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Abstract:
This paper develops approaches to the hands-off control problem subject to performance
constraints for discrete-time linear systems. The approaches minimize the l1-norm of the control
input to acquire the hands-off property, while satisfying the performance constraints that are
given in terms of the quadratic cost of states and inputs with respect to the optimal solution to
the finite-horizon linear quadratic regulator problem. We consider three kinds of the input and
state matrices for the system; 1) known, 2) uncertain but contained in a known discrete set, and
3) uncertain but contained in a known polytopic uncertainty set. For the first two cases, we show
that each problem is formulated as an l1 optimization that is expressed as a second-order cone
programming. We also show that the last case leads to a second-order cone programming after
relaxations. A numerical example is included to illustrate the validity of the proposed approach.

Keywords: Robust control, Uncertainty, Linear optimal control, Convex programming,
Discrete-time systems

1. INTRODUCTION

Control effort minimization is a fundamental requirement
in practical control systems for saving fuel/electricity
consumption and reducing noise and vibration (Chan,
2007; Dunham, 1974). For such problems, sparse control
which takes input value mostly zero is effective. Thus,
a novel design method called maximum hands-off control
that produces a control input with the minimum support
per unit of time has been proposed (Nagahara et al.,
2016a).

The maximum hands-off control problem is initially formu-
lated as an L0 optimal control for continuous-time systems
to bring an arbitrary state to the origin. Although the L0

minimization problem is difficult to solve due to the non-
convexity and the non-smoothness of the problem, it is
proved that the set of L0 optimal solutions is equivalent
to that of L1 optimal solutions under a uniqueness as-
sumption called normality (Nagahara et al., 2016a). This
property is important in view of computation; L1 optimal
control problem can be formulated as a convex optimiza-
tion problem, which is easily solved by numerical methods
(Boyd and Vandenberghe, 2004). For discrete-time sys-
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tems, the equivalence between l0 and l1 sparsity-promoting
problems is also investigated in (Nagahara et al., 2016b).
Here, we note that even though the equivalence does not
hold always, we may still obtain a hands-off control that
has a short support per unit of time by minimizing l1-
norm because it was shown that the l1-norm is the convex
envelope of the l0-norm (Fazel, 2002) and l1-minimization
is known to lead to sparse solutions.

Robustness against uncertainty is a critical requirement in
a lot of practical real-world control systems. Thus, robust
control has been one of the most appealing approaches in
the realm of control theory over 30 years. One of the most
well-known approaches in robust control is H∞ control, in
which the uncertain system is modeled as a set of systems.
It finds a control that achieves a control objective for all
possible systems in the set; see (Zhou et al., 1996) for
example.

In this paper, we consider the hands-off control problem
that minimizes the l1 norm of the control input subject
to uncertainties with performance constraint. The consid-
ered uncertainty takes the form of polytopic uncertainty,
which is modeled by the convex hull of multiple possible
systems (Badgwell, 1997; Bemporad and Morari, 1999).
On the other hand, the considered performance constraint
is obtained by relaxing the optimal cost of the finite-
horizon linear quadratic regulator (LQR) problem. For
such problem, the robust control design is formulated in
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terms of linear matrix inequalities (LMIs) (Boyd et al.,
1994), which represents a convex optimization problem
and can be solved numerically by optimization softwares
such as YALMIP in MATLAB (Löfberg, 2004; Löfberg, 2012;
Löfberg, 2009).

The main contribution of this paper is twofold. (i) the in-
clusion of a design parameter that allows us to specify the
degree of possible cost relaxation under which the input
sparsity is sought for, (ii) the consideration of uncertain-
ties in the system model. This is achieved by adopting a
relaxed constraint for the terminal state, instead of forcing
the terminal state to be zero as in (Nagahara et al., 2016a).

The remainder of this paper is organized as follows: Section
2 provides the notation and an overview of linear quadratic
regulator problem, followed by a presentation of the basic
problem formulation for the nominal system in Section 3.
Section 4 is the main part of this paper, which considers
the hands-off control for uncertain systems. Following to
some remarks in Section 5, Section 6 presents a numerical
example. Finally, Section 7 concludes the paper.

2. MATHEMATICAL PRELIMINARIES

2.1 Notation

The set of real numbers is denoted by R. The set of vectors
with length n is denoted by Rn, and the set of matrices of
size n×m is denoted by Rn×m. The vector of ones whose
length is n is denoted by 1n. The identity matrix of size
n is denoted by In. The subscript n is dropped when the
size is clear. For matrices M and N , M ⊗N indicates the
Kronecker product.

2.2 A review of linear-quadratic regulator problem

This subsection provides a brief overview on the finite-
horizon LQR problem (Boyd, 2008), based on which this
paper proposes approaches to hands-off control problems.

Consider a discrete-time linear system

x[t+ 1] = Ax[t] +Bu[t], x[0] = x0, (1)

where A ∈ Rnx×nx and B ∈ Rnx×nu form a controllable
pair, x[t] ∈ Rnx represents the system state, and u[t] ∈
Rnu represents the control input.

The objective of the finite-horizon LQR problem is to find
a sequence of control inputs that minimizes the following
quadratic cost function:

J(u) = xT [Tf ]Qfx[Tf ] +

Tf−1∑
t=0

xT [t]Qx[t] + uT [t]Ru[t],

Q = QT > 0, Qf = QT
f > 0, R = RT > 0, (2)

where Tf is the time horizon. Generally, Q and Qf are
required to be positive semidefinite. However, we restrict
our attention to positive definite weight matrices for con-
venience.

For such a problem, it is well-known that the optimal
control input is (Chow, 1975)

u∗[t] = −F [t]x[t], t = 0, 1, · · · , Tf − 1,

F [t] =
(
BTP [t+ 1]B +R

)−1
BTP [t+ 1]A,

(3)

where P [t] is the solution to

P [t] = ATP [t+ 1]A+Q

−ATP [t+ 1]B
(
BTP [t+ 1]B +R

)−1
BTP [t+ 1]A,

P [Tf ] = Qf .

(4)

Moreover, the corresponding optimal cost is given by

JLQR := J(u∗[t]). (5)

2.3 Some matrix inequalities

To treat polytopic uncertainties efficiently in Section 4, the
following relaxations will be used:

Lemma 1. (Kiefer (1959)). Let Mi = MT
i > 0 and λi ≥ 0

for i = 1, 2, · · · , p satisfy
∑p

i=1 λi = 1. Then
(

p∑
i=1

λiNi

)T( p∑
i=1

λiMi

)−1( p∑
i=1

λiNi

)
≤

p∑
i=1

λiN
T
i M−1

i Ni

The equality holds if and only ifNT
1 M−1

1 = · · · = NT
p M−1

p .

It should be emphasized that Ni is not required to be
symmetric or square. In addition, according to the orig-
inal reference, the results of Lemma 1 holds under the
assumption that λi > 0. However, we can trivially include
the case with λi = 0.

Corollary 2. Let Mi = MT
i > 0 and λi ≥ 0 for i =

1, 2, · · · , p satisfy
∑p

i=1 λi = 1. Then
(

p∑
i=1

λiMi

)−1

≤
p∑

i=1

λiM
−1
i .

The equality holds if and only if M1 = M2 = · · · = Mp.

Proof. Let Ni = I for all i in Lemma 1.

Corollary 3. Let L = LT > 0 and λi ≥ 0 for i = 1, 2, · · · , p
satisfy

∑p
i=1 λi = 1. Then

(
p∑

i=1

λiNi

)T
L

(
p∑

i=1

λiNi

)
≤

p∑
i=1

λiN
T
i LNi.

The equality holds if and only if N1 = N2 = · · · = Np.

Proof. Let Mi = L−1 for all i in Lemma 1.

3. HANDS-OFF CONTROL PROBLEM FOR KNOWN
SYSTEM

Using the results in Section 2.2, this section proposes
the hands-off control problem for the system (1) with a
known controllable pair of A and B. More specifically,
the problem is set up so as to minimize the l1-norm of
the control input while satisfying the control performance
condition that specifies the degree of relaxation compared
with the optimal cost of the LQR problem in (5).

Problem 4. (Hands-off Control Problem with Performance
Constraint cf. Nagahara et al. (2016a)):
For the linear system

x[t+ 1] = Ax[t] +Bu[t],

x[0] = x0, t = 0, 1, · · · , Tf − 1,
(6)

with the controllable pair of (A,B), find a sequence of
control inputs u[t] that minimizes the l1-norm of the
control input
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Tf−1∑
t=0

nu∑
i=1

|ui[t]|, (7)

where | · | denotes the element-wise absolute value, subject
to

J(u) :=xT [Tf ]Qfx[Tf ]+

Tf−1∑
t=0

xT [t]Qx[t]+uT [t]Ru[t]≤J∗, (8)

where

J∗ := γJLQR, γ ≥ 1. (9)

In (9), JLQR is defined as in (5) and specifies the control
performance condition.

Remark 5. The parameter γ is used to make a balance
between the sparsity of the control input and the deviation
from the optimal cost (5). If γ = 1, then there is no
freedom to minimize the norm of the control inputs, and
the solution to the problem coincides with (3). As γ
becomes larger, the l1-norm of the hands-off control inputs
may become smaller, but the performance degrades more
and more compared with (5).

To solve Problem 4, let us first simplify the expressions in
(7)-(8) by defining

x̄ :=




x[0]
x[1]
...

x[Tf ]


 , ū :=




u[0]
u[1]
...

u[Tf − 1]


 ,

Â :=




Inx 0 · · · 0
A 0
...

...
. . .

ATf−1 ATf−2 · · · Inx


 ,

Ā :=

[
0nx×nxTf

Â

]
, B̄ := ITf

⊗B, A0 :=

[
A

0(nx−1)Tf×nx

]
,

Q̂ := diag[ITf−1 ⊗Q,Qf ], Q̄ := diag[Q, Q̂], R̄ := ITf
⊗R,

G1 := ĀB̄, G2 :=

[
Inx

ÂA0

]
.

(10)

Then, the cost (7) can be rewritten as

Tf−1∑
t=0

nu∑
i=1

|ui[t]| = 1T
nuTf

|ū|. (11)

Also, the vector of the states is expressed as

x̄ = G1ū+G2x0, (12)

and thus J(u) in (8) can be expressed as

J(u) = x̄T Q̄x̄+ ūT R̄ū

=

[
ū
x0

]T [
GT

1 Q̄G1 + R̄ GT
1 Q̄G2

GT
2 Q̄G1 GT

2 Q̄G2

] [
ū
x0

]
.

(13)

Based upon (11)-(13), Problem 4 can be reformulated as
a second-order cone programming as follows:

min
w

qT0 w

s.t. wTP1w + qT1 w + r1 ≤ 0,

qT2 w ≤ 0, qT3 w ≤ 0,

(14)

where

w :=

[
ū
v

]
, q0 :=

[
0nuTf

1nuTf

]
,

P1 :=

[
GT

1 Q̄G1 + R̄ 0
0 0

]
, q1 :=

[
2GT

1 Q̄G2x0

0

]
,

r1 := xT
0 G

T
2 Q̄G2x0 − J∗,

q2 :=

[
InuTf

−InuTf

]
, q3 :=

[
−InuTf

−InuTf

]
.

(15)

This second-order cone programming (14)-(15) can be
solved using existing numerical softwares such as YALMIP
on MATLAB (Löfberg, 2004; Löfberg, 2012; Löfberg, 2009).
Here, the constraint wTP1w + qT1 w + r1 ≤ 0 corresponds
to (8) and guarantees the satisfaction of the performance
condition, while the other two constraints, qT2 w ≤ 0 and
qT3 w ≤ 0, determine the bounds on the absolute value of
u[t].

Remark 6. Unlike the original paper (Nagahara et al.,
2016a), where a continuous-time setup is considered, it
is not necessary to impose the constraint maxi |ui[t]| ≤ 1
in a discrete-time setup. This is because without such a
constraint, a continuous-time setup produces an optimal
control input of a Dirac delta function, while a discrete-
time setup guarantees the boundedness of |ui[t]| as long as
(11) is bounded.

4. HANDS-OFF CONTROL PROBLEM FOR
UNCERTAIN SYSTEMS

This section considers the hands-off control problem for
the system (1) but with uncertainties in the state matrix A
and input matrix B. As in the previous section, we impose
the control performance condition that specifies the degree
of relaxation compared with the optimal cost of the LQR
problem.

4.1 Discrete Uncertainties

Let us start with the system (1) where the pair (A,B) is
uncertain but contained in a known discrete set, i.e.,

(A,B) ∈ Sd := {(A,B) = (Aj , Bj), j = 1, · · · , n}, (16)

where n is the number of scenarios and (Aj , Bj) are
controllable pairs for all j = 1, · · · , n.
For such systems, the performance condition is specified
using the following upper bound

J∗
d := max

j=1,··· ,n
γjJLQR,j , γj ≥ 1, (17)

in place of (9), where JLQR,j is the optimal cost (5)
corresponding to the scenario (Aj , Bj) in (16), and γj
specifies the degree of relaxation for each scenario. In
this way, the existence of the control input satisfying the
performance condition is guaranteed, and the parameter γ
can be used to balance between the sparsity of the input
and the deviation from the optimal cost in the worst-case
scenario.

The constraint of performance condition (8) needs to
be satisfied in any of the n scenarios, thus the second-
order cone programming of this problem replaces the
first constraint of (14) by n constraints, each of which
corresponds to one of n scenarios.
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Tf−1∑
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|ui[t]|, (7)

where | · | denotes the element-wise absolute value, subject
to

J(u) :=xT [Tf ]Qfx[Tf ]+

Tf−1∑
t=0

xT [t]Qx[t]+uT [t]Ru[t]≤J∗, (8)

where

J∗ := γJLQR, γ ≥ 1. (9)

In (9), JLQR is defined as in (5) and specifies the control
performance condition.

Remark 5. The parameter γ is used to make a balance
between the sparsity of the control input and the deviation
from the optimal cost (5). If γ = 1, then there is no
freedom to minimize the norm of the control inputs, and
the solution to the problem coincides with (3). As γ
becomes larger, the l1-norm of the hands-off control inputs
may become smaller, but the performance degrades more
and more compared with (5).

To solve Problem 4, let us first simplify the expressions in
(7)-(8) by defining

x̄ :=




x[0]
x[1]
...

x[Tf ]


 , ū :=




u[0]
u[1]
...

u[Tf − 1]


 ,

Â :=




Inx 0 · · · 0
A 0
...

...
. . .

ATf−1 ATf−2 · · · Inx


 ,

Ā :=

[
0nx×nxTf

Â

]
, B̄ := ITf

⊗B, A0 :=

[
A

0(nx−1)Tf×nx

]
,

Q̂ := diag[ITf−1 ⊗Q,Qf ], Q̄ := diag[Q, Q̂], R̄ := ITf
⊗R,

G1 := ĀB̄, G2 :=

[
Inx

ÂA0

]
.

(10)

Then, the cost (7) can be rewritten as

Tf−1∑
t=0

nu∑
i=1

|ui[t]| = 1T
nuTf

|ū|. (11)

Also, the vector of the states is expressed as

x̄ = G1ū+G2x0, (12)

and thus J(u) in (8) can be expressed as

J(u) = x̄T Q̄x̄+ ūT R̄ū

=

[
ū
x0

]T [
GT

1 Q̄G1 + R̄ GT
1 Q̄G2

GT
2 Q̄G1 GT

2 Q̄G2

] [
ū
x0

]
.

(13)

Based upon (11)-(13), Problem 4 can be reformulated as
a second-order cone programming as follows:

min
w

qT0 w

s.t. wTP1w + qT1 w + r1 ≤ 0,

qT2 w ≤ 0, qT3 w ≤ 0,

(14)

where

w :=

[
ū
v

]
, q0 :=

[
0nuTf

1nuTf

]
,

P1 :=

[
GT

1 Q̄G1 + R̄ 0
0 0

]
, q1 :=

[
2GT

1 Q̄G2x0

0

]
,

r1 := xT
0 G

T
2 Q̄G2x0 − J∗,

q2 :=

[
InuTf

−InuTf

]
, q3 :=

[
−InuTf

−InuTf

]
.

(15)

This second-order cone programming (14)-(15) can be
solved using existing numerical softwares such as YALMIP
on MATLAB (Löfberg, 2004; Löfberg, 2012; Löfberg, 2009).
Here, the constraint wTP1w + qT1 w + r1 ≤ 0 corresponds
to (8) and guarantees the satisfaction of the performance
condition, while the other two constraints, qT2 w ≤ 0 and
qT3 w ≤ 0, determine the bounds on the absolute value of
u[t].

Remark 6. Unlike the original paper (Nagahara et al.,
2016a), where a continuous-time setup is considered, it
is not necessary to impose the constraint maxi |ui[t]| ≤ 1
in a discrete-time setup. This is because without such a
constraint, a continuous-time setup produces an optimal
control input of a Dirac delta function, while a discrete-
time setup guarantees the boundedness of |ui[t]| as long as
(11) is bounded.

4. HANDS-OFF CONTROL PROBLEM FOR
UNCERTAIN SYSTEMS

This section considers the hands-off control problem for
the system (1) but with uncertainties in the state matrix A
and input matrix B. As in the previous section, we impose
the control performance condition that specifies the degree
of relaxation compared with the optimal cost of the LQR
problem.

4.1 Discrete Uncertainties

Let us start with the system (1) where the pair (A,B) is
uncertain but contained in a known discrete set, i.e.,

(A,B) ∈ Sd := {(A,B) = (Aj , Bj), j = 1, · · · , n}, (16)

where n is the number of scenarios and (Aj , Bj) are
controllable pairs for all j = 1, · · · , n.
For such systems, the performance condition is specified
using the following upper bound

J∗
d := max

j=1,··· ,n
γjJLQR,j , γj ≥ 1, (17)

in place of (9), where JLQR,j is the optimal cost (5)
corresponding to the scenario (Aj , Bj) in (16), and γj
specifies the degree of relaxation for each scenario. In
this way, the existence of the control input satisfying the
performance condition is guaranteed, and the parameter γ
can be used to balance between the sparsity of the input
and the deviation from the optimal cost in the worst-case
scenario.

The constraint of performance condition (8) needs to
be satisfied in any of the n scenarios, thus the second-
order cone programming of this problem replaces the
first constraint of (14) by n constraints, each of which
corresponds to one of n scenarios.
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Therefore, the following second-order cone programming
provides the solution to the hands-off control problem
subject to discrete uncertainties.

min
w

qT0 w

s.t. wTP1jw + qT1jw + r1j ≤ 0, j = 1, · · · , n,
qT2 w ≤ 0, qT3 w ≤ 0,

(18)

where w, q0, q2 and q3 are defined as in (15), and

P1j =

[
GT

1,jQ̄G1,j + R̄ 0
0 0

]
, q1j =

[
2GT

1,jQ̄G2,jx0

0

]
,

r1j = xT
0 G

T
2,jQ̄G2,jx0 − J∗

d ,

(19)

and G1,j and G2,j are defined as in (10) for the each
scenario j of the pair (Aj , Bj). Thus, we have n quadratic
constraints and 4nux

Tf linear constraints.

The formulation in (18)-(19) minimizes the l1-norm of
the control input while guaranteeing the performance
condition satisfaction for any of the n scenarios in (16).

Remark 7. It is known that the set of these n constraints
in (18) is equivalent to

wTP1w + qT1 w + r1 ≤ 0, ∀(P1, q1, r1) ∈ Sp, (20)

where

Sp = {(P1, q1, r1)|(P1, q1, r1) =

n∑
j=1

λj(P1j , q1j , r1j)λj ≥ 0,

n∑
j=1

λj = 1


 .

(21)

We will use this equivalence in the following subsection.

4.2 Polytopic Uncertainties

This subsection considers the case where the pair (A,B)
contains polytopic uncertainties, i.e.,

[A B] ∈ Ωp,

Ωp :=

{
[A(λ) B(λ)] =

p∑
i=1

λi[Ai Bi],

p∑
i=1

λi = 1, λi ≥ 0

}
,

(22)

where Ai and Bi are constant matrices satisfying the
controllability of (Ai, Bi) for all i, and λis are time-
invariant uncertainties.

Unlike the case of discrete uncertainties, systems with
polytopic uncertainties have infinite number of scenarios
that replaces (8). Thus, to treat polytopic uncertainties
efficiently, the constraint (8) is relaxed using an upper
bound on the cost function (13) that is easy to compute.

For this purpose, first notice that from the definitions in
(10), it holds that

GT
1 Q̄G1 =B̄T ĀT Q̄ĀB̄ = B̄T ÂT Q̂ÂB̄,

GT
2 Q̄G1 =(ÂA0)

T Q̂ÂB̄ = AT
0 Â

T Q̂ÂB̄,

GT
2 Q̄G2 =AT

0 Â
T Q̂ÂA0 +Q.

(23)

Accordingly, the matrix characterizing J(u) in (13) can be
expressed as

[
GT

1 Q̄G1 + R̄ GT
1 Q̄G2

GT
2 Q̄G1 GT

2 Q̄G2

]

=

[
B̄

A0

]T [
ÂT Q̂Â ÂT Q̂Â

ÂT Q̂Â ÂT Q̂Â

] [
B̄

A0

]
+

[
R̄

Q

]
.

(24)

Next, define

Ã := I −
[

0 0
ITf−1 ⊗A 0

]
, Ãi := I −

[
0 0

ITf−1 ⊗Ai 0

]
,

Âi :=




I 0 · · · 0
Ai 0
...

...
. . .

A
Tf−1
i A

Tf−2
i · · · I


 , A0,i :=

[
Ai

0(nx−1)Tf×nx

]
.

(25)

Then, it follows that

Â = Ã−1 =

(
p∑

i=1

λiÃi

)−1

, Âi = Ã−1
i , A0 =

p∑
i=1

λiA0,i.

(26)

Moreover, define

B̄i := ITf
⊗Bi. (27)

Then, (22), (25) and (27) yield[
B̄ 0
0 A0

]
=

p∑
i=1

λi

[
B̄i 0
0 A0i

]
. (28)

On the other hand, from Corollary 2 and (26), it holds
that

ÂT Q̂Â = Ã−T Q̂Ã−1 =




p∑
i=1

p∑
j=1

λiλjÃ
T
i Q̂

−1Ãj




−1

≤
p∑

i=1

p∑
j=1

λiλj

(
ÃT

i Q̂
−1Ãj

)−1

=

p∑
i=1

p∑
j=1

λiλjÂ
T
j Q̂Âi.

(29)

From (29), it follows that
[
ÂT Q̂Â ÂT Q̂Â

ÂT Q̂Â ÂT Q̂Â

]
≤

p∑
i=1

p∑
j=1

λiλj

[
ÂT

j Q̂Âi ÂT
j Q̂Âi

ÂT
j Q̂Âi ÂT

j Q̂Âi

]
.

(30)

Due to the fact that 1T1 and M = MT are both positive
semidefinite, (1T1)⊗M is positive semidefinite.

Hence, based on Corollary 3 together with (28) and (30),
we can deduce[

B̄ 0
0 A0

]T [
ÂT Q̂Â ÂT Q̂Â

ÂT Q̂Â ÂT Q̂Â

] [
B̄ 0
0 A0

]

≤
p∑

i=1

p∑
j=1

p∑
k=1

λiλjλk

[
B̄T

k Â
T
j Q̂ÂiB̄k B̄T

k Â
T
j Q̂ÂiA0,k

AT
0,kÂ

T
j Q̂ÂiB̄k AT

0,kÂ
T
j Q̂ÂiA0,k

]
.

(31)

Thus, an upper bound on the cost function J(ū) is ob-
tained as a function of the control input:

J(ū) ≤
p∑

i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū), (32)
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where

Jijk(ū) =ūT
(
B̄T

k Â
T
j Q̂ÂiB̄k + R̄

)
ū

+ 2xT
0

(
AT

0,kÂ
T
j Q̂ÂiB̄k

)
ū

+ xT
0

(
AT

0,kÂ
T
j Q̂ÂiA0,k +Q

)
x0.

(33)

So the constraint (8) is relaxed as
p∑

i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū) ≤ J∗
p . (34)

Here, it is assumed that J∗
p , which characterizes the trade-

off between the sparsity of control input and systems’
performance, is given. The selection of the performance
parameter J∗

p is discussed in Section 5.

The corresponding second-order cone programming formu-
lation of (14) replaces P1, q1 and r1 by

P1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkP1ijk, q1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkq1ijk,

r1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkr1ijk,

(35)

where

P1ijk =

[
B̄T

k Â
T
j Q̂ÂiB̄k + R̄ 0

0 0

]
,

q1ijk =

[
2B̄T

k Â
T
i Q̂ÂjA0,kx0

0

]
,

r1ijk = xT
0

(
AT

0,kÂ
T
j Q̂ÂiA0,k +Q

)
x0 − J∗

p .

(36)

Using (35) with Remark 7, the second-order cone program-
ming formulation for the hands-off control for polytopic
uncertainties is

min
w

qT0 w

s.t. wTP1ijkw + qT1ijkw + r1ijk ≤ 0, i, j, k = 1, · · · , p,
qT2 w ≤ 0, qT3 w ≤ 0,

(37)

where w, q0, q2 and q3 are defined as in (15). This
optimization problem has p3 quadratic constraints and
4nux

Tf linear constraints.

Remark 8. It is straightforward to show that the number
of quadratic constraints in (37) can be reduced from p3 to
p2(p+1)/2 by using the symmetry of i and j in P1ijk, q1ijk
and r1ijk.

5. DISCUSSIONS

This section briefly discusses the computational cost and
some concerns regarding the performance condition of the
proposed approach.

5.1 Computational Cost

As we have seen, the computational cost of (37) increases
quadratically with respect to the number of vertices of
polytopic uncertainty. However, this computational cost

of (37) can be reduced by further relaxing the constraints.
An approach is to find a pair (P̄1, q̄1, r̄1) such that ∀w,

wT P̄1w + q̄T1 w + r̄1 ≤ 0

⇒wTP1ijkw + qT1ijkw + r1ijk ≤ 0, ∀i, j, k = 1, · · · , p.
(38)

If such a pair is found, then the number of quadratic con-
straints is reduced from p3 to one. To find such (P̄1, q̄1, r̄1),
an inner Dikin ellipsoid, an inner Löwner John ellipsoid
(Henrion et al., 2001), or other inner approximations
for the intersection of ellipsoids (P1ijk, q1ijk, r1ijk) (Boyd
et al., 1994) can be used.

5.2 Performance Condition

As in the case with discrete uncertainties, it is possible to
choose the performance condition J∗

p using the exact upper
bound on

∑
i λiJi(ū) by solving a minimax constrained

problem. However, Section 4.2 proposes to relax the con-
straint in Problem 4 by using the upper bound of quadratic
cost instead of the quadratic cost itself. Thus, there is no
reason to use the exact upper bound on

∑
i λiJi(ū).

One option is to choose J∗
p sufficiently large. For example,

we may compare the performance with the nominal by
using JLQR corresponding to the nominal system (e.g.,
A =

∑p
i=1 Ai/p and B =

∑p
i=1 Bi/p) and then setting

J∗
p = γJLQR with a relatively large γ. Note that such J∗

p
may lead to infeasible programming, if selected γ is not
sufficiently large. In this case, increase the value of γ.

One other method for choosing J∗
p is setting it in such

a way that the existence of a feasible control input is
guaranteed. For example, if both A and B are subject to
polytopic uncertainty as in (22), then we may compute ū
that minimizes Jijk(ū) for each i, j, and k and let

J∗
p = γmax

i,j,k
Jijk(ūapprox), γ ≥ 1 (39)

where ūapprox = argmaxi,j,k J
∗
ijk(ū). Then it is guaranteed

that there exists a control input ū = ūapprox that satisfies
p∑

i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū) ≤ J∗
p . (40)

Alternatively, we could evaluate how much control effort
is needed to improve the performance compared with
the worst case of uncertainties without control inputs by
setting J∗

p as follows:

J∗
p = ηJ(0), η ≤ 1, J(0) = max

A
xT
0 G

T
2 Q̄G2x0. (41)

6. NUMERICAL EXAMPLE

In this section, we apply the results obtained in Subsection
4.2. to a discrete-time linear system subject to polytopic
uncertainties. The example is taken from (Ding and Ping,
2013), which considers the model of a continuous stirred
tank reactor for an exothermic, irreversible reaction. The
polytope representing uncertainties of the considered plant
is characterized by 4 vertices as follows:

A1 =

[
0.8227 −0.00168
6.1233 0.9367

]
, A2 =

[
0.9654 −0.00182
−0.6759 0.9433

]
,

A3 =

[
0.8895 −0.00294
0.9447 0.9968

]
, A4 =

[
0.8930 −0.00062
2.7738 0.8864

]
,
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T
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j Q̂ÂiB̄k

)
ū
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AT
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)
x0.
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So the constraint (8) is relaxed as
p∑

i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū) ≤ J∗
p . (34)

Here, it is assumed that J∗
p , which characterizes the trade-

off between the sparsity of control input and systems’
performance, is given. The selection of the performance
parameter J∗

p is discussed in Section 5.

The corresponding second-order cone programming formu-
lation of (14) replaces P1, q1 and r1 by

P1 =

p∑
i=1

p∑
j=1

p∑
k=1

λiλjλkP1ijk, q1 =

p∑
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p∑
j=1

p∑
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p∑
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(35)
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k Â
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(36)

Using (35) with Remark 7, the second-order cone program-
ming formulation for the hands-off control for polytopic
uncertainties is

min
w

qT0 w

s.t. wTP1ijkw + qT1ijkw + r1ijk ≤ 0, i, j, k = 1, · · · , p,
qT2 w ≤ 0, qT3 w ≤ 0,

(37)

where w, q0, q2 and q3 are defined as in (15). This
optimization problem has p3 quadratic constraints and
4nux

Tf linear constraints.

Remark 8. It is straightforward to show that the number
of quadratic constraints in (37) can be reduced from p3 to
p2(p+1)/2 by using the symmetry of i and j in P1ijk, q1ijk
and r1ijk.

5. DISCUSSIONS
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If such a pair is found, then the number of quadratic con-
straints is reduced from p3 to one. To find such (P̄1, q̄1, r̄1),
an inner Dikin ellipsoid, an inner Löwner John ellipsoid
(Henrion et al., 2001), or other inner approximations
for the intersection of ellipsoids (P1ijk, q1ijk, r1ijk) (Boyd
et al., 1994) can be used.

5.2 Performance Condition

As in the case with discrete uncertainties, it is possible to
choose the performance condition J∗

p using the exact upper
bound on

∑
i λiJi(ū) by solving a minimax constrained

problem. However, Section 4.2 proposes to relax the con-
straint in Problem 4 by using the upper bound of quadratic
cost instead of the quadratic cost itself. Thus, there is no
reason to use the exact upper bound on

∑
i λiJi(ū).

One option is to choose J∗
p sufficiently large. For example,

we may compare the performance with the nominal by
using JLQR corresponding to the nominal system (e.g.,
A =

∑p
i=1 Ai/p and B =

∑p
i=1 Bi/p) and then setting

J∗
p = γJLQR with a relatively large γ. Note that such J∗

p
may lead to infeasible programming, if selected γ is not
sufficiently large. In this case, increase the value of γ.

One other method for choosing J∗
p is setting it in such

a way that the existence of a feasible control input is
guaranteed. For example, if both A and B are subject to
polytopic uncertainty as in (22), then we may compute ū
that minimizes Jijk(ū) for each i, j, and k and let

J∗
p = γmax

i,j,k
Jijk(ūapprox), γ ≥ 1 (39)

where ūapprox = argmaxi,j,k J
∗
ijk(ū). Then it is guaranteed

that there exists a control input ū = ūapprox that satisfies
p∑

i=1

p∑
j=1

p∑
k=1

λiλjλkJijk(ū) ≤ J∗
p . (40)

Alternatively, we could evaluate how much control effort
is needed to improve the performance compared with
the worst case of uncertainties without control inputs by
setting J∗

p as follows:

J∗
p = ηJ(0), η ≤ 1, J(0) = max

A
xT
0 G

T
2 Q̄G2x0. (41)

6. NUMERICAL EXAMPLE

In this section, we apply the results obtained in Subsection
4.2. to a discrete-time linear system subject to polytopic
uncertainties. The example is taken from (Ding and Ping,
2013), which considers the model of a continuous stirred
tank reactor for an exothermic, irreversible reaction. The
polytope representing uncertainties of the considered plant
is characterized by 4 vertices as follows:

A1 =

[
0.8227 −0.00168
6.1233 0.9367

]
, A2 =

[
0.9654 −0.00182
−0.6759 0.9433

]
,

A3 =
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]
, A4 =

[
0.8930 −0.00062
2.7738 0.8864

]
,

IFAC NecSys 2018
Groningen, NL, August 27-28, 2018

359



360	 Masako Kishida  et al. / IFAC PapersOnLine 51-23 (2018) 355–360

0 5 10 15 20 25 30 35 40 45 50
k

-1

0

1

2

3

4

5

|u
(k

)|

Control input in LQ-constrained l1 hands-off control and standard LQR

Hands-Off
Standard LQR

Fig. 1. Control input u[t]: hands-off control (real line) and
standard LQR (dotted line)
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Fig. 2. State x[t] = (x1[t], x2[t]): hands-off control (real
line) and standard LQR (dotted line)

B1 = [−0.000092 0.1014]
T
, B2 = [−0.000097 0.1016]

T
,

B3 = [−0.000157 0.1045]
T
, B4 = [−0.000034 0.0986]

T
,

where each pair (Ai, Bi) is controllable. The initial state of
the plant is a 2-dimensional random vector whose elements
are selected from a uniform distribution over (0, 1). The
horizon length Tf is set to 50. Weighting matrices are
selected as Q = I, Qf = I, and R = 1. We set the constant
γ in (17) to 1.5. For the true system, we set λ1 = 0.1,
λ2 = 0.2, λ3 = 0.3, and λ4 = 0.4.

The optimization is set up based on (35) and (37) and
solved using YALMIP with solver option of fmincon on
MATLAB (Löfberg, 2004; Löfberg, 2012; Löfberg, 2009). The
optimal control input is illustrated in Fig. 1. In this figure,
we also plot the standard finite-horizon LQR control as in
(3). Compared with the standard LQR control, the hands-
off control is sufficiently sparse.

Moreover, we apply the obtained control input to the
considered plant in order to assess the behavior of state
trajectories. The state trajectories generated by the stan-
dard LQR control and the hands-off control are shown
in Fig. 2. According to this figure, the proposed hands-off
control, which is much sparser than the LQR control, leads
to a comparable performance with the LQR control. One
can obtain different sparsity and robustness properties by
manipulating γ and weighting matrices.

7. CONCLUSIONS

This paper has proposed approaches to constrained hands-
off control problem for discrete-time linear systems for
three different scenarios. Such a problem has been for-
mulated as minimization of the l1-norm of the control

input that satisfies given performance conditions. It has
been shown that this optimization problem is simplified
to second-order cone programing. Moreover, it has been
illustrated through a numerical example that the proposed
approach gives a sparse control input while the system
performance is fairly close to the standard finite-horizon
LQR performance as desired.
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