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Highlights

• Attaining constant transmission rate for constant-size messages is impossible.
• Application of the Guruswami-Sudan algorithm allows increased message sizes.
• An RMT-protocol for smaller field sizes is proposed.



On one-round reliable message transmission

René Bødker Christensen
Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg

Øst, Denmark

Abstract

In this paper, we consider one-round protocols for reliable message transmis-
sion (RMT) when t out of n = 2t + 1 available channels are controlled by
an adversary. We show impossibility of constructing such a protocol that
achieves a transmission rate of less than Θ(n) for constant-size messages and
arbitrary reliability parameter. In addition, we show how to improve two
existing protocols for RMT to allow for either larger messages or reduced
field sizes.
Keywords: reliable message transmission, cryptography

1. Introduction

The concept of secure message transmission was first introduced in [1],
and the term comprises a model where a sender and a receiver are connected
via n channels. Up to t of these channels are controlled by a computationally
unbounded active adversary who can read and alter the symbols sent across
these t channels. More specifically, we consider the setting where n = 2t+1.
In keeping with cryptographic tradition, we will call the sender ‘Alice’, the
receiver ‘Bob’, and the adversary ‘Eve’. The challenge is to devise a strategy
that allows Alice and Bob to communicate securely and reliably in a limited
number of transmission rounds. We focus on one-round protocols.

In the original setting of [1], the protocols are required to be perfectly
secure, meaning that no matter what Eve might attempt, she will gain no
information about the message. They are also required to be perfectly reliable
such that Bob will always recover the correct message. Later, [2] relaxed these
conditions to allow some small failure probabilities for both security and
reliability. Taking this idea even further, [3] considers protocols where the
security of the message delivery is not required, but only reliable transmission
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is of interest. They call this unconditionally reliable message transmission,
but we will omit ‘unconditionally’ and write RMT instead.

To asses the efficiency of a message transmission-protocol, it is common
to use the transmission rate defined as the total number of transmitted bits
divided by the bit-length of the message. Hence, a low transmission rate is
preferable. As shown in [3, Theorem 3], we cannot do better than Ω(1) for
RMT, and this bound is tight. In Section 3, however, we show that this
transmission rate is not achievable for messages of a constant size.

1.1. Related work
RMT has also been studied in [3, 4]. The protocol in [4] is based on

list-decoding of folded Reed-Solomon codes, but although it attains the op-
timal transmission rate, the computational cost for the receiver to recover
the message is exponential in the number of channels. The work [3] contains
bounds and constructions for both the secure and the reliable-only settings.
In addition, they achieve this while tolerating a mixed adversary, giving more
fine-grained control of the adversarial assumptions.

Although this paper is only concerned with RMT, we also direct the
reader to related works on secure message transmission; that is, protocols that
also offer privacy. This additional guarantee comes at a cost. As shown by [1],
perfect security for n = 2t+1 requires at least two rounds, and a single-round
protocol can only offer security in the case n ≥ 3t+1. In the former setting,
Agarwal et al. [5] gave a perfectly secure two-round protocol that achieves
optimal performance asymptotically, albeit at a high computational cost. A
computationally efficient protocol was subsequently achieved by Kurosawa
and Suzuki [6] using the concept of pseudobases. This idea was also taken up
by [7], who obtained further improvements, reducing the minimally required
message size from O(n2 log n) to O(n log n).

The setting where privacy is perfect, but reliability is not, was initially
handled by [2] under the assumption that channels support multicast. The
proposed solution, however, was inefficient for certain values of t and n. This
was rectified in [8], where an efficient protocol for these values was given.

2. Preliminaries

2.1. Model assumptions
We assume that Alice and Bob are connected via n = 2t + 1 simple

channels, meaning that the channels allow both Alice and Bob to transmit
data, but no additional functionality is assumed. Before the protocol begins,
Eve chooses t of these to be under her control. In other words, the adversary
in our model is static and active.
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For simple channels, [2] showed that 2t ≥ n leads to a probability of
failure of at least 1/4. Hence, the setting where n = 2t+ 1 has the maximal
number of corruptions that we can hope to overcome. Since a majority of the
channels are honest – i.e. not controlled by the adversary – a naive solution
to the RMT-problem is to broadcast the message across all n channels. This
leads to a transmission rate of n, but gives perfect reliability. Thus, this is
the benchmark performance.

2.2. Universal hash families
The methods we present rely on the concept of ε-almost universal hash

families as introduced by [9].

Definition 2.1. Let H be a family of hash functions from M to A, and let
ε ∈ R+. Then H is called ε-almost universal if for any m �= m′ ∈ M,

Pr
h←H

[h(m) = h(m′)] ≤ ε.

In particular, we use a hash family based on polynomial evaluation similar
to the one used in [10], but generalized to evaluate in several points.

Definition 2.2. Let F be a finite field, and K ⊆ F. For every pair of positive
integers η ≤ a, define the map PEvalη : Fa ×Kη → F

η by

PEvalη(m,k) = (fm(k1), fm(k2), . . . , fm(kη)),

where fm(x) =
∑a

i=1 mix
i. We use the notation PEvalηk(m) = PEvalη(m,k).

It may be shown that the family Hη
PEval = {PEvalηk : Fa → F

η}k∈Kη of hashes
is (a/|K|)η-almost universal.

3. Constant-size messages

One could hope that the overall optimal transmission rate Θ(1) is achiev-
able for constant-size messages. As we show in Proposition 3.2, however,
this is not possible for arbitrary reliability parameters. The proof of the
proposition relies on the following result from [2, Theorem 5.1].

Theorem 3.1. Assume that n ≤ 2t, and denote by M the message space.
Then any reliable message transmission protocol fails with probability at least
1
2
(1− 1/|M|).

Proposition 3.2. Let n = 2t+1, and consider the RMT-problem for a mes-
sage of size Θ(1) bits. Then it is impossible to construct a protocol attaining
a transmission rate lower than Θ(n) for arbitrary reliability parameters.
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Proof. Assume for contradiction that P is such a protocol. We show the
existence of an adversarial strategy such that P will fail with a probability
greater than a constant.

Note that if all n available channels are used, at least n bits will be
transmitted during the protocol. Hence, P can use at most n − 1 channels.
Let X ∈ {1, 2, . . . , n} be a random variable describing the unused channel.
No assumptions are made about the probability distribution of X; it simply
depends on P . Consider an adversarial strategy where the corrupt chan-
nels are chosen uniformly at random. Equivalently, we can assume that the
honest channels are given by the set {I1, I2, . . . , It+1}, where each Ij is cho-
sen uniformly at random in {1, 2, . . . , n} under the condition that Ij �= Ij′
for j �= j′. It may be shown that in fact Pr[Ij = a] = 1/(2t + 1) for any
j ∈ {1, 2, . . . , t+ 1} and a ∈ {1, 2, . . . , n}.

Denote by E the event that Alice leaves out one of the honest channels
when following P ; that is, X = Ij for some j ∈ {1, 2, . . . , t + 1}. Since
Alice does not know the outcomes of I1, I2, . . . , It+1, it follows that X is
independent from these variables. Using this fact and the fact that the
events X = I1, X = I2, . . . , X = It+1 are disjoint, we obtain that

Pr[E] = Pr[X = I1 ∨ · · · ∨X = It+1] =
t+1∑
j=1

Pr[X = Ij]

=
t+1∑
j=1

n∑
k=1

Pr[X = k] Pr[Ij = k] =
t+1∑
j=1

1

2t+ 1

n∑
k=1

Pr[X = k] =
t+ 1

2t+ 1
.

If E occurs, it follows from Theorem 3.1 that the probability of protocol
failure is at least 1

2
(1 − 1/|M|), where M is the message space. Otherwise,

the protocol P gives a contradiction to Theorem 3.1 since for n = 2t, we
could introduce a ‘dummy channel’, discard it, and then mimic protocol P
to obtain a lower probability of failure.

By applying the law of total probability, we obtain

Pr[P fails] = Pr[P fails | E] Pr[E] + Pr[P fails | Ē] Pr[Ē]

≥ Pr[P fails | E] Pr[E]

≥ 1

2

(
1− 1

|M|
)

t+ 1

2t+ 1
>

1

4

(
1− 1

|M|
)
.

In conclusion, it is not possible to obtain arbitrarily levels of reliability with
a transmission rate of less than Θ(n) for constant size messages. �

It is worth pointing out that this result is true for any RMT-protocol; not
only one-round ones.
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4. A method based on list-decoding

As part of a protocol for robust secret sharing, [10] introduced the notion
of a ‘robust distributed storage’. Their method for achieving this can easily
be converted to a one-round protocol for RMT. In brief, the idea is to encode
the message using a list-decodable code – e.g. a Reed-Solomon code – and
transmit each position of the resulting codeword across the corresponding
channel. In addition, each channel will deliver a key/tag-pair from an ε-
almost universal hash family. The receiver can then use these tags to recover
the intended message from the list of potential messages returned by the
list-decoding algorithm.

However, since the original authors only need the asymptotical perfor-
mance, they base their method on the list-decoding algorithm of Sudan [11],
and use messages of size at most 	n/8
+1. This may be increased to 	n/5
+1
with no penalty in reliability by applying the Guruswami-Sudan algorithm
[12] instead. This protocol has optimal transmission rate when the message
has size Θ(n).

5. A method based on erasure decoding

In the following, we will describe the one-round RMT-protocol given in
[3] in the language of Reed-Solomon codes and hash families. In this rep-
resentation, the original authors are essentially relying only on the erasure
correcting capabilities of the codes. We show that a careful choice of param-
eters allows correction of errors as well, causing the required field size to be
quadratic rather than cubic in n.

The message we consider is an a× b-matrix M over a finite field F. Each
row of this message is encoded by means of an [n, b] Reed-Solomon code,
yielding an a × n-matrix S where each row is a codeword. Across the i’th
channel, Alice sends the i’th column si of S. Since Bob needs to determine if
Eve modified some of these columns during transmission, Alice also computes
n verification tags {vi1, vi2, . . . , vin} for each si by applying uniformly sampled
hash functions from some family H. Denote the keys of these functions by
{ki1, ki2, . . . , kin}. Across the i’th channel, Alice then sends {si}∪{kji, vji}nj=1.
That is, each channel will transmit the codeword entries si, and a key/tag-
pair (kji, vji) for every channel j.

When Bob receives the possibly modified values {s′i}∪{k′
ji, v

′
ji}nj=1, he will

check the integrity of s′i by computing the hash value hk′ij(s
′
i) and comparing

the result with the received tag v′ij. He will do so for each received key/tag-
pair, and if more than t tags disagree with the computed values, Bob will
mark s′i as modified and treat it as an erasure when recovering the message.
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1. The message is represented as a matrix M ∈ F
a×b and each row is encoded

using an [n, b] Reed-Solomon code over F.
2. For each column si of the resulting codewords, Alice samples uniformly and

independently n keys {ki1, ki2, . . . , kin} and computes vij = hkij (si) for each
j ∈ {1, 2, . . . , n}.

3. Across the i’th channel, Alice transmits {si} ∪ {kji, vji}j=1,2,...,n.
4. Bob receives the possibly modified values {s′i} ∪ {k′ji, v′ji}j=1,2,...,n for i =

1, 2, . . . , n. For each i, he compares the tag v′ij received from the j’th channel
to the hash value hk′ij (s

′
i). If these disagree for more than t channels, he will

mark si as modified.
5. For each row in S′, Bob computes the syndrome to check if it contains errors.

Depending on the result, he proceeds with one of the three following steps.
(a) The syndrome is zero: S′ contains no errors, meaning that Bob can

simply use polynomial interpolation to recover the message.
(b) The syndrome is nonzero, and S′ contains at least t− e erased

columns: Bob uses a decoding algorithm for Reed-Solomon codes to
correct the erasures and errors, hereby recovering the message.

(c) The syndrome is nonzero, and S′ contains less than t − e
erased columns: Too many modified channels have passed the in-
tegrity checks. The protocol has failed.

Figure 1: This protocol allows Alice to reliably send ab symbols of a finite field F to Bob
in one round by using n = 2t+ 1 channels, t of which may be controlled by an adversary.
Beforehand, Alice and Bob have agreed upon a parameter e ∈ N, which satisfies e ≤ t+1−b.
Additionally, they agree on an ε-almost universal hash family H = {hk : F

a → F
η | Fη}.

With large probability, these checks performed by Bob reveal a consid-
erable part of the corrupt channels delivering erroneous information. This
causes a number of columns in S ′ to be marked as erasures. However, some
small number e of corrupted channels may have passed the checks, meaning
that the remaining entries in S ′ may still contain errors. In fact, each row of
S ′ may contain up to t − e erasures and e errors. If the parameter b agreed
upon by Alice and Bob is sufficiently small, Bob may nevertheless correct
these erasures and errors in S ′. Since the rows of S ′ are codewords of an
[n, b] Reed-Solomon code which has minimal distance n − b + 1, Bob can
recover the correct message if

2e+ t− e < n− b+ 1 =⇒ b ≤ n− (t+ e) = t+ 1− e.

Thus, after verifying the received values, Bob can determine if the message
can be recovered by simply counting the number of non-erased columns and
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computing syndromes. The complete description of our protocol is given in
Figure 1. The correctness of the protocol follows from essentially the same
arguments as used by [3], albeit with the following modification.
Lemma 5.1. If at least t − e columns of S ′ are marked as erasures in step
4 of the protocol, Bob will recover the correct message.

Proof. Let u ≥ t− e be the number of erased columns, meaning that each
row of S′ contains at most t− u errors. The minimal distance of the code is
d = n− b+1, which means that u erasures and t− u errors can be corrected
if 2(t− u) + u < d. This is true because

2(t− u) + u = 2t− u ≤ t+ e ≤ n− b,

where the last inequality follows from the requirement e ≤ t+ 1− b given in
the protocol specification. �
5.1. Protocol reliability

Under the assumption that the hash family H applied in the protocol is
ε-almost universal, we can bound the probability that Bob cannot recover
the correct message.

Proposition 5.2. If H is an ε-almost universal family of hash functions,
then

Pr[The protocol fails] ≤ t(t+ 1)ε

e+ 1
.

Proof. By Lemma 5.1, at least e+1 of the channels modified by Eve must
pass the integrity check performed by Bob. To achieve this, it is necessary
that the hash value of the modified s′i matches at least one verification tag
vij sent across an honest channel.

The ε-almost universality of H implies that Prh←H[h(si) = h(s′i)] ≤ ε
whenever si �= s′i. Hence, ε is an upper bound on the probability that a
single corrupt channel agrees with a single honest channel. Since there are
t+1 honest channels, the probability for a modified channel to be consistent
with at least one honest can be bounded above by (t+ 1)ε.

Let X be the random variable counting the number of modified but un-
caught channels. Since the hash keys kij, ki′j′ are independent whenever
(i, j) �= (i′, j′), the integrity checks of the modified channels can be consid-
ered as t independent Bernoulli trials, each with a success probability of at
most (t + 1)ε. Thus, X follows a binomial distribution, and has expected
value E[X] ≤ t(t+ 1)ε. The Markov inequality now gives

Pr[X ≥ e+ 1] ≤ E[X]

e+ 1
≤ t(t+ 1)ε

e+ 1
,

and the result follows. �
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5.2. Number of bits transmitted
When the proposed protocol is used to transmit a message, the total num-

ber of F-symbols transmitted is n(a+n|V|+n|K|), where |V| and |K| denote
the number of field symbols necessary to represent vij and kij, respectively.

5.3. Using polynomial evaluation
For concreteness, we analyse the reliability when Hη

PEval is applied with
K = F. Here, both the keys and the verification tags consist of η field ele-
ments. Hence, the total number of transmitted bits is 2ηn2+an. Depending
on the message size, this can give various transmission rates, but under the
assumption that η is some constant value, the optimal transmission rate of
Θ(1) is obtained when both a and b are Θ(n). That is, when the message is
of size Θ(n2).

Since the hash family is aη

|F|η -almost universal, it follows from Proposition
5.2 that we must require

t(t+ 1)aη

(e+ 1)|F|η ≤ δ =⇒ |F| ≥ a

(
t(t+ 1)

(e+ 1)δ

) 1
η

.

in order to obtain reliability δ. In particular, we note that for η = 1, the
original protocol by [3] requires |F| ≥ n3/δ. In the proposed protocol, we can
set both b and e to be Θ(n) and obtain the requirement |F| ≥ Θ(n2/δ). In
other words, by reducing the second dimension of the message, the required
field size is reduced by a factor of n asymptotically. Furthermore, introducing
the parameter η highlights the trade-off between the number of F-symbols
transmitted and the required field size.

6. Comparison with existing protocols

In order to compare the RMT-protocols proposed in Sections 4 and 5 to
those already in the literature, we will restrict ourselves to the hash family
Hη

PEval from Definition 2.2 with K = F and η = 1.
For five protocols, Table 1 gives an overview of the required field size

given δ; the message size in F-symbols; whether the protocol attains the
optimal transmission rate; and whether it is computationally efficient. Here,
efficient means polynomial in the number of available channels. We use the
Θ-notation to keep the presentation as clear and self-contained as possible.

For the protocol of Section 5, we remark that a = Θ(n) was chosen
even though it is in principle possible to use any value smaller than |F|.
Choosing greater values, however, also increases the required field size. We
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Protocol Field size Message
size Optimal Computational

efficiency

[10, Sec. 4.1] Θ(n2/δ) 	n/8
+ 1 � �

This work, Sec. 4 Θ(n2/δ) 	n/5
+ 1 � �

[3, Sec. 4] n3/δ Θ(n2) � �

[4, Sec. 3.1] Θ(n4) Θ(n2) � �

This work, Sec. 5 Θ(n2/δ) Θ(n2) � �

Table 1: Comparison of one-round RMT-protocols. The second column shows the minimal
field size given a desired reliability parameter δ. The third column gives the message size
(in terms of F-elements) that leads to an optimal transmission rate, and the fourth indicates
whether such an optimal transmission rate is achievable. The final column states whether
the computational cost is at most polynomial in the number of channels.

shall refrain from doing such analysis here since Table 1 already shows the
desired improvement.

As the table indicates, the first two protocols are better suited for small
message sizes. Although both have the same asymptotic performance, the
modification suggested in Section 4 allows a larger message size. The re-
maining three protocols all have Θ(n2) as the optimal message size, which
suggests that they should fare better when transmitting larger messages. It
may be noted that the protocol proposed in Section 5 achieves this while
reducing the required field size by a factor of n asymptotically.

Even though Table 1 gives an overview of the general properties of each
protocol, it does not reveal how they will perform in concrete problem in-
stances. If the message size and the number of channels have already been
fixed, a separate analysis is needed to determine the protocol that will per-
form the best.
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