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Abstract   

Challenge of energy will be increase in whole world by augmenting relevance of 

industry with fossil energy. According to this fact, renewable energies become popular in 

recent years. Employing nanofluids can help scientists to improve the performance of such 

systems. The impact of iron oxide–water nanofluid, as working fluid, was employed to 

evaluate entropy generation in an enclosure in existence of magnetic force. To analyze the 

performance of heating unit, both view of first and second law of thermodynamic should be 

involved. In current research, environment-friendly magnetic fluid namely Fe3O4-water 

ferrofluid has been studied which is useful in magnetic nanostructured materials have been 

found to be very efficient in wastewater decontamination. More exactly, the behavior of 

magnetic nanofluid through a porous space with innovative computational method is 
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displayed. To involving porous media, non-Darcy approach was considered. Outcomes are 

obtained via Control volume based finite element method (CVFEM) to portray the impacts of 

Hartmann, Rayleigh numbers and permeability. Results display that dispersing nanoparticles 

leads to augment in thermal performance and decrease in entropy generation. As permeability 

enhances, Bejan number improves. As Lorentz forces augments, impact of adding 

nanoparticles reduces and exergy loss detracts. Dispersing nanoparticles are more beneficial 

in lower values of permeability. 

Keywords: Nanofluid; Entropy; Porous; Heat transfer; Exergy and CVFEM; Magnetic field. 

Nomenclature 

genS  Entropy generation Greek symbols 

dX  Exergy loss σ  Electrical conductivity 

Nu Nusselt number Ω  vorticity  

Ha Hartmann number
 

θ  temperature 

g gravity υ  Kinetic viscosity 

T  Temperature β  Thermal expansion coefficient 

Be
 

Bejan number Subscripts 

B Magnetic field  nf Nanofluid 

Ra  Rayleigh number
 
 M magnetic 

  p porous 
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1. Introduction 

Nanofluids are the greatest popular tool to augment the efficiency of thermal 

equipment. Various kinds of nanoparticles have been employed because they can improve 

conductivity. This kind of working fluids can be used in renewable energy systems for 

various applications. Bellos et al. (2018) scrutinized different applications of nanofluid in 

renewable energies. They focus on solar technologies and presented variation of thermal 

performance in each cases. Nazari et al. (2019) provided solar experimental set up to examine 

the thermal performance of nanofluid. They utilized cooper oxide nanoparticle for single 

slope solar still. The productivity of fresh water augments with adding nanoparticles. Nan et 

al. (2019) scrutinized clean way for producing magnetic nanoparticles.   Sheikholeslami et al. 

(2019a) utilized nanoparticles for solar heat storage unit. They suggested new shapes for 

metallic fin. Hayat et al. (2017) scrutinized nanofluid concentration analysis in a three 

dimensional enclosure. Entropy generation of nanoparticles within a porous space was 

demonstrated by Sheikholeslami (2019a). He considered magnetic force influence on exergy 

loss. Qi et al. (2017) scrutinized the silver nanoparticle migration in a cavity by using 

numerical method. Working fluid can be considered as non-Newtonian fluid when 

nanoparticles have been added (Khan et al. (2017), Hashim et al. (2018), Abro and Khan 

(2017)). 

Sharafeldin and Gróf (2018) presented an application of CeO2/water nanofluid. They 

indicated that the outlet temperature augments when nanofluids are utilized. Sheikholeslami 

et al. (2018a) employed two temperature approaches for porous medium to discover 

ferrofluid behavior due to magnetic. Utilizing magnetic and electric fields are common ways 

for controlling flow direction (Mishra et al. (2015), Sheikholeslami and Mahian (2019), 

Sheikholeslami et al. (2018b,c), Moatimid and Hassan (2018), Muhammad et al. (2018)). 

Said et al. (2016) carried out the exergy performances of solar collector in existence of 
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alumina nanoparticles. They showed the impact of nanoparticles' size on thermal 

performance.  If domain is porous space, several models can be used for simulation (Zin et al. 

(2017), Sheikholeslami et al. (2019b), Soomro et al. (2019), Sheikholeslami (2019b)). Ali et 

al. (2017) employed the fractional model for analyzing nanofluid flow due to magnetic force. 

They utilized polar coordinate for circular tube. The pollution of water these days has become 

one of a critical issue throughout the world. However, several water treatment technologies 

are in continuous efforts for improvement. Amongst them nanomaterials are regarded as an 

efficient strategy for water decontamination, and for environment protection. However, it is 

of central focus that the water treatment methodologies themselves should not produce 

additional harmful materials but should use instead non-toxic biodegradable ones. In this 

work, ferrofluid have been involved which is indeed a potential candidate for water 

remediation and for the homogenous dispersion of magnetite nanoparticles (NPs) in aqueous 

solution. Recent years, to enhance the thermal performance, nanoparticles and other passive 

ways have been utilized (Sheikholeslami (2018), Lee et al. (2018), Sheikholeslami et al. 

(2019c), Qi et al. (2011), Fengrui et al. (2018)). 

There is few papers in which, nanofluid exergy and entropy analysis have been done. 

To reach best design of renewable energy unit, minimizing entropy generation is vital factor. 

In current text, as an application of magnetic nanoparticles, entropy and exergy analysis of 

ferrofluid due to magnetic forces within a permeable medium was scrutinized. Powerful 

numerical method was employed to display the energy and exergy analysis for different 

values of permeability, Lorentz and buoyancy forces.  
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2. Geometry explanation  

Boundary condition sample element and geometry of current paper has been provided in Fig. 

1. Permeable space is full of ferrofluid. Constant heat flux was employed on inner cylinder. 

Horizontal magnetic field was employed. Both energy and exergy views have been included 

to reach the best design. Selecting nanofluid causes to improve thermal treatment of system.  

 

3. Formulation and CVFEM 

3.1. Governing  

The aim of article is to simulate ferrofluid convective flow inside a two dimensional 

(2D) permeable space with magnetic force. Gravity force is included as buoyancy forces. 

Non-Darcy model for porous space has been selected. Moreover, for estimating ferrofluid 

properties, homogeneous model has been assumed. Related formulations are: 

0
v u

y x

∂ ∂+ =
∂ ∂

 
(1) 

( ) ( )

2 2
2

2 2
,

, sin ,cos

nf
nf nf x y nf y nf

y x o

u u P u u
v u B B v u B u

y x K x y x

B B B

µρ σ σ µ

γ γ

   ∂ ∂ ∂ ∂ ∂+ = − − − + +   ∂ ∂ ∂ ∂ ∂    

=
 

(2) 

( )

( ) ( )

2 2

2 2

,

, sin ,cos

nf nf c nf nf

nf
x x nf x nf y

y x o

v v v v
v u g T T

y x y x

P
B vB v B u B

K y

B B B

ρ µ ρ β

µσ σ

γ γ

  ∂ ∂ ∂ ∂+ = + + −  ∂ ∂ ∂ ∂   

∂− − + −
∂

=

 

(3) 
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( )
2 2

2 2nf p nf

T T T T
k C u v

x y x y
ρ   ∂ ∂ ∂ ∂+ = +   ∂ ∂ ∂ ∂    

(4) 

( ) ( ),p nfnf
Cρ ρβ , nf nf, kρ and nfσ  are predicted as: 

( ) ( ) ( )(1 )p p pnf f s
C C Cρ ρ φ ρ φ= − +  (5) 

( ) ( ) ( )(1 )
nf s f

ρβ φ ρβ φ ρβ= + −  (6) 

(1 )nf f sρ φ ρ ρ φ= − +
 

(7) 

2 2 ( )

( ) 2
f s s f

n f f
s f s f

k k k k
k k

k k k k

φ
φ

 + + −
=  − − + + 

 

(8) 

( )
( ) ( )

3 1
1

2 1

, /

nf

f

s f

φσ
σ φ
σ σ

− + ∆
= +

+ ∆ − − + ∆
= ∆

 (9) 

n fµ  is estimated as (Wang et al. (2016)): 

( )2 2 0.013.1 27886.4807 0.035 4263.02 316.0629 T
nf B B eµ φ φ −= − + + +

.

       

(10)         

Properties of ferrofluid have been listed in Table 1. To eliminate pressure terms, below 

definitions should be involved:  

, , ,
u v

u v
y y x x

ψ ψω∂ ∂ ∂ ∂= − = − = −
∂ ∂ ∂ ∂  

(11) 

Defining non-dimensional quantities: 

( ) ( ),
, , / , , ,c

f

f f

x yT T uL vL
U T q L k V X Y

T Lα α
− ′′Θ = = ∆ = = =

∆
 

(12) 

So, following equations can be derived:  
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2 2

2 2
V U

Y X Y X

∂Θ ∂Θ ∂ Θ ∂ Θ+ = +
∂ ∂ ∂ ∂

 
(13) 

2 2

2 2X Y

∂ Ψ ∂ Ψ+ = −Ω
∂ ∂

 
(14) 

( ) ( ) ( ) ( ) ( ) ( )

22 2
5 2 3 2

2 2 2
1 4 1 4

2 22 6 2

1 4

5 2

1 4

Pr Pr

Pr sin cos cos sin cos sin

Pr

A A A A
Ra

A A Y X X A A

A A V U V U
Ha

A A Y X X Y

A A
U V

Da A A X Y

γ γ γ γ γ γ

    ∂ Ω ∂ Ω ∂Θ + +      ∂ ∂ ∂     

  ∂ ∂ ∂ ∂ + − + − +   ∂ ∂ ∂ ∂  

  ∂Ω ∂Ω− Ω = +  ∂ ∂ 

 

(15) 

Following definitions should be mentioned for dimensionless variables: 

( )
( )
( )

( )
( )

4
2

2 0

1 6 5

4 3

, / ,

, / ,

, , ,

Pr / , ,

f f f f

P nf
f f

P f

nf nf nf

f f f

nf nf
f f

f f

K
Da Ra g q L k

L
C

A Ha LB
C

A A A

k
A A

k

β υ α

ρ
σ µ

ρ
ρ σ µ
ρ σ µ

ρβ
υ α

ρβ

′′= =

= =

= = =

= = =

 

(16) 

and current boundary conditions can be presented as: 

0.0Θ =                  @ cold surface 

0.0Ψ =                 @ all walls 

1.0
n

∂Θ =
∂

              @ hot surface  

(17) 

locNu , aveNu and En are determined from: 

1 nf
loc

f

k
Nu

kθ
 

=  
 

 
(18) 
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0

0.04 0

0

1

100

s

ave loc

ave ave

ave

Nu Nu ds
S

Nu Nu
En

Nu
φ φ

φ

= =

=

=

−
= ×

∫

 

(19) 

Definitions of entropy generation, exergy loss and Bejan number are (Sheikholeslami et al. 

(2019c)): 

( )
,

, ,

,

2 22

, 2

2 2 2 2
02

2 2

2

2

gen f

gen M gen P

gen th

nf
gen total

S

nf nf

S S

nf

S

u v u v
S

T y x x y

B v u v
T KT

k T T

T y x

µ

σ µ

     ∂ ∂ ∂ ∂   = + + +     ∂ ∂ ∂ ∂       

+ + +

  ∂ ∂ + +    ∂ ∂    

14444444244444443

14243 1442443

14444244443

 

(20) 

0 ,d gen totalX T S=  (21) 

, ,/gen th gen totalBe S S=  (22) 

 

3.2. CVFEM 

Innovative method has been applied in current article. The first code of this method was 

written by Sheikholeslami (2019c). He employed the mention method for various heat 

transfer problems. Finite element method (FEM) has been merged with Finite volume method 

(FVM) to generate this new algorithm.  Researchers can find more details of this approach in 

new reference book (Sheikholeslami (2019c)). Current approach uses triangular element for 

2D problems (see Fig. 1(b)).  
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4. Mesh independency and verification 

To obtain unique results, various mesh sizes should be tested. One instance exists in 

table2. Also, Fig. 2 and table3 prove the accuracy of this code. Both nanofluid flow and 

magnetohydrodynamic (MHD) flow have been checked (Rudraiah et al. (1995), Calcagni et 

al. (2003), Khanafer et al. (2005)).  

 

5. Results and discussion 

Iron oxide-water ferrofluid free convection inside a permeable space was scrutinized 

in current text. To estimate the viscosity, Lorentz forces effect has been involved. Not only 

energy analysis but also exergy and entropy treatment have been reported. CVFEM has been 

employed to depict the results for various Darcy number (Da 0.01= to100), Magnetic field 

( Ha 1= to40) and Rayleigh number ( 3R a 10= to 410 ). 

Figs. 3, 4, 5 and 6 are presented to display the influences of Ra, Da and Ha on energy, 

entropy and exergy behavior of ferrofluid. According to definition of Ra and Da, augmenting 

such variables lead greater heat transfer. Graphs indicate this fact and it can be seen that 

convection enhances with rise of buoyancy and permeability. Furthermore, Lorentz forces 

make the conduction to augment and dispersing nanoparticles have more benefit. Surface 

temperature reduces with augment of permeability but it improves with augment of magnetic 

force. maxψ augments with augment of Da and Ra while it declines with rise of Ha. 

Temperature along the inner surface reduces with decrease of magnetic force. Magnetic 

entropy generation declines with reduce of Ra and Ha. As Lorentz forces augments, Bejan 

number augments. 
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Figs. 7, 8 and 9 illustrate the changes of ,Be ,aveNu dX  with variation of Ra, Ha, and 

Da. Eqs. (23-25) has been derived from simulation data: 

( ) ( )
( )

0.067 log 0.068log 0.044

1.82 0.17 log 0.081 0.08

aveNu Da Ra Ra Ha Ha Da

Ra Da Ha

= − −

+ + + −         (23)  

( )
( ) ( )

3 3

3 3 3

0.97 8.84 10 0.028log 8.87 10

8.5 10 log 4.17 10 8.5 10 log

Be Da Ra Ha

Da Ra Da Ha Ra Ha

− −

− − −

= − × − + ×

− × + × + ×         (24)  

( )
( ) ( )

105.29 2.94 5.31log 2.86

2.2 log 1.61 2.19log

dX Da Ra Ha

Da Ra Da Ha Ra Ha

= − − +

− + +         (25)  

Convective mode has been boosted with rise of Da and Ra. Also, augmenting magnetic force 

causes aveNu to detract. Exergy loss and Bejan number have reverse treatment in comparison 

with aveNu . Exergy loss detracts with augment of permeability. Bejan number improves with 

increase of Ha. Fig. 10 displays the variation of heat transfer augmentation (En) due to 

changing Ra, Ha and Da. Dispersing nanoparticles has greater impact in cases with greater 

conduction. Thus, this factor augments with increase of Ha and it decreases with augment of 

Da and Ra. 

 

6. Conclusions 

Magnetic force role on treatment of Ferrofluid flow and entropy generation through a 

permeable space was reported by employing CVFEM. In current research, environment-

friendly magnetic fluid namely Fe3O4-water ferrofluid has been studied which is useful in 

magnetic nanostructured materials have been found to be very efficient in wastewater 

decontamination. The impact of iron oxide–water nanofluid, as working fluid, was employed 

to evaluate entropy generation in an enclosure in existence of magnetic force. Different parts 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

11 

 

of entropy generation are reported as separate contours. Variation of Bejan number and 

exergy loss are depicted due to changing Da, Ha and Ra. Bejan number reduces with rise of 

conduction mode. As these variables augments, magnetic entropy generation enhances. As 

magnetic forces enhance, exergy loss augments. 
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Fig. 1. Porous enclosure under the effect of magnetic field 
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Present work Calcagni et al. (2003) 

  

(a) 

(b) Gr=104,  

Fig. 2. Validation for (a) natural convection (Calcagni et al. (2003)); (b) nanofluid flow 

(Khanafer et al. (2005)) 
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Fig. 3. Exergy and entropy contours for various Ra at 0.04 ,Ha 1 ,Da 0.01φ = = =  
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Fig. 4. Exergy and entropy contours for various Ra at 0.04 ,Ha 20 ,Da 0.01φ = = =  
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Fig. 5. Exergy and entropy contours for various Ra at 0.04 ,Ha 1 ,Da 100φ = = =  
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Fig. 6. Exergy and entropy contours for various Ra at 0.04 ,Ha 20 ,Da 100φ = = =  
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Fig. 7. Variation of aveNu due to change of permeability, buoyancy and Lorentz forces at0.04φ = .
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Fig. 8. Variation of Be due to change of permeability, buoyancy and Lorentz forces at0.04φ = .
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Fig. 9. Variation of dX due to change of permeability, buoyancy and Lorentz forces at0.04φ = .
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Fig. 10. Variation of En due to change of permeability, buoyancy and Lorentz forces at0.04φ = .
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Table1. Properties of H2O and nanoparticles [30] 

Material 3( kg / m )ρ  5 110 ( K )β −×  ( ) 1
mσ Ω −⋅  pC ( j / kgk )  k(W / m.k )  

Pure water 997.1 21 0.05  4179 0.613 

3 4Fe O  5200 1.3 25000 670 6 

 

Table2. Various meshes' presentation at 410Ra = , 20, 100Ha Da= = and 0.04φ = . 

Mesh size in radial direction angular direction×  

51 151×  61 181×  71 211×  81 241×  91 271×  

1.91505 1.91671 1.91772 1.91781  1.91796 

 

Table3. Validation for MHD flow when Pr=0.733 and 4Gr 2 10= × . 

 Ha =10 Ha=50 

Present 2.26626 1.09954 

Rudraiah et al. 

(1995) 

2.2234 1.0856 

 


