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Abstract
Purpose: Incidental cardiac exposure during radiation therapy may cause heart disease. Dose-
response relationships for cardiac structures (segments) may show which ones are most sensitive to
radiation. Radiation-related cardiac injury can take years to develop; thus, studies need to involve
women treated using 2-dimensional planning, with segment doses estimated using a typical computed
tomography (CT) scan.We assessed whether such segment doses are accurate enough to use in dose-
response relationships using the radiation therapy charts of women with known segment injury. We
estimated interregimen and interpatient segment dose variability and segment dose correlations.
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Methods and Materials: The radiation therapy charts of 470 women with cardiac segment injury
after breast cancer radiation therapy were examined, and 41 regimens were identified. Regimens
were reconstructed on a typical CT scan. Doses were estimated for 5 left ventricle (LV) and 10
coronary artery segments. Correlations between cardiac segments were estimated. Interpatient dose
variation was assessed in 10 randomly selected CT scans for left regimens and in 5 for right
regimens.
Results: For the typical CT scan, interregimen segment dose variation was substantial (range, LV
segments <1-39 Gy; coronary artery segments <1-48 Gy). In 10 CT scans, interpatient segment
dose variation was higher for segments near field borders (range, 3-47 Gy) than other segments
(range, <2 Gy). Doses to different left-anterior descending coronary artery (LADCA) segments
were highly correlated with each other, as were doses to different LV segments. Also, LADCA
segment doses were highly correlated with doses to LV segments usually supplied by the LADCA.
For individual regimens there was consistency in hotspot location and segment ranking of higher-
versus-lower dose.
Conclusions: The scope for developing quantitative cardiac segment dose-response relationships in
patients who had 2-dimensional planning is limited because different segment doses are often
highly correlated, and segment-specific dose uncertainties are not independent of each other.
However, segment-specific doses may be reliably used to rank segments according to higher-
versus-lower doses.
� 2019 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Breast cancer radiation therapy reduces breast cancer
mortality1,2 but may increase the risk of ischaemic heart
disease (IHD)3,4 by causing macrovascular coronary artery
disease or microvascular myocardial disease.5 Most evi-
dence that links breast cancer radiation therapy with heart
disease is based on women treated in previous decades with
outdated techniques. A number of contemporary studies
suggest that modern regimens pose a much-reduced risk of
radiation-induced heart disease owing to improvements in
radiation therapy techniques,6e9 and in some cases a
reduction in the prescribed doses.10e12 Nonetheless,
radiation-induced heart disease is still likely to be relevant
to subgroups of women such as those who cannot tolerate
breathing adaptation, have an atypical anatomy, or are
undergoing internal mammary chain irradiation.

Currently, doses to small regions, such as cardiac
structures, in 3-dimensional computed tomography (CT)-
based radiation therapy planning can be modified by
changing beam angles or using a different technique. As a
result, oncologists often have a choice as to which
structures are exposed. The coronary arteries and
myocardium have different structures and functions and
may respond differently to radiation. Knowing if the
dose-response relationship was steeper for radiation-
related coronary artery disease or myocardial disease, or
whether they were equally sensitive, would be useful to
know. However, few studies to date have related coronary
artery or left ventricle (LV) segment radiation doses to
detailed cardiology information.13,14
In a recent case-control study of 963 women who
developed IHD after breast cancer radiation therapy, the
best available predictor of IHD was mean heart dose,3 and
coronary artery doses were not significantly associated
with the rate of IHD events after the mean whole heart
dose was taken into account. This may be because the
coronary arteries and myocardium are equally sensitive to
radiation. Alternatively, it may be due to the strong cor-
relations between coronary artery and myocardial doses in
breast cancer radiation therapy and the greater un-
certainties in estimated coronary artery doses compared
with whole heart doses.15,16

Clinical cardiac disease often occurs years after
exposure; thus, studies that relate cardiac doses to
radiation-related injury inevitably need to be carried out in
patients treated before the era of CT-based radiation
therapy planning. Information on cardiac segment injury
for these patients can be abstracted from angiogram and
echocardiogram reports in their cardiology medical notes.
Individual radiation therapy charts can be abstracted from
oncology notes, but because these women did not receive
CT-planning, segment doses need to be estimated retro-
spectively by reconstructing the regimens on a typical CT
scan. How reliable these typical segment doses are, and
whether they can be used in segment dose-response re-
lationships, is unclear.

This study describes the estimation of cardiac segment
doses for women who received 2-dimensional planned
breast cancer regimens and subsequently developed
segment damage. We describe the interregimen variation
in segment doses for 41 regimens and interpatient varia-
tion in segment doses for 14 commonly used regimens.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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We considered how these segment doses may be used to
assess associations between dose and segment injury. Our
results were used to inform a separate study that related
segment doses to sites of injury.17

Methods and Materials

Regimens

Regimens were identified from the radiation therapy
charts of 470 women included in a population-based
study of major coronary events with known location of
segment injury after breast cancer radiation therapy.3,17

The women were irradiated in Sweden between 1958
and 2001 or Denmark between 1978 and 2000. Radiation
therapy charts included diagrams or photographs of the
treatment fields, and sometimes dose-plans. Details on
the surgery, target definition, field borders, target dose,
applied total dose, dose per fraction, beam energy and
use of shielding, wedges, and bolus were collected. In-
formation was also collated from radiation therapy
protocols.

Contouring

Ten radiation therapy CT-planning scans were
randomly selected from women irradiated at Odense
University Hospital in Denmark in 2010. The treatment
position was supine, with both arms above the head. The
scan slice thickness was 3 mm, and intravenous contrast
was not used. The whole heart, ventricles, and LV and
coronary artery segments were contoured on all 10 scans
using an atlas.18 To simulate a mastectomy, the breast was
contoured and assigned a CT-value for air and 1 cm of
tissue was retained above the pectoralis major muscle to
account for residual subcutaneous tissue.

Selection of typical computed tomography scan

The 2 most common left-sided regimens for the
women in the study were identified and reconstructed on
all 10 CT scans, which were a midline tangential regimen
used after breast conserving surgery (Fig. 1A; Table E1
[field arrangement 3]; available online at https://doi.
org/10.1016/j.prro.2019.01.004) and a direct electron
chest wall regimen used after mastectomy (Fig. 1E; Table
E1 [field arrangement 7]). Whole heart and cardiac sub-
structure doses were collated, as were whole heart vol-
ume, chest wall separation, sternal length, and Haller
index (ie, ratio of height between anterior spine and
posterior sternum to transverse width of the chest). The
scan with the mean heart doses closest to average for both
techniques, and which was not atypical for any of the
anatomical factors examined, was selected as the typical
CT scan (Table E2; available online at https://doi.org/10.1
016/j.prro.2019.01.004).

Reconstruction and dose calculation

All identified regimens were reconstructed on this
typical CT scan using 3-dimensional treatment planning
(Varian Eclipse Treatment Planning System, version
10.0.39). Lines were drawn on the body surface to
represent clinical landmarks used to plan 2-dimensional
radiation therapy in previous decades. Field borders,
gantry angles, and custom blocks19 were guided by these
clinical surface markings and digitally reconstructed
radiographs.

The dose calculation algorithms were an analytical
anisotropic algorithm for photon plans, Monte Carlo for
electron plans, and pencil beam for cobalt plans. If photon
beam energies were unavailable, they were created using
mixed energy beams. The dose was calculated using the
0.1 cm calculation volume grid for all, except the cobalt
regimens where the minimum grid was 0.25 cm. Dose-
volume histograms (DVHs) were exported for each car-
diac segment with dose-bins of 0.1%.

Orthovoltage regimens were reconstructed by manual
planning. Field borders were defined using CT-based 3-
dimensional virtual simulation. Ten axial CT images (CT
slice spacing: 1.2 cm) spanning the heart were printed and
scaled up to life size. Isodose charts were superimposed
onto each CT slice and used to map dose onto cardiac
segments. The isodose shift method was used to correct
for lung in the field(s) and standoff at the body surface
(isodose shift factor: 0.8). The proportions of each cardiac
segment included within the isodose lines were calcu-
lated. DVHs were plotted and mean segment doses
calculated.

For all regimens, DVHs were used to calculate the
mean doses in equivalent 2 Gy fractions, which was
separately calculated for each dose bin in each DVH
using:

nd½ðdþ a=bÞ=ð2þ a=bÞ�

where n Z number of fractions, d Z mean dose to the
cardiac structure per fraction (Gy), and a/b Z 2 Gy.20,21

Interpatient dose variation

The effect of interpatient variability in anatomy on
cardiac segment doses was investigated in 14 regimens
(with different field arrangements) from the 2 most
common technique categories. Eight of these 14 regimens
(4 left-sided and 4 right-sided) were tangential (Table E1;
Table 1 [techniques 1-4]) and 6 (3 left- and 3 right-sided)
were anterior electron regimens (Table E1; Table 1
[techniques 5-7]). The left regimens were reconstructed
on all 10 CT scans, and the right regimens on only 5 scans

https://doi.org/10.1016/j.prro.2019.01.004
https://doi.org/10.1016/j.prro.2019.01.004
https://doi.org/10.1016/j.prro.2019.01.004
https://doi.org/10.1016/j.prro.2019.01.004
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Fig. 1 Radiation therapy fields used to treat women with breast cancer in Sweden (1958-2001) or Denmark (1978-2000). As is typical
in radiation therapy planning, the patient’s right is on the reader’s left. Adapted from Taylor (2007).23
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Table 1 Mean radiation therapy doses to myocardial structures from left-sided breast cancer radiation therapy regimens used in Sweden (1958-2001) or Denmark (1978-2000)

Radiation therapy regimen* Mean cardiac doses (Gy)y

Country Median
Year

Medial
Border

Field arrangementz,x Usual
beam
energy

Dose
(100%)
Gy{

Whole Ventricles Left ventricular myocardial segments

Heart Left Right Apex Lateral Inferior Septal Anterior

Tangential
Sweden 1959 Midline Tangents, divergent (a) 170 kV 10.5 2 3 3 8 3 1 3 3

1975 6 cm
contra

Wide tangents, divergent (b) Co60 45.0 11.3 13.6 18.3 35.7 6.4 2.0 16.3 18.8

1982 Midline Tangents, divergent (a) Co60 50.0 5.3 7.6 4.7 33.2 3.0 1.3 5.3 9.2
1990 Midline Tangents, divergent (a) (1) 6 MV 50.0 4.8 7.2 3.6 37.1 2.3 1.0 4.2 7.7

Denmark 1981 3 cm
contra

Wide tangents, divergent (b) (2) 6 MV 40.7 9.1 12.5 13.0 38.8 5.7 1.3 12.8 18.2

1982 2 cm
contra

Wide tangents (McWhirter) (b) 250 kV 36.0 11 13 13 31 12 6 14 18

1994 Midline Tangents, block posteriorly (a) (3) 8 MV 48.0 4.0 6.0 3.0 31.2 2.0 0.6 3.3 7.6
1998 3 cm

contra
Partially wide tangents, block posteriorly (i) (4) 8 MV 48.0 4.9 5.9 6.1 22.5 2.6 0.7 4.7 11.7

Anterior electron or orthovoltage
Sweden 1960 1 cm

contra
Direct IMC (1-field) (c) 170 kV 28.0 9 7 11 5 5 7 13 7

1963 Midline Direct IMC (2-fields) (c) (j) (5) 12 MeV 40.0 3.7 0.8 8.3 0.5 0.4 0.4 2.1 1.5
1963 1 cm

contra
Direct chest wall (4 fields) (k) 170 kV 20.0 7 5 8 3 4 5 9 6

1974 1 cm
contra

Oblique chest wall (d) (6) 12 MeV 47.8 9.4 8.6 14.4 28.7 5.2 0.7 9.1 19.1

Denmark 1981 Midline Direct chest wall (1-field)/lat thorax, SCF, axilla (n) 100 kV/
8 MV

36.0/
50.0

10 9 11 6 7 4 11 21

1982 1 cm
contra

Direct chest wall (1-field)/lat thorax, SCF, axilla (e) (m) (7) 9 MeV/
8 MV

51.8/
51.7

6.7 4.6 9.3 9.6 3.1 2.0 4.2 14.4

1987 1 cm
contra

Direct chest wall (2-fields)/lat thorax, SCF, axilla (l) 9 MeV/
6 MeV/
8 MV

54.0/
50.0/
54.0

5.4 3.2 8.5 4.0 3.3 2.4 3.1 5.0

1991 Midline Oblique chest wall (d) 12 MeV 51.8 10.2 9.4 15.6 31.2 5.6 0.8 9.8 20.7
Anterior megavoltage
Sweden 1969 4.5 cm

contra
Oblique IMC/oblique chest wall (f) Co60/Co60 36.0/

32.0
21.9 23.1 27.6 27.1 20.3 19.6 25.6 23.8

1974 4.5 cm
contra

Direct bilateral IMC (g)k Co60 40.0 21.7 12.8 30.0 1.8 4.4 21.1 24.1 5.8

1983 Midline Direct IMC/oblique chest wall (h) Co60/
9 MeV

50.6/
48.3

20.8 20.1 28.6 10.5 9.9 23.1 30.6 18.4
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because interpatient variability in cardiac dose is usually
lower from right radiation therapy.22

For each regimen, interpatient variability in mean
doses was calculated as the difference between the
highest and lowest mean doses recorded for each cardiac
segment. Interpatient variability in hotspot doses was
calculated as the difference between the highest and
lowest hotspot doses recorded for each cardiac segment.
The hotspot doses recorded included D2cc (minimum
dose covering the hottest 2.0 cc) of the ventricular
myocardium (right ventricle [RV] and LV combined) and
D0.5cc (minimum dose covering the hottest 0.5 cc) of the
main coronary arteries (left main coronary artery, left-
anterior descending coronary artery [LADCA], right
coronary artery [RCA], and circumflex coronary artery
[Cx] combined).

Correlations

Correlation analyses between cardiac segment and
whole heart doses, and between coronary artery segment
and LV segment doses, were performed using STATA,
version 13.2 (StataCorp, College Station, TX).

Results

A total of 41 regimens were identified from 470 ra-
diation therapy charts, including 20 regimens for left
breast cancer, 20 for right cancer, and 1 that was the same
for left and right cancers (Fig. 1, Fig. E1, Table E1).

Tangential regimens

For left megavoltage tangential radiation therapy,
cardiac doses were determined mainly by the position of
the medial border and divergence of the posterior border
(Tables 1, 2, E3, and E4 [available online https://doi.
org/10.1016/j.prro.2019.01.004], Fig. 2). For left
midline megavoltage tangents, the mean doses were
6.0 Gy to 7.6 Gy for LV and 3.0 Gy to 4.7 Gy for RV
(Table 1, Fig. 2A). For left wide megavoltage tangents
with a divergent posterior field border, both ventricles
received �12.5 Gy, but for the partially wide tangents,
both ventricles received <6.1 Gy (Table 1, Fig. 2B). For
the left megavoltage tangents, the mean individual LV
segment doses varied substantially (range, 0.6-38.8 Gy).
The LV apex received the highest doses of �22.5 Gy.
The anterior LV segment received �11.7 Gy from the
wide divergent and partially wide megavoltage tangents
but �9.2 Gy from the midline megavoltage tangents. The
LV septal segment received �12.8 Gy from the wide
divergent megavoltage tangents but �5.3 Gy from
partially wide and midline megavoltage tangents. The
lateral and inferior segments were further from the fields
and received �6.4 Gy from all left megavoltage tangents.

https://doi.org/10.1016/j.prro.2019.01.004
https://doi.org/10.1016/j.prro.2019.01.004
https://doi.org/10.1016/j.prro.2019.01.004


Table 2 Mean radiation therapy doses to coronary arterial structures from left-sided breast cancer radiation therapy regimens used in Sweden (1958-2001) or Denmark (1978-2000)
Radiation therapy regimen* Mean coronary artery doses (Gy)y

Country Median
Year

Medial Border Field arrangementz,x Usual beam
energy

Dose
(100%) Gy{

Left Left anterior descending Right Circumflex

Main Whole Prox Mid Dist Whole Prox Mid Dist Pd Whole Prox Dist

Tangential
Sweden 1959 Midline Tangents, divergent (a) 170 kV 10.5 1 8 6 9 9 2 2 1 1 2 1 2 1

1975 6 cm contra Wide tangents, divergent (b) Co60 45.0 3.8 35.7 28.3 39.6 38.8 5.7 7.7 8.2 2.0 4.9 1.8 3.0 1.6
1982 Midline Tangents, divergent (a) Co60 50.0 1.9 31.7 11.0 41.8 41.2 1.6 1.8 1.6 1.2 1.7 1.3 1.8 1.2
1990 Midline Tangents, divergent (a) (1) 6 MV 50.0 1.5 34.1 8.6 46.2 46.1 1.2 1.4 1.1 0.8 1.3 0.9 1.5 0.8

Denmark 1981 3 cm contra Wide tangents, divergent (b) (2) 6 MV 40.7 1.8 36.2 25.2 41.8 40.4 2.4 2.3 2.2 1.3 3.5 1.1 1.7 1.0
1982 2 cm contra Wide tangents (McWhirter) (b) 250 kV 36.0 4 33 24 37 36 7 9 7 5 7 5 8 5
1994 Midline Tangents, block posteriorly (a) (3) 8 MV 48.0 1.1 33.1 8.9 46.0 43.4 0.8 1.0 0.7 0.4 0.9 0.6 1.1 0.5
1998 3 cm contra Partially wide tangents, block posteriorly (i) (4) 8 MV 48.0 2.0 33.7 18.9 48.0 32.8 1.8 2.7 2.6 0.6 1.2 0.7 1.7 0.6

Anterior electron or orthovoltage
Sweden 1960 1 cm contra Direct IMC (1-field) (c) 170 kV 28.0 16 10 14 11 7 10 18 11 11 3 10 14 9

1963 Midline Direct IMC (2-fields) (c) (j) (5) 12 MeV 40.0 4.6 3.4 7.0 2.9 0.5 4.7 13.1 4.0 0.4 0.2 0.8 1.8 0.6
1963 1 cm contra Direct chest wall (4 fields) (k) 170 kV 20.0 12 7 10 8 5 7 13 8 8 2 7 10 6
1974 1 cm contra Oblique chest wall (d) (6) 12 MeV 47.8 8.3 34.4 30.2 36.3 36.3 6.0 9.4 11.5 1.0 1.4 1.4 4.9 0.9

Denmark 1981 Midline Direct chest wall (1-field)/lat thorax, SCF, axilla (n) 100 kV/8 MV 36.0/50.0 21 14 28 19 1 8 18 11 3 1 11 21 9
1982 1 cm contra Direct chest wall (1-field)/lat thorax,SCF, axilla (e) (m) (7) 9 MeV/8 MV 51.8/51.7 4.1 30.2 35.4 46.2 8.7 6.5 11.3 10.9 2.6 0.8 2.9 3.8 2.7
1987 1 cm contra Direct chest wall (2-fields)/lat thorax, SCF, axilla (l) 9 MeV/6

MeV/8 MV
54.0/50.0/

54.0
3.5 13.5 14.6 17.7 7.5 5.6 10.8 7.4 2.0 1.4 2.8 3.4 2.7

1991 Midline Oblique chest wall (d) 12 MeV 51.8 9.0 37.3 32.8 39.4 39.3 6.5 10.2 12.5 1.1 1.5 1.6 5.3 1.0
Anterior megavoltage
Sweden 1969 4.5 cm contra Oblique IMC/oblique chest wall (f) Co60/Co60 36.0/32.0 25.1 28.1 27.1 28.4 28.6 25.0 29.0 29.0 19.5 21.3 19.3 22.5 18.8

1974 4.5 cm contra Direct bilateral IMC (g)k Co60 40.0 28.1 4.0 8.2 1.8 2.3 28.0 32.4 33.4 26.0 21.0 21.7 23.9 21.4
1983 Midline Direct IMC/oblique chest wall (h) Co60/9 MeV 50.6/48.3 36.1 31.8 36.4 29.3 28.0 12.2 22.7 2.5 17.9 8.5 27.8 33.4 26.8

Cobalt chain**
Sweden 1963 Midline Cobalt chain long (overlapping fields) (o) Co60 7.0 7 6 8 7 4 4 7 2 2 2 2 2 2

1966 Midline Cobalt chain short (overlapping fields) (p) Co60 7.0 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Abbreviations: contra Z contralateral; Co60 Z cobalt 60; dist Z distal; IMC Z internal mammary chain; kV Z kilovoltage; lat Z lateral; MeV Z mega electron-volts; MV Z megavoltage;
prox Z proximal; pd Z posterior descending; SCF Z supraclavicular fossa
Bold tangential regimens are wide tangents, others are midline tangents. Bold anterior electron or orthovoltage regimens are oblique electron fields, others include direct fields.

* For further details on the radiation therapy regimens see Table E1.
y Mean cardiac doses estimated using manual planning (ie, orthovoltage and cobalt chain) are given to nearest Gy.
z Regimens a through p are illustrated in Figure 1 and E1 (available online at https://doi.org/10.1016/j.prro.2019.01.004).
x Regimens 1 through 7 were reconstructed on 10 scans to study the effect of patient anatomy on segment doses (Figs. 3-5).
{ Usual total dose (100%) to the target tissues. For direct regimens this was the Dmax, and for tangential regimens this was the dose delivered to the center of the breast/chest wall, except for orthovoltage
tangents where the total dose was the skin dose at the surface of the breast.

k Cardiac doses are the same for left- and right-sided breast cancer as the same field was used for both.
** For a description of cobalt chain see, Taylor (2009).23
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Fig. 2 Spatial distribution of cardiac dose from breast cancer tangential and direct electron radiation therapy regimens used to treat
women with breast cancer in Sweden (1958-2001) or Denmark (1978-2000). Left regimens A-C are illustrated in Fig. 1. y The main
circumflex coronary artery has only 2 segments: Proximal and distal. Abbreviations: MVZ megavoltage; MeVZ mega electron-volts.
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The mean doses to the coronary artery segments in the
left megavoltage tangential radiation therapy varied from
0.4 Gy to 48.0 Gy. For all megavoltage tangents, the
LADCA mid- and distal segments received the highest
doses of �32.8 Gy (Table 2, Fig. 2). The LADCA
proximal received �18.9 Gy from the wide divergent and
partially wide megavoltage tangents and 8.6 Gy to
11.0 Gy from the midline megavoltage tangents. The
RCA and Cx segments were further from the fields and
received 0.4 Gy to 8.2 Gy.
For orthovoltage midline tangents, the prescribed dose
was only 10.5 Gy, and all cardiac segments received
�9 Gy (Tables 1, 2, E3 and E4). For McWhirter ortho-
voltage wide-tangential radiation therapy (36.0 Gy pre-
scribed dose), whole LV and LADCA doses were similar
to those for megavoltage wide tangents, but the RCA and
Cx doses were higher owing to scattered radiation from
orthovoltage beams.

For all right tangential regimens, the RV received
higher mean doses (0.5-7.0 Gy) than the LV (0.1-3.0 Gy;
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Fig. 3 Patient-to-patient variability in mean radiation dose to the whole heart, and left ventricular and coronary arterial segments in
women receiving tangential or anterior electron regimens for breast cancer in Sweden (1958-2001) or Denmark (1978-2000). For further
details on regimens 1 through 7, see Table E1. Regimen definitions: Tangents (1) Mid. Div, midline divergent, (50 Gy/25 fractions); (2)
Wide Div, wide divergent, medial border 3 cm contralateral, (41 Gy/22 fractions); (3) Mid. Blk, midline, blocked posterior border
tapered inferiorly around breast (48 Gy/24 fractions); (4) Pa. Wide Blk., partially wide, medial border 3 cm contralateral, blocked
posterior border tapered inferiorly below 5th rib (48 Gy/28 fractions). Anterior electron (5) Direct IMC: direct internal mammary chain
(40 Gy/10 fractions); (6) Oblq CW: oblique chest wall (48 Gy/26 fractions); and (7) Direct CW: direct chest wall (52 Gy/24 fractions).
Abbreviations: LADCA Z left anterior descending coronary artery; LV Z left ventricle; RCA Z right coronary artery.
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Table E3, Fig. 2). The coronary artery segments all
received �4 Gy, except for the RCA segments, which
received 0.3 to 32.0 Gy from right megavoltage wide
tangents (Table E4, Fig. 2).

Anterior electron or orthovoltage regimens

For anterior electron or orthovoltage radiation therapy,
the doses depended on the field borders, beam energy, and
whether the beam was direct or oblique. For all regimens,
the RV received higher doses than the LV because of its
proximity to the anterior fields (left regimens: RV 8.0-
15.6 Gy and LV 0.8-9.4 Gy; and right regimens: RV 1.9-
6.0 Gy and LV 0.2-1.0 Gy; Table 1, Fig. 2, Table E3).
The left oblique beams were angled toward the LV and
gave higher LV doses (range, 8.6-9.4 Gy) than the left
direct beams (range, 0.8-9.0 Gy). For the left oblique
beams, the LV apex received the highest doses (range,
28.7-31.2 Gy). For the left direct beams, the anterior or
septal LV segments received the highest doses (LV
anterior: 1.5-21.0 Gy; LV septal: 2.1-13.0 Gy). Right-
anterior electron or orthovoltage regimens delivered
�5.0 Gy to all LV segments (Table E3).

The coronary artery segments closest to thefields received
the highest doses. For the left regimens, these were the
LADCA and RCA proximal and mid segments (range, 2.9-
46.2 Gy; Table 2), and for the right regimens, the RCA
proximal andmid segments (range, 12.7-28.5Gy; Table E4).

Anterior megavoltage regimens

Five anterior megavoltage regimens were used: 2 for
left cancer, 2 for right cancer, and 1 regimen was the same
in the left and right cancers. Most segments were in the
radiation therapy fields and received >20 Gy (Fig. 1F-H,
Tables 1, 2, E3, and E4).
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Fig. 4 D2cc (%) hotspot doses to the ventricular myocardium (right and left ventricles combined) in women receiving tangential or
anterior electron regimens for breast cancer in Sweden (1958-2001) or Denmark (1978-2000). For further details on regimens 1-7, see
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treatment planning system to highlight the voxels within the volume receiving this dose. Some hotspot volumes spanned >1 structure
and were not always contiguous. Abbreviations: LV Z left ventricle; f Z fractions.

Practical Radiation Oncology: May-June 2019 Cardiac segment radiation doses breast cancer 167
Cobalt chain regimens

Cobalt chain radiation therapy involved small, rect-
angular, overlapping cobalt fields in a vertical line along
the internal mammary chain.23 The short cobalt chain was
above the level of the heart, and all segments received
<1 Gy (Tables 1, 2, E3, and E4). The long cobalt chain
covered part of the heart and delivered <1 Gy to 10 Gy to
the cardiac segments.
Interpatient variation

Interpatient variability in the mean doses ranged from
<1 Gy to 2 Gy for segments distant from the fields (Fig. 3).
For segments near thefields, variability ranged from3Gy to
47 Gy for the left and 3 Gy to 27 Gy for the right regimens.

For LV segments in the left tangents, the LV apex,
lateral, septal, and anterior segments were near field
edges, which resulted in dose variability of 8 Gy to 37 Gy
(Figs. 2A, B, and 3). For the LV inferior segment, the
dose varied by <6 Gy. For the left anterior electrons, the
LV segment dose variability was <17 Gy. For the right
tangents and right-anterior electrons, the LV segment
dose variability was <1 Gy.

For coronary artery segments and left tangents, dose
variability for LADCA segments ranged from 14 Gy to
47 Gy (Figs. 2A, B, and 3). For coronary arterial seg-
ments further from the fields, the dose variation was 1 Gy
to 11 Gy. For the right tangents, the dose variability was
<8 Gy. For the left-anterior electrons, the LADCA seg-
ments and RCA proximal and mid segments were close to
the fields, and for right-anterior electrons, the RCA
proximal and mid segments were close to the fields. Dose
variability for these segments ranged from 3 Gy to 41 Gy.
For arterial segments further from the fields, the dose
variability was <6 Gy.

Hotspot doses were located in the LV apex, LV ante-
rior, and LADCA segments for most left regimens, and in
the RV, RCA proximal, and RCA mid segments for most
right regimens (Figs. 4 and 5). The order of the segments
according to higher-versus-lower doses was the same as in
the typical CT scan for 91% of LV segment and regimen
combinations, 91% of whole coronary artery and regimen
combinations, and 81% of coronary artery segment and
regimen combinations (Tables E5 and E6; available online
at https://doi.org/10.1016/j.prro.2019.01.004).
Correlations between cardiac segments

The doses to all LV and LADCA segments were
highly correlated with doses to the whole heart (range of
correlation coefficients, 0.7-0.9; all P < .0001; Fig. 6).
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Correlations between the RCA segments and whole heart
were much lower (range of correlation coefficients, 0.1-
0.3; P Z .008- .25). LADCA mid and distal segment
doses were highly correlated with doses to the LV seg-
ments usually supplied by the LADCA: LV apex, and
anterior and septal segments (range of correlation co-
efficients, 0.7-0.9; all P < .0001), but the RCA segment
doses showed little correlation with doses to the LV
segments usually supplied by the RCA: LV inferior, and
septal segments (range of correlation coefficients, -0.1 to
0.2; P Z .04 to .5).
Discussion

Cardiac segment radiation doses from 41 breast cancer
regimens, estimated retrospectively using information
from radiation therapy charts, varied substantially. For
most regimens, certain segments received >20 Gy, but
others received <1 Gy. Different segments received high
doses from different regimens. Such variability provides
potential opportunities for the assessment of the effects of
different doses to individual segments.

Many years hence, cardiac doses based on patient-
specific CT-planning scans may be available to study
long-term adverse effects. At the present time, however,
most patients who developed clinical heart disease after
radiation therapy were irradiated before the 2000s and did
not receive CT-based dosimetry planning. Therefore,
estimating cardiac doses using a typical CT scan is
necessary. This method previously enabled the derivation
of a linear dose-response relationship for radiation-related
IHD (expressed as percentage increase in IHD rate per Gy
mean whole heart dose). This dose response relationship
has been validated in 2 independent studies.24,25

When using the typical CT-scan method, cardiac doses
actually received by individual patients vary on the
estimated dose, principally owing to interpatient differ-
ences in anatomy. In our study, the effect of interpatient
differences in anatomy varied by regimen and segment
and was the greatest for segments that were near the field
edges, and thus close to the high-dose gradient at the
anterior aspect of the heart. This type of error is known as
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a Berkson error.26 For studies in which the outcome
measure of interest is a continuous variable, Berkson er-
rors do not bias the slope of the estimated dose response.
In the present case, where the outcome measure is binary,
Berkson errors in estimated doses may result in small
biases to estimated dose-response relationships.26 This is
in contrast with classic measurement errors, which can
lead to considerable attenuation of derived dose-response
relationships.

Doses to different segments were highly correlated,
which would make investigating whether myocardial
injury resulted from exposure of the myocardium causing
disruption of the microvasculature or from exposure of an
artery (eg, LADCA causing arterial occlusion and
downstream myocardial ischaemia) difficult. Interest-
ingly, RCA segment doses were not correlated with doses
to the LV segments that are usually supplied by the RCA,
which may provide an opportunity to differentiate be-
tween myocardial injury caused by microvascular injury
versus that caused by macrovascular injury. Differences
between doses actually delivered to individual segments
and surrogate doses assigned based on the typical CT scan
(owing to positional and anatomical uncertainties) will
also be correlated. They may be positively correlated, for
example, two adjacent segments may move into or out of
the high dose region together such as the LV apex and
distal LAD coronary artery in left-tangential radiotherapy
(Fig. 2A). Or, they may be negatively correlated, for
example, if patient position changed slightly during left
direct electron IMC radiotherapy, the proximal LAD
might move out of the field, and the proximal RCA move
into the field (Fig. 2C).

In cardiac radiation dosimetry, high correlations be-
tween the estimated segment doses limit the ability to
derive meaningful quantitative associations between
doses and injury to specific cardiac segments. This
difficulty is compounded by the fact that differences be-
tween the actual and estimated doses are also strongly
correlated. Therefore, using these to derive quantitative
dose-response relationships would be inappropriate.
However, typical CT-scan doses consistently indicated
whether a particular regimen typically gave a high,
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medium, or low dose to a segment (Tables E5 and E6),
and our segment dose rankings were consistent with those
in other publications.13,27e29 There was also consistency
in the locations of hotspots within the ventricular
myocardium and main coronary arteries for each regimen
(Figs. 4 and 5). Therefore, segment-specific doses may be
used to rank segments by higher-versus-lower doses.
Subsequently, these rankings may be related to the risks
of cardiac segment injury in patients who received radi-
ation therapy in the past to ascertain if segments that
receive higher doses have a higher risk of injury. These
findings may also be relevant to studies of women
receiving contemporary radiation therapy.

Our study has several strengths. First, detailed infor-
mation was collated on regimens from several sources,
including individual radiation therapy charts for 470
women. Second, doses to coronary artery segments were
estimated rather than whole coronary arteries. Arteries are
long, thin structures that track in different directions
around the heart. Segment doses may be more meaningful
because generally only 1 or 2 segments of an artery
receive a substantial dose, and other segments receive
only a scattered dose. Third, we verified that the segments
described were those referred to by the cardiologists when
reporting the location of the cardiac injury, so that
segment doses could be directly related to the location of
the damage.

Our mean whole heart doses are consistent with
those of other published estimates for similar regimens
(Table E7; available online at https://doi.org/10.1016/j.
prro.2019.01.004). Dosimetric uncertainties are larger
for cardiac segment doses than for mean whole heart
doses because segment doses are more sensitive to
interpatient anatomical variability than whole heart doses.
Our estimated cardiac doses are subject to several other
unavoidable sources of uncertainty that are common to all
radiation therapy CT-planning studies, including errors in
contouring,18,30 dose calculation algorithms,31 setup,32,33

and errors caused by cardiac and respiratory motion
during treatment.34e36
Conclusions

Cardiac segment-specific doses may be used to rank
segments by higher-versus-lower doses in epidemio-
logical studies relating cardiac structure injury to radi-
ation dose.17 However, the scope for developing
quantitative dose-response relationships for cardiac
segment injury based on information from the radiation
therapy charts of patients treated before the era of 3-
dimensional CT planning is limited because different
segment doses are often highly correlated, and segment-
specific dose uncertainties are not independent of each
other.
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