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Abstract—In this paper, we propose a speech enhancement
method based on non-negative matrix factorization (NMF) tech-
niques. NMF techniques allow us to approximate the power
spectral density (PSD) of the noisy signal as a weighted linear
combination of trained speech and noise basis vectors arranged
as the columns of a matrix. In this work, we propose to use
basis vectors that are parameterised by autoregressive (AR)
coefficients. Parametric representation of the spectral basis is
beneficial as it can encompass the signal characteristics like, e.g.
the speech production model. It is observed that the parametric
representation of basis vectors is beneficial while performing
online speech enhancement in low delay scenarios.

Index Terms—autoregressive modelling, speech enhancement,
NMF

I. INTRODUCTION

A healthy human auditory system is capable of focusing on
desired signal from a target source while ignoring background
noise in a complex noisy environment. In comparison to a
healthy auditory system, the auditory system of a hearing
impaired person lacks this ability, leading to degradation in
speech intelligibility. In such scenarios, a hearing impaired
person often relies on speech enhancement algorithms present
in a hearing aid. However, the performance of the current
hearing aid technology in this aspect is limited [1]. Speech
enhancement algorithms that have been developed can be
mainly categorised into supervised and unsupervised methods.
Some of the existing unsupervised methods are spectral sub-
traction methods [2], statistical model based methods [3] and
subspace based methods [4]. Supervised methods generally
use some amount of training data to estimate the model
parameters corresponding to speech and noise. The model
parameters are subsequently used for enhancement. Examples
of supervised enhancement methods include codebook based
methods [5], [6], NMF methods [7]–[9], hidden Markov model
based methods [10], [11].

In this paper, we propose a speech enhancement method
based on non-negative matrix factorization (NMF) techniques.
NMF for source separation and speech enhancement has been
previously proposed [7], [8]. NMF techniques allow us to
approximate the power spectrum or the magnitude spectrum of
the noisy signal as a weighted linear combination of trained
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speech and noise basis vectors arranged as the columns of
a matrix. Generally the basis vectors used in NMF based
speech enhancement are not constrained by any parameters.
Parameterisation of the basis vectors in the field of music
processing has been previously done in [12]. In [12], harmonic
combs parametrised by the fundamental frequency was used as
the basis vectors. This parametrisation was found to efficiently
represent the music signal in comparison to the non parametric
counterpart.

In this work, we propose to use basis vectors that
are parametrised by autoregressive (AR) coefficients. This
parametrisation allows representation of power spectral density
(PSD) using a small set of parameters. Parametrisation by
AR coefficients is motivated by the source filter model of
speech production. This model describes speech components
as a combination of a sound source (excitation signal produced
by the vocal chords) and an AR filter which models the
vocal tract. In this work, we show that if we model the
observed data in the time domain as a sum of AR processes,
the maximisation of the likelihood corresponds to performing
NMF of the observed data into a basis matrix and activation
coefficients, using Itakura-Saito (IS) divergence as the optimi-
sation criterion. The IS divergence has been extensively used
in speech and music processing due to its similarity to percep-
tual distance. The basis matrix here consists of AR spectral
envelopes parameterised by AR coefficients, and the activation
coefficients can be physically interpreted as the excitation
variance of the noise that excites the AR filter parametrised by
the AR coefficients. A benefit of parametrically representing
the spectral basis, is that, it can be represented by a small set
of parameters, which means that fewer parameters have to be
trained a priori for performing on-line speech enhancement.

The remainder of this paper is organised as follows. Section
II explains the signal model and formulates the problem math-
ematically. Training of the speech and noise spectral bases
is explained in Section III. Section IV explains the on-line
estimation of the activation coefficients corresponding to the
spectral bases followed by the enhancement procedure using
the Wiener filter. Sections V and VI give the experimental
results and the conclusion respectively.



II. MATHEMATICAL FORMULATION

This section explains the signal model and mathematically
formulates the problem. The noisy signal is expressed as

x(n) = s(n) + w(n) (1)

where s(n) is the clean speech and w(n) is the noise signal.
The objective of a speech enhancement system is to obtain
an estimate of the clean speech signal from the noisy signal.
A very popular method for estimating the clean speech signal
is by applying a Wiener filter onto the noisy signal. Wiener
filtering requires the knowledge of the speech and noise
statistics. Since there is no direct access to either speech
or noise in practical scenarios, these statistics have to be
estimated from the noisy observation. As the speech and noise
properties change over time, these statistics are generally time
varying. The majority of the speech processing algorithms
consider these statistics to be quasi-stationary. Thus, these
statistics are assumed to be constant for short segments of
time (≈ 25 ms).

We now, explain the signal model used in the estimation
of the statistics from a frame of noisy signal. It is assumed
that a frame of noisy signal x = [x(0), . . . x(N − 1)]T can be
represented as a sum of U = Us +Uw AR processes cu. This
is mathematically written as

x =

U∑
u=1

cu =

Us∑
u=1

cu +

U∑
u=Us+1

cu, (2)

where the first Us AR processes correspond to the speech
signal and the remaining Uw AR processes correspond to
the noise signal. Each of the AR process is expressed as a
multivariate Gaussian [6] as shown below

cu ∼ N (0, σ2
uQu). (3)

The gain normalised covariance matrix, Qu can be asymp-
totically approximated as a circulant matrix which can be
diagonalised using the Fourier transform as [13]

Qu = FDuF
H (4)

where F is the DFT matrix defined as [F]k,n =
1√
N

exp(j2πnk/N), n, k = 0 . . . N − 1 and

Du = (ΛH
u Λu)−1, Λu = diag(

√
NFH

[
au
0

]
) (5)

where au = [1, au(1) . . . au(P )]T represents the vector of AR
coefficients corresponding to uth basis vector and P is the AR
order. The likelihood as a function of U excitation variances
and AR spectral envelopes are expressed as

p(x|σ,D) ∼ N (0,

U∑
u=1

σ2
uQu) (6)

where σ represents the excitation variances corresponding to
the U AR processes and D represents AR spectral envelopes
corresponding to the U AR processes. In this paper, we are
interested in the maximum likelihood (ML) estimation of

activation coefficients σ given the noisy signal x. Since, we
are performing supervised enhancement here, we assume that
the spectral basis are trained a priori, which is explained in
Section III. Thus, in this work we only estimate the activation
coefficients online while the basis vectors are assumed known.
This is expressed mathematically as,

σest = arg max
σ≥0

p(x|σ,D). (7)

To solve this, the logarithm of likelihood in (6) is written as

lnp(x|σ, D) = −N
2

ln2π + ln
∣∣∣ U∑
u=1

σ2
uFDuF

H
∣∣∣− 1

2

−1

2
xT [

U∑
u=1

σ2
uFDuF

H ]−1x.

(8)

This is further simplified as

lnp(x|σ, D) = −K
2

ln2π + ln
K∏
k=1

( U∑
u=1

σ2
udu(k)

)− 1
2

−1

2
xTF[

U∑
u=1

σ2
uDu]−1FHx

(9)

where du(k) represents the kth diagonal element of Du and
number of frequency indices K = N . Further simplifying,

lnp(x|σ, D) = −K
2

ln2π + ln
K∏
k=1

( U∑
u=1

Φ̂u(k)
)− 1

2

−1

2

K∑
k=1

Φ(k)∑U
u=1 Φ̂u(k)

(10)

where Φ̂u(k) = σ2
udu(k), Φ(k) = |X(k)|2 and

X(k) = 1√
N

∑N−1
n=0 x(n)exp(−j2πnk/N). Log-likelihood is

then written as

lnp(x|σ,D) = −K
2

ln2π− 1

2

K∑
k=1

(
Φ(k)∑U

u=1 Φ̂u(k)
+ ln

U∑
u=1

Φ̂u(k)

)
(11)

where
U∑
u=1

Φ̂u(k) =

U∑
u=1

σ2
udu(k) = dkσ (12)

where dk = [d1(k) . . . dU (k)] and σ = [σ2
1 . . . σ

2
U ]T . Thus

maximising the likelihood is equivalent to minimising the IS
divergence between φ = [Φ(1) . . .Φ(K)]T and Dσ subject to
Φ(k) > 0 ∀k where D = [dT1 . . .d

T
K ]T . In case we observe

V > 1 frames, this corresponds to performing NMF of Φ =
[φ1 . . .φv . . .φV ] (where φv = [Φv(1) . . .Φv(K)]T contains
the periodogram of the vth frame) as

Φ ≈

 d1(1) . . . dU (1)
...

. . .
...

d1(K) . . . dU (K)


︸ ︷︷ ︸

D

σ
2
1(1) . . . σ2

1(V )
...

. . .
...

σ2
U (1) . . . σ2

U (V )


︸ ︷︷ ︸

Σ

.

(13)



The first Us columns of D corresponds to the spectral basis
corresponding to the speech and the remaining Uw columns
of D correspond to noise signal. The first Us rows of Σ
correspond to the activation coefficients for speech and the
remaining Uw rows of Σ correspond to the activation coeffi-
cients corresponding to the noise signal, which leads to (13)
being rewritten as,

Φ ≈ [Ds Dw]

[
Σs

Σw

]
= DΣ. (14)

III. TRAINING THE SPECTRAL BASES

This section explains the training of the basis vectors used
for the construction of the basis matrix D. In this work we
use a parametric representation of the PSD [14] where the uth

spectral basis du = [du(1)...du(k)...du(K)]T is represented
as

du(k) =
1∣∣∣∣∣1 +

P∑
p=1

au(p)exp(−j2πpkN )

∣∣∣∣∣
2 , (15)

where {au(p)}Pp=1 is the set of AR coefficients corresponding
to the uth basis vector. During the training stage, a speech
and noise codebook is first computed using the generalised
Lloyd algorithm [15] [16] [6]. The speech codebook and
noise codebooks contain AR coefficients corresponding to
the spectral envelopes of speech and noise. During the train-
ing process linear prediction coefficients (converted into line
spectral frequency coefficients) are extracted from windowed
frames, obtained from the training signal and passed as input
to the vector quantiser1. Once the speech codebook and noise
codebooks are created, the spectral envelopes corresponding
to the speech AR coefficients ({au}Us

u=1) and noise AR coef-
ficients ({au}Uu=Us+1) are computed using (15), and arranged
as columns of D. The spectral envelopes generated here are
gain normalised, so they do not include the excitation variance.
Fig. 1 shows a few examples of the trained speech and noise
spectral envelopes.

IV. ENHANCEMENT - MULTIPLICATIVE UPDATE

This section describes the estimation of speech and noise
PSDs using the signal model explained in Section II. Since
we are interested in on-line processing of the noisy signal, we
here assume that only a frame of noisy signal is available at
particular time for enhancement. The method considered here
assumes that

φ ≈ Dσ (16)

where φ is a K × 1 vector containing the noisy PSD, D is
K × U basis matrix and σ is U × 1 vector containing the
activation coefficients. The objective here, is to estimate σ
given the noisy periodogram φ and D. As explained in Section
II, this is done by minimising the IS divergence as

σest = [σTsest σ
T
west

]T = arg min
σ≥0

dIS(φ|Dσ). (17)

1The code for training the speech and noise codebooks will be available at
https://tinyurl.com/mskcreatevbn

(a) (b)

Fig. 1: Figure showing a set of (a) trained speech spectral
envelopes and (b) noise spectral envelopes.

In this work, a multiplicative update (MU) method is used to
estimate the activation coefficients which are calculated as [8],
[17]

σest ← σest
DT ((Dσest)

[−2].φ)

DT (Dσest)[−1]
. (18)

Once the gains are estimated, a Wiener filter can be con-
structed to extract the speech/noise components. The estimated
clean speech PSD is obtained as Dsσsest and the estimated
noise PSD is obtained as Dwσwest . The Wiener filter vector
constructed to extract the speech component is denoted as

gest =
Dsσsest

Dsσsest + Dwσwest

, (19)

where the division is an element wise division.

V. EXPERIMENTS

A. Implementation Details

This section explains the experiments that have been carried
out to evaluate the proposed enhancement framework. The
test signals used here consist of sentences taken from the
GRID database [18]. The speech and noise PSD parameters
are estimated (as explained in Section IV) for a segment
of 25 ms with 50 percent overlap. The parameters used for
the experiments are summarised in table I. For our experi-
ments, we have used both a speaker-specific codebook and
a general speech codebook. A speaker-specific codebook of
64 entries was trained using a training sample of 5 minutes
of speech from the specific speaker of interest. A general
speech codebook of 64 entries was trained from a training
sample of approximately 150 minutes of speech from 30
different speakers. It should be noted that the sentences used
for training the codebook were not included for testing. The



proposed enhancement framework was tested on three different
types of commonly encountered background noise: babble,
restaurant and exhibition noise taken from the NOIZEUS
database [19]. We have performed experiments for a noise
specific codebook as well as general noise codebook. A noise-
specific codebook of 8 entries was trained on the specific noise
type of interest. For creating a general noise codebook, a noise
codebook of 4 entries was trained for each noise type. While
testing for a particular noise scenario, the noise codebook
entries corresponding to that scenario are not used for the
estimation of noise PSD. For example, while testing in the
babble noise scenario, the noise codebook consists a total
of 8 entries formed by concatenating the entries trained for
restaurant and exhibition scenarios. After obtaining the speech
and noise codebooks, the spectral basis matrix is constructed
as explained in Section III. The estimated PSD parameters are
then used to create a Wiener filter for speech enhancement.
Wiener filter is applied in the frequency domain and time-
domain enhanced signal is synthesised using overlap-add.

B. Results

We have used the objective measures such as STOI and
Segmental SNR to evaluate the proposed algorithm. We will
denote the proposed parametric NMF as ParNMF. We have
compared the performance of the proposed method to non
parametric NMF where there is no parametrisation involved
in the creation of the basis vectors. We will denote this
method as NonParNMF. It should be noted that we have
used the same training set for ParNMF and NonParNMF. We
have also used the speech enhancement method proposed in
[20] for comparison purposes, which we denote as MMSE-
GGP. Traditionally, NMF methods for speech enhancement
generally try to approximate the magnitude spectrum than the
power spectrum. Even though, this is not theoretically well
formulated, this has been observed to give better performance
[21]. Thus, here we evaluated the performance of the proposed
algorithm for both the cases, which we denote as ParNMF-abs
while approximating the magnitude spectrum and ParNMF-
pow while approximating the power spectrum. We do the
same evaluation in the case of NonParNMF. Figures 2-4 show
these measures for different methods in different commonly
encountered background noises while using a speaker specific
codebook and a noise specific codebook. It can be seen that
NMF based methods perform better than MMSE-GGP in terms
of STOI. When comparing the ParNMF and NonParNMF, it
is demonstrated that the former performs better in terms of

TABLE I: Parameters used for the experiments

Parameters
sampling frequency 8000 Hz
Frame Size 200
Frame Overlap 50%
Speech AR order 14
Noise AR order 14
Us 64
Uw 8
MU iterations 50

STOI and Segmental SNR measures. We have also performed
experiments when having an access to a general speech
codebook and a general noise codebook. Figures 5-7 shows the
objective measures obtained for this case. It can be seen that
performance in this case degrades in comparison to figures 2-4
due to the mismatch in training and testing conditions. Even
though there is a degradation in the performance, the proposed
method is able to increase the STOI measure significantly over
the conventional method.
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Fig. 2: Objective measures for babble noise when using
speaker-specific codebook and a noise-specific codebook.
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Fig. 3: Objective measures for restaurant noise when using
speaker-specific codebook and a noise-specific codebook.
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Fig. 4: Objective measures for exhibition noise when using
speaker-specific codebook and a noise-specific codebook.



VI. CONCLUSION

In this paper, we have proposed an NMF based speech
enhancement method where the basis vectors are parametrised
using AR coefficients. Parametrisation of the spectral basis
vectors helps in encompassing the signal characterestics. We
have demonstrated, through objective measures, that the pro-
posed parametric NMF based speech enhancement out per-
forms its non-parametric counterpart in some of the typically
encountered background noises.
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Fig. 5: Objective measures for babble noise when using
general speech codebook and a general noise codebook.
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Fig. 6: Objective measures for restaurant noise when using
general speech codebook and a general noise codebook.
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Fig. 7: Objective measures for exhibition noise when using
general speech codebook and a general noise codebook.

REFERENCES

[1] S. Kochkin, “10-year customer satisfaction trends in the US hearing
instrument market,” Hearing Review, vol. 9, no. 10, pp. 14–25, 2002.

[2] S. F. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,” vol. 27, no. 2, pp. 113–120, 1979.

[3] Y. Ephraim, “Statistical-model-based speech enhancement systems,”
Proceedings of the IEEE, vol. 80, no. 10, pp. 1526–1555, 1992.

[4] Y. Ephraim and H. L. Van Trees, “A signal subspace approach for speech
enhancement,” IEEE Transactions on speech and audio processing,
vol. 3, no. 4, pp. 251–266, 1995.

[5] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook driven short-
term predictor parameter estimation for speech enhancement,” vol. 14,
no. 1, pp. 163–176, 2006.

[6] ——, “Codebook-based bayesian speech enhancement for nonstationary
environments,” vol. 15, no. 2, pp. 441–452, 2007.

[7] N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and unsu-
pervised speech enhancement using nonnegative matrix factorization,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,
no. 10, pp. 2140–2151, 2013.

[8] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-
ization with the itakura-saito divergence: With application to music
analysis,” Neural computation, vol. 21, no. 3, pp. 793–830, 2009.

[9] M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, “Speech enhancement
under low snr conditions via noise estimation using sparse and low-rank
nmf with kullback–leibler divergence,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 23, no. 7, pp. 1233–1242, 2015.

[10] H. Sameti, H. Sheikhzadeh, L. Deng, and R. L. Brennan, “HMM-based
strategies for enhancement of speech signals embedded in nonstationary
noise,” IEEE Transactions on Speech and Audio processing, vol. 6, no. 5,
pp. 445–455, 1998.

[11] D. Y. Zhao and W. B. Kleijn, “Hmm-based gain modeling for enhance-
ment of speech in noise,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 3, pp. 882–892, 2007.

[12] R. Hennequin, R. Badeau, and B. David, “Time-dependent parametric
and harmonic templates in non-negative matrix factorization,” in Proc.
of the 13th International Conference on Digital Audio Effects (DAFx),
2010.

[13] R. M. Gray et al., “Toeplitz and circulant matrices: A review,” Founda-
tions and Trends® in Communications and Information Theory, vol. 2,
no. 3, pp. 155–239, 2006.

[14] P. Stoica, R. L. Moses et al., Spectral analysis of signals. Pearson
Prentice Hall Upper Saddle River, NJ, 2005, vol. 452.

[15] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Communications, vol. 28, no. 1, pp. 84–95, 1980.

[16] M. S. Kavalekalam, M. G. Christensen, F. Gran, and J. B. Boldt,
“Kalman filter for speech enhancement in cocktail party scenarios using
a codebook-based approach,” in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on. IEEE, 2016, pp.
191–195.

[17] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in neural information processing systems,
2001, pp. 556–562.

[18] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third ’chime’
speech separation and recognition challenge: Dataset, task and base-
lines,” IEEE 2015 Automatic Speech Recognition and Understanding
Workshop, 2015.

[19] Y. Hu and P. C. Loizou, “Subjective comparison and evaluation of speech
enhancement algorithms,” Speech communication, vol. 49, no. 7, pp.
588–601, 2007.

[20] J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J. Jensen, “Mini-
mum mean-square error estimation of discrete fourier coefficients with
generalized gamma priors,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 6, pp. 1741–1752, 2007.

[21] A. Liutkus and R. Badeau, “Generalized wiener filtering with frac-
tional power spectrograms,” in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE, 2015, pp.
266–270.


