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Abstract—We study multi-base station (BS) preamble detection
schemes for the narrow-band Internet of Things (NB-IoT)
random access by using stochastic geometry analysis. Specifically,
we compare the preamble detection performance of two baseline
detection schemes: Quantize-and-Forward (QnF) and Detect-
and-Forward (DnF). QnF requires the feedback of quantized
received power levels while DnF requires 1-bit feedback of local
detection result. Our results show that DnF scheme outperforms
QnF scheme when the backhaul capacity is limited or when the
minimum distance between user and BSs is less than a threshold.
Our results also show that the use of multiple collaborative BSs
can lead to a significant improvement of the preamble detection
performance, as well as reduction of the total power of the
preamble transmission.

Index Terms—NB-IoT, Random Access, Preamble Detection.

I. INTRODUCTION

Internet of Things (IoT) plays an important role in the future
wireless network where everything will be connected [1].
There are two classes of IoT transmission technologies, low-
power wide-area (LPWA) and cellular IoT. Generally, LPWA
operate in an unlicensed spectrum, while cellular IoT in a
licensed spectrum. Recently, NB-IoT in cellular IoT has been
considered to be a promising technology that provides large
coverage and low power consumption for low-throughput low-
cost devices in delay-tolerant applications [2].

As an initial fundamental network function, random access
aims to identity the set of active users and to establish
resource allocation for transmissions. Different from LTE
where random access design is centered on the Zadoff-Chu
(ZC) orthogonal sequences [3], the set of othorgonal pream-
ble sequences in NB-IoT physical random access channel
(NPRACH) is designed with the aid of single-tone frequency
hopping technique [2], [4]. To guarantee a certain preamble
detection performance under low transmission power, trans-
mission repetition is required in NB-IoT. Preamble detection
in NB-IoT has been studied in [4]–[6]. More specifically, [4]
firstly proposed algorithm to detect the preamble and estimate
the time of arrival (TOA) simultaneously. [5] improved the
TOA estimation by modifying the hopping pattern that all
possible hopping distances can be fully used for a given
number of subcarriers. Finally, [6] proposed the partial pream-
ble transmission and characterizes the trade-off between the
preamble detection performance and collisions.

Recently, the user activity detection has been improved by
having massive antennas in massive multiple-input multiple-
output (MIMO) system [7] or having multiple base stations
(BSs) in C-RAN system with limited-capacity fronthaul [8] in
context of grant-free random access, where the non-orthogonal

preamble sequences are used. The basic idea is to utilize the
spatial diversity at receiver side to improve detection. Inspired
by these ideas, our paper considers collaborative detection
with multiple BSs in context of NB-IoT grant-based random
access. To the best of our knowledge, the impact of multiple
BSs on the preamble detection has not been studied for NB-
IoT.

Furthermore, stochastic geometry is a useful tool for char-
acterizing the spatial distribution of users and BSs [9]. In this
paper, we, therefore, study the NB-IoT preamble detection
with multiple BSs using stochastic geometry analysis. The
contributions of this paper is summarized as follows:
• We derive the missed detection probability under fixed

false alarm probability for the QnF and DnF schemes,
and compare two schemes under limited-capacity back-
haul and different scales of the network.

• We show that DnF outperforms QnF when the backhaul
capacity is limited or the minimum distance between user
and BSs is less than a threshold.

• We also show that the use of multiple collaborative BSs
can lead to a significant improvement of the preamble
detection performance as well as reduction of the total
power of the preamble transmission.

The remaining part of the paper is organized as follows.
Section II describes the system model. Section III discusses
the preamble detection strategy and derives the missed detec-
tion probability of the Quantize-and-Forward and Detect-and-
Forward schemes. Section IV optimizes total power of the
preamble transmission and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a system model where K BSs jointly detect
users’ activity. We assume that K BSs are each equipped with
single antenna1 and are connected to a centralized unit (CU)
via error-free backhaul links, and that the BSs are uniformly
distributed on the two-dimensional Euclidean plane.

Let R denote the distance in meters from a user to the
farthest BS and let r (1 ≤ r ≤ R) denote the distance in
meters from a user to the closest BS, where r is required
larger than or equal to 1 as following the bounded pathloss
model [10]. Then, the network system of the user and K BSs
can be seen as the ring-shaped region (annulus) centered at
the user with inner radius r and outer radius R, which can be
shown in Fig.1. When there is no collaboration of BSs, i.e.
single-BS case, the user should be associated with the closest

1An extension of multiple antennas will be considered in future work.



Fig. 1. System Configuration

BS and the ring-shaped region reduces to the circle line with
radius r, where r is usually in the range of kilometers for
NB-IoT applications [4]. Note that each user has a different
value of r and R.

A. Preamble Structure
The preamble sequence consists of Mp repetitions. Each

replica has v symbol groups which each symbol group is
composed of a cyclic prefix (CP) and ξ symbols. The preamble
sequence consists of fixed-size frequency hopping in each
repetition, and pseudo-hopping among repetitions dependent
on cell identity and repetition index. The former is designed
for the BS to estimate TOA while the latter is to avoid
persistent interference between different cells [2]. This unique
design of preamble sequence is known at the BSs.

B. Preamble Transmission
At preamble transmission phase, each user chooses a ran-

dom index and transmits the preamble sequence corresponding
to the chosen index. The transmitted preamble signal is√
Pxm,j,i, where P denotes the transmit power and xm,j,i

denotes the normalized i-th transmitted symbol in j-th symbol
group at m-th repetition.

Since narrow band signal is considered in NB-IoT, the ran-
dom access channel can be modeled as a single-tap channel.
We assume that the channel does not vary in one symbol
group but varies independently among symbol groups2, and
that the channel between a user and k-th BS at m-th repetition
can be modeled as h

(k)
m,j

√
d−αk for k ∈ {1, ...,K} and

m ∈ {1, ...,Mp}, where h
(k)
m,j ∼ CN(0, 1) is the small-

scale fading and d−αk is the large scale fading with path-
loss exponent α (α > 2) and distance dk, where dk has the
probability density function (PDF) [11],

fd(x) = 2x/(R2 − r2), r ≤ x ≤ R. (1)

2In NB-IoT, since the number of symbols in one symbol group is designed
to be small such that the channel variation is negligible [4], the assumption
is reasonable under consideration.

We assume that a user knows the information3 of r and
R, and receives the information of the total number of
collaborative BSs, K, via the master information block (MIB)
downlink signal. Hence, by knowing r, R and K, the user can
adapt its transmission power to guarantee a given detection
performance similar to the single-BS case where the user
adapts the transmission power to compensate the large-scale
pathloss [2]. It should be noted that the BSs do not know the
location of the user at the preamble transmission phase.

C. Received Power at BSs
The received signal at k-th BS is given by

y
(k)
m,j,i =

√
Pd−αk h

(k)
m,jxm,j,i + n

(k)
m,j,i, (2)

for k ∈ {1, ...,K}, where n(k)m,j,i denotes complex Gaussian
noise with zero mean and variance σ2

n. Then, power delay
profile (PDP) is computed by correlating the known preamble
sequence and the received signal as a function of propagation
delay. Hence, the peak value of PDP, which the round-trip
delay, i.e. time of arrival (TOA), is estimated, at k-th BS is
given by [4]

Jk(P ) =

Mp∑
m=1

∣∣∣∣∣∣
v∑
j=1

ξ∑
i=1

r
(k)
m,j,i

∣∣∣∣∣∣
2

, (3)

where r(k)m,j,i = y
(k)
m,j,ix

(k)∗
m,j,i =

√
Pd−αk h

(k)
m,j + ñ

(k)
m,j,i is the

correlation between x(k)m,j,i and y(k)m,j,i, and ñ(k)m,j,i has the same
distribution as n(k)m,j,i.

Let γ = P/σ2
n denote the transmit signal-to-noise ratio

(SNR). Then for given dk

Jk(γ) =

Mp∑
m=1

∣∣∣∣∣∣
v∑
j=1

ξ
√
Pd−αk h

(k)
m,j +

v∑
j=1

ξ∑
i=1

ñ
(k)
m,j,i

∣∣∣∣∣∣
2

(4)

has gamma distribution with shape Mp and scale vξσ2
n(1 +

ξγd−αk ), Jk(γ) ∼ Gamma(Mp, vξσ
2
n(1 + ξγd−αk )) [6], i.e.

fJk(x|dk) =
xMp−1e

− x

vξσ2
n(1+ξγd

−α
k

)

(Mp − 1)!(vξσ2
n(1 + ξγd−αk ))Mp

. (5)

III. PREAMBLE DETECTION

In this section, we consider two baseline schemes,
named Quantize-and-Forward detection (QnF) and Detect-
and-Forward detection (DnF). Different from the grant-free
random access [8] where it requires feedback per each repeti-
tion, our paper requires one-time feedback after all transmis-
sion repetitions. Hence, the number of feedback information in
[8] depends on the number of repetition, whereas the number
of feedback information in our paper is independent of the
number of repetitions.

Under the limited-capacity backhaul, different from [8]
where a trade off between the number of repetition and the

3The assumption is suitable for such scenarios when the largest and smallest
distance, R and r, can be estimated from downlink signals, or when users
are in fixed locations and their distance to BSs is constant and is known at
each node.



quantization bits is considered, our paper consider a trade off
between the number of collaborating BSs and the quantization
bits. Especially for the DnF scheme, where 1-bit feedback is
used, the total number of collaborating BSs must not exceed
the backhaul capacity.

A. Quantize-and-Forward

With QnF, each BS quantizes the peak value of PDP, e.g.
Jk(γ) at k-th BS, and sends the quantized power to CU where
a detection is performed4. The peak value of PDP is quantized
with a positive integer value of b bits per sample, i.e. the
received power at CU from the k-th BS can be written as [8]

Ĵk(γ) = Q(Jk(γ)), (6)

where Q is a quantization function. Since the information of
large-scale fading is not available at BSs, an optimal quantizer
at BSs as in [8] is impossible. Instead, a simple uniform
quantizer is considered.

1) Detection Rule: Since the information of the large-scale
fading is not available at BSs, the equal gain combining (EGC)
detection is used at CU [12], i.e.,

K∑
k=1

Ĵk(γ)
D1

≷
D0

λQnF , (7)

where the quantized received power of (6) under the uniform
quantizer at BSs can be rewritten as

Ĵk(γ) = Jk(γ) + ek, for 1 ≤ k ≤ K, (8)

where ek is the quantization error independent with Jk(γ)
and has uniform distribution, U(−∆/2,∆/2), where ∆ =
2−bPmax, and Pmax is the maximum power chosen to be
equal to λQnF . Thereby, if any BS receives power larger than
λQnF , the detection result of (7) will be D1.

Let S(γ) :=
∑K
k=1 Jk(γ) denote the total received pow-

ers from all BSs. It follows from [10] and [13] that the
distribution of S(γ) can be approximated as gamma dis-
tribution5 with shape c := E[S(γ)]2/var[S(γ)] and scale
d := var[S(γ)]/E[S(γ)], i.e. S(γ) ∼ Gamma(c, d). The mean
of S(γ) is given by

E[S(γ)] = KMpvξσ
2
n

(
1 + 2ξγ

(r2−α −R2−α)

(α− 2)(R2 − r2)

)
, (9)

and the variance of S(γ) is given by

var[S(γ)] =KMp(vξσ
2
n)2
(

1 + 4ξγ
(r2−α −R2−α)

(α− 2)(R2 − r2)

)
+K(vξσ2

n)2(ξγ)2
(

(M2
p +Mp)(r

2−2α −R2−2α)

(α− 1)(R2 − r2)

−
4M2

p (r2−α −R2−α)2

(α− 2)2(R2 − r2)2

)
. (10)

The derivation of (9) and (10) is provided in Appendix A.

4Note that the detection of preamble transmission based on feedbacks of
the received powers does not affect the estimation of TOA at each BS.

5Since [13] and [10] showed the high accuracy of gamma distribution ap-
proximation for S(γ) for K ≥ 6, our paper simply applies this approximation
result into the analysis.

Let Y :=
∑K
k=1 (ek/∆ + 0.5) denote the sum of i.i.d

normalized uniform distribution, U(0, 1), i.e. Y has Irwin-
Hall distribution,

fY (y) =

K∑
j=0

(−1)j
(
K
j

)
(y − j)K−1

2(K − 1)!
sgn(y − j) (11)

for 0 ≤ y ≤ K, where sgn(y − j) is the sign function,

sgn(y − j) =

{ −1, y < j,
0, y = j,
1, y > j.

(12)

Hence, the LHS of (7) can be rewritten as

K∑
k=1

Ĵk(γ) = S(γ) + Y∆−K∆/2. (13)

2) Missed detection probability: Since S(0) ∼
Gamma(KMp, vξσ

2
n), the false alarm probability for

given λQnF can be obtained as

Pf,QnF (b,K)

= Pr

(
K∑
k=1

Ĵk(0) > λQnF

∣∣∣∣D0

)
(14)

= Pr (S(0) + Y∆−K∆/2 > λQnF ) (15)
= 1− Pr (S(0) + Y∆ ≤ λQnF +K∆/2) (16)

= 1−
∫ λQnF

∆ +K
2

0

fY (y)dyΓ

(
KMp,

λQnF +K∆/2− y∆

vξσ2
n

)
,(17)

where Γ(n, x) =
∫ x
0
tn−1e−t

(n−1)! dt is the generalized incomplete
Gamma function, and the integral part of (17) can be com-
puted by Trapezoid method.

Since S(γ) ∼ Gamma(c, d), the missed detection probabil-
ity for given λQnF can also be obtained by, similar to (17),

Pm,QnF (b,K)

= Pr

(
K∑
k=1

Ĵk(γ) < λQnF

∣∣∣∣D1

)
(18)

= Pr (S(γ) + Y∆ < λQnF +K∆/2) (19)

=

∫ λQnF
∆ +K

2

0

fY (y)dyΓ (c, (λQnF +K∆/2− y∆) /d) . (20)

Therefore, for Pf,QnF (b,K) = Pf , we can obtain the
detection threshold, λQnF , from (17) and then, the missed
detection probability, Pm,QnF (b,K), from (20).

Remark 1: Due to the nature of limited-capacity backhaul,

b×K ≤ Cf , (21)

where Cf (bits/use) represents the limited-capacity backhaul,
it is possible to trade the number of collaborated BSs for the
number of bits per sample to minimize the missed detection
probability. Therefore, the missed detection probability of the
QnF scheme is given by

Pm,QnF = min
b×K≤Cf

Pm,QnF (b,K). (22)



Special case: When r goes to 1 for given large R (r/R→
0), we have

r2−α −R2−α

R2 − r2
= r−α

( r
R

)2 1− (r/R)α−2

1− (r/R)2
→ 0, (23)

and similarly,
r2−2α −R2−2α

R2 − r2
→ 0. (24)

It follows from (9) and (10) that the mean and variance of
S(γ) converge to

E[S(γ)] → KMpvξσ
2
n, (25)

var[S(γ)] → KMp(vξσ
2
n)2, (26)

respectively. Then, we obtain from (25) and (26) that S(γ) ∼
Gamma(KMp, vξσ

2
n), which is the same distribution of S(0)

for no preamble transmission case. It is because the density
of BSs converges to zero and then the summing power of
received information-bearing signals goes to zero.

Hence, it follows from (17) and (20) that Pf,QnF (b,K) +
Pm,QnF (b,K) → 1. Therefore, the missed detection proba-
bility approaches 1 if the false alarm probability is forced to
approach 0.

B. Detect-and-Forward

With DnF, each BS individually detects the preamble
transmission and sends the detection result to CU. Since
the observation of BSs are i.i.d, each BS chooses the same
detection threshold, i.e. the detection at BSs is

Jk(γ)
Dk1
≷
Dk0
λDnF , 1 ≤ k ≤ K, (27)

where λDnF is the detection threshold, and Dk0 and Dk1 denote
the hypothesis of no preamble transmission and preamble
transmission at k-th BS, respectively. Since each BS is re-
quired to send the detection result to CU, a BS can implement
the 1-bit feedback process without error, which is “1” if Dk1 ,
and “0” if Dk0 .

Since CU does not know the large-scale fading, CU will
apply the majority voting rule to have final decision [14]; that
is, if CU receives more than half of “1” feedbacks, there is a
preamble transmission and, otherwise, there is no preamble
transmission. Hence, the false alarm probability for given
λDnF is given by [14]

Pf,DnF =

K∑
i=bK/2c+1

(
K
i

)[
Pr(Ji(0) > λDnF |Di0)

]i
×
[
1− Pr(Ji(0) > λDnF |Di0)

]K−i
(28)

=

K∑
i=bK/2c+1

(
K
i

)[
1− Γ

(
Mp,

λDnF
vξσ2

n

)]i

×
[
Γ

(
Mp,

λDnF
vξσ2

n

)]K−i
. (29)

where bxc is the largest integer smaller than or equal to x.

For Pf,DnF = Pf , λDnF can be numerically computed
from (29). Then, the missed detection probability can be
obtained by

Pm,DnF = 1−
K∑

i=bK/2c+1

(
K
i

)[
Pr(Ji(γ) > λDnF |Di1)

]i
×
[
1− Pr(Ji(γ) > λDnF |Di1)

]K−i
, (30)

where from (1) and (5),

Pr(Ji(γ) > λDnF |Di1)

=

∫ R

r

Pr(Ji(γ) > λDnF |Di1, di)fd(x)dx (31)

= 1−
∫ R

r

Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγx−α)

)
2x

R2 − r2
dx (32)

can be computed by Trapezoid method.
It is shown in Appendix B that Pr(Ji(γ) > λDnF |Di1) is

a strictly decreasing function of r. Also, it can be shown that
Pm,DnF in (30) is a strictly increasing function of Pr(Ji(γ) >
λDnF |Di1). Hence, the missed detection probability of the
DnF scheme is an increasing function of r.

It is interesting that when r goes to 1 for given large R,
i.e. r/R→ 0, and Pf � 1, the detection performance of the
DnF scheme is minimized while that of the QnF scheme is
maximized (goes to 1), which can be shown in Figure 2.

Remark 2: For limited-capacity backhaul, since DnF
scheme requires 1-bit feedback without error, the constraint
of (21) in DnF scheme reduces to K ≤ Cf .

C. Numerical Results

Throughout the paper, missed detection probabilities in (20)
and (30) are numerically computed via Trapezoid method,
and the parameters are chosen as follows [2]: the effective
noise power, σ2

n, for the bandwidth 3.75 kHz is 10−16.53, the
pathloss exponent, α, is 4 for typical macrocell urban channel,
v = 4, and ξ = 5.

Figure 2 compares the detection performance of two
schemes versus the inner radius, r, for different value of outer
radius, R. It can be seen that the missed detection probability
of both schemes decreases significantly as the outer bound
R increases. It is because BSs located far from user have
unreliable link, thus degrading the detection performance. It
can also be seen that the DnF scheme outperforms the QnF
scheme when the minimum distance between user and BSs,
r, is less than a threshold. It is interesting that there exists an
optimal r that minimizes the missed detection probability of
the QnF scheme.

Figure 3 shows the missed detection probability versus the
number of BSs, K, for the specific range, r = 10 Km and
R = 20 Km, in favor of the QnF scheme (see Fig. 2). It
can be seen that when there is limited-capacity backhaul, the
detection performance of QnF converges as K increases and
is not as good as that of DnF for large K. It is because the
QnF scheme has high quantization noise for large K while
the DnF scheme benefits from local detection at BSs without
loss of feedback information as long as K ≤ Cf .
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IV. MINIMUM TOTAL TRANSMISSION POWER

In this section, we consider the problem of minimizing
the total transmission power under constraint of transmission
power per symbol and missed detection probability, i.e.

min
Mp,P

Ptot = vξMpP (33)

subject to : P ≤ Pmax (34)
Pm,X ≤ ε, (35)

where Pmax is the maximum allowed transmission power per
symbol6, ε is the target missed detection probability, and Pm,X
denote the missed detection probability of scheme X.

It can be seen from (33) that Mp with integer value has a
dominant impact on the total transmission power, Ptotal. The
problem of (33)-(35) can be solved with numerical search.
That is, we firstly fix P = Pmax and find the minimum number
of repetition, M∗p , satisfying the constraint of (35). Then, we
find the minimum P ∗ also satisfying the constraint of (35)
when Mp = M∗p . Hence, the minimum total transmission
power will be given by vξM∗pP

∗.

6NB-IoT device is low-cost and low-throughput with limitations of hard-
ware. Hence, a constraint of transmission power per symbol is necessary.
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Pmax = 30 dBm.

Figures 4 shows the minimum total transmission power (red
color) and the minimum number of repetition (blue color)
versus the number of BSs, K. It can be seen that the total
transmission power and number of repetition of the DnF
scheme and the QnF scheme with sufficient-capacity backhaul
decreases significantly and monotonically as the number of
collaborating BSs, K, increases. It can also be seen that, under
limited-capacity backhaul, the minimum total transmission
power and the minimum number of repetitions of the QnF
scheme converges to a constant for large K.

V. CONCLUSION

We studied the impact of multiple BSs and limited-capacity
backhaul on NB-IoT preamble detection performance by using
the stochastic geometry analysis. Numerical result shows the
relative merits of these schemes. More specifically, our results
show that DnF scheme outperforms QnF scheme when the
backhaul capacity is limited or when the minimum distance
between user and BSs is less than a threshold. Our result
also shows that multiple BSs improve the preamble detection
performance as well as reduce the number of repetition and
the total power of the preamble transmission significantly.
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APPENDIX A

In this Appendix, we derive the mean and variance of S(γ).
It follows from (1) that we have

E(d−αk ) = 2
(r2−α −R2−α)

(α− 2)(R2 − r2)
, (36)

E(d−2αk ) =
(r2−α −R2−α)

(α− 1)(R2 − r2)
, (37)



respecitvely. Hence, since Jk(γ) for 1 ≤ k ≤ K are
independent, it follows from (4) and (5) that the mean and
variance of S(γ) can be obtained by

E[S(γ)] = vξσ2
nKMp× E

(
1 + ξγd−αk )

)
(38)

= vξσ2
nKMp

(
1 + 2ξγ

(r2−α −R2−α)

(α− 2)(R2 − r2)

)
,(39)

and

var[S(γ)]

=K × var[Jk(γ)] (40)
=K × {E[var(Jk(γ)|dk)] + var[E(Jk(γ)|dk)]} (41)
=K(vξσ2

n)2

×
{
MpE[(1 + ξγd−αk )2] +M2

pvar(1 + ξγd−αk )
}

(42)

=KMp(vξσ
2
n)2
(

1 + 4ξγ
(r2−α −R2−α)

(α− 2)(R2 − r2)

)
+K(vξσ2

n)2(ξγ)2
(

(M2
p +Mp)(r

2−2α −R2−2α)

(α− 1)(R2 − r2)

−
4M2

p (r2−α −R2−α)2

(α− 2)2(R2 − r2)2

)
, (43)

respectively, where the law of total variance is applied in (41).

APPENDIX B
In this Appendix, we prove that Pr(Ji(γ) > λDnF |Di1) in

(32) is a strictly decreasing function of r.
Taking the fist derivative of Pr(Ji(γ) > λDnF |Di1) with

respect to r yields

dPr(Ji(γ) > λDnF |Di1)

dr

= Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγr−α)

)
2r

R2 − r2

−
∫ R

r

Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγx−α)

)
2r

(R2 − r2)2
2xdx(44)

<Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγr−α)

)
2r

R2 − r2

−Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγr−α)

)∫ R

r

2r

(R2 − r2)2
2xdx (45)

= 0, (46)

where the Leibniz integral derivative rule is applied to derive
(44) and the inequality of

Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγx−α)

)
> Γ

(
Mp,

λDnF
vξσ2

n(1 + ξγr−α)

)
,

(47)
for all x > r is applied to derive (45). Hence we have
dPr(Ji(γ) > λDnF |Di1)/dr < 0 i.e. Pr(Ji(γ) > λDnF |Di1)
in (32) is a strictly decreasing function of r.
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