21 and 56 months were obtained.

The maximum and minimum allowed battery SOC interval and the battery recharging interval have a non-linear effect on the lifetime of the considered battery