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A STUDY ON HOW PRE-WHITENING INFLUENCES FUNDAMENTAL FREQUENCY
ESTIMATION

Alfredo Esquivel Jaramillo, Jesper Kjær Nielsen, Mads Græsbøll Christensen

Audio Analysis Lab, CREATE, Aalborg University, Denmark
{aeja, jkn,mgc}@create.aau.dk

ABSTRACT

This paper deals with the influence of pre-whitening for the task of
fundamental frequency estimation in noisy conditions. Parametric
fundamental frequency estimators commonly assume that the noise
is white and Gaussian and, therefore, they are only statistically effi-
cient under those conditions. The noise is coloured in many practical
applications and this will often result in problems of misidentifying
an integer divisor or multiple of the true fundamental frequency (i.e.,
octave errors). The purpose of this paper is to see if pre-whitening
can reduce this problem, based on noise statistics obtained from ex-
isting noise PSD estimation algorithms. For this purpose, different
noise types and prediction orders of LPC pre-whitening are consid-
ered. The results show that pre-whitening improves significantly
the estimation accuracy of an NLS pitch estimator when the noise
is fairly stationary. For nonstationary noise, the improvements are
modest at best, but we hypothesize that this is due to the noise PSD
estimation performance rather than the LPC pre-whitening principle.

Index Terms— fundamental frequency, pre-whitening, spectral
flatness measure, noise PSD estimation, gross error rate.

1. INTRODUCTION

The lowest rate at which a periodic signal repeats itself is known
as the fundamental frequency. Fundamental frequency estimation is
of particular interest in speech applications such as speech enhance-
ment [1], diagnosing illnesses [2], speech decomposition [3, 4] and
automatic speech recognition [5]. For example, the speech record-
ings obtained for the purpose of pathological voice analysis may be
corrupted by background noise, and this could affect a proper di-
agnosis [6]. Fundamental frequency estimators can be grouped as
non-parametric and parametric. The non-parametric estimators (e.g.
YIN [7]), although fast and conceptually simple, have poor time-
frequency resolution and poor noise robustness [8]. A signal model
which takes into account the noise presence can be used to derive a
parametric estimator [9], based on statistical assumptions. Recently,
a fast algorithm which considerably reduces the computational com-
plexity of a nonlinear least squares (NLS) estimator has been pro-
posed [8, 10]. This NLS fundamental frequency estimator is only
statistically efficient under a white Gaussian noise (WGN) condition.
However, in most real acoustic scenarios the noise is coloured such
as car noise and street noise. Estimating the fundamental frequency
with a WGN assumption sometimes results in misidentifying a mul-
tiple or divisor of the true value (i.e., octave errors). Therefore, a
pre-whitening scheme should be applied to the noisy signals, which
renders the coloured noise closer to WGN.

This work is funded by CONACYT, under grant 418437.

The pre-whitening of noisy speech can be done either via the
Cholesky factorization [9] or with a FIR filter, for example one based
on linear prediction [11]. By applying the Cholesky factor, the signal
model needs to be modified as in [12]. Therefore, since the structure
of the problem is altered, the fast NLS method cannot be directly ap-
plied. A pre-whitening FIR filter which changes the coloured noise
into white noise, can preserve the model as only the amplitudes and
phases are altered [13]. We focus on this principle in this paper.
Therefore, information on the noise spectrum, i.e., noise statistics, is
needed. For example, in [11, 14, 15], the noise statistics and the AR
parameters of the coloured noise are only estimated during speech-
absence periods, assuming that the noise is stationary. Those can be
obtained from a voice activity detector (VAD). However, some noise
types such as babble and restaurant noise may be non-stationary, so
their noise characteristics are time-varying. This issue has been ad-
dressed in some noise power spectral density (PSD) estimation al-
gorithms, such as minimum statistics (MS) [16], improved minima
controlled recursive averaging (IMCRA) [17], and minimum mean
squared error (MMSE) based estimation [18]. This paper intends to
extend the work in [13] on pre-whitening. In order to study the ef-
fectiveness of these noise PSD estimation algorithms when applying
pre-whitening for the purpose of fundamental frequency estimation,
the evaluation will be done for both male and female speech, as well
as considering different types of real-life noise.

The rest of the paper is structured as follows. Section 2 de-
tails the signal model, the fundamental frequency estimator that as-
sumes WGN and details on the pre-whitening schemes. Section 3
explains the experimental setup and the results in terms of spectro-
grams, gross error rates and spectral flatness measure. Finally, sec-
tion 4 concludes the work.

2. SIGNAL MODEL AND PRE-WHITENING

We present the signal model, the fundamental frequency estimator,
and the pre-whitening schemes in this section. For voiced speech
segments, the signal s(n) is modelled by L harmonic components
whose frequencies are an integer multiple of the fundamental fre-
quency ω0, having real amplitude Al > 0 and phase ψl ∈ [0, 2π).
The signal is buried in additive (white or coloured) Gaussian noise
e(n), which is uncorrelated with s(n). For n = 0, 1, ..., N − 1
(where the clean signal is considered being stationary), the signal
model is given as

x(n) = s(n) + e(n) =

L∑
l=1

Al cos(nω0l + ψl) + e(n). (1)

By using the Euler’s identity, the model can be expressed as



x(n) =

L∑
l=1

(
alz

l(n) + a∗l z
−l(n)

)
+ e(n), (2)

where al = Al
2
ejψl , z(n) = ejω0n, and * denotes complex conju-

gation. For a frame of length N , (2) can be written in vector form as

x = Za+ e, (3)

where x = [x(n) x(n+ 1) ... x(n+N − 1)]T and e is de-
fined in the same form, Z = [z(1) z(−1) ... z(L) z(−L)] with
z(l) =

[
(z(1))l ... (z(N))l

]T
, a = [a1 a

∗
1 ... aL a

∗
L] and (·)T de-

notes transpose. With the WGN assumption, e ∼ N (0, σ2IN ), σ2

being the noise variance and IN theN×N identity matrix, the max-
imum likelihood estimator of ω0 is found by first replacing the am-
plitudes in (3) by their least-squares estimates, â = (ZHZ)−1ZHx,
and then by minimizing the residual power ‖x− Zâ‖22, i.e.,

ω̂0 = argmin
ω0

‖x−Zâ‖22 = argmin
ω0

‖x−Z(ZHZ)−1ZHx‖22. (4)

Here (·)H denotes hermitian-transposition. This nonlinear least
squares (NLS) minimization problem can be solved in a fast way
by exploiting the matrix structure (for further details, see [8]). How-
ever, this is only statistically efficient with the WGN assumption. In
real scenarios, the noise is usually coloured, i.e., e ∼ N (0,Qe),
where Qe is the noise covariance matrix. A matrix L can be used
to transform the observed signal as LHx = LHZa + LHe such that
v = LHe now is distributed as v ∼ N (0, IN ), i.e., the noise is now
WGN. The required matrix L must be the Cholesky factor of Q−1

e ,
i.e., LLH = Q−1

e . However, the harmonic part is also affected and
therefore, the structure of the matrices involved in the fast computa-
tion of the cost function of (4). Another approach to pre-whiten the
noisy signal (i.e., that renders coloured noise white) is by applying a
filter.

To apply a filter that pre-whitens the noisy signal, the coloured
noise can be seen as the output of a filter H(ω) excited with WGN.
When the coloured noise is the output of an all-pole (IIR) filter
H(ω) = 1

B(ω)
, where B(ω) = 1 +

∑P
p=1 bpe

−jωp, the process
is said to be autoregressive (AR). Here, P denotes the prediction or-
der and b1, ..., bP are the linear prediction coefficients (LPC). In this
sense, the inverse FIR filter B(ω), can be used to recover the white
Gaussian samples given the samples of the AR process and the LPC
AR coefficients. Applying this filter (bn in the time domain) to the
noisy signal preserves the signal model for the harmonic model part
in (2), since

bn ∗ s(n) = bn ∗
L∑

l=−L,l 6=0

ale
jnω0l =

L∑
l=−L,l 6=0

ãle
jnω0l, (5)

where ãl = al
∑P
p=0 bpe

−jω0p, b0 = 1, so only the complex am-
plitudes are affected and the fundamental frequency remains un-
changed. An estimate of bp, p = 1, ...P can be obtained from the
Levinson-Durbin recursion of order P [19] after the noise statistics
are estimated. Given x, some noise tracking algorithms such as MS,
IMCRA, and MMSE can be used to estimate the noise PSD, defined
as [20]

φe(ω) = lim
N→∞

1

N
E
[
|E(ω)|2 |x

]
(6)

where E(ω) = fH(ω)e is the DFT of the noise with f(ω) ={
ejnω

}N−1

n=0
, and E denotes the statistical expectation operator.

The inverse DTFT of the noise PSD allows us to recover the noise
covariance sequence via [20]
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Fig. 1: Spectrogram of a female speech signal contaminated by bab-
ble noise at SNR = 3dB (top), and estimated fundamental frequency
estimates imposed on the clean signal spectrogram (bottom).

re(n) =

∫ π

−π
φe(ω)e

jnω dω

2π
. (7)

From this estimated covariance, the LPC parameters can be found
from the Levinson-Durbin recursion, which form the bn pre-
whitening FIR filter of order P . We refer to this as the LPC
pre-whitener.

Another possibility [13] is to derive a FIR filter directly from
the N frequency coefficients of the noise PSD φe(ω). Since
φe(ω) = σ2 |H(ω)|2 = σ2

|B(ω)|2 , and assuming a white Gaus-

sian unit variance σ2 = 1, the frequency response of the pre-
whitening filter is obtained as B(ω) = 1√

φe(ω)
, for N frequency

points. An FIR filter of order N is found via the inverse DTFT, i.e.
bn =

∫ π
−π B(ω)ejnω dω

2π
, n = 0, 1, ...N − 1. We refer to this as the

FIR pre-whitener.

3. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the influence of the LPC and FIR pre-
whitening filters on the fundamental frequency estimation perfor-
mance, and how well they render the coloured noise closer to white.

We start by demonstrating how pre-whitening can lead to better
fundamental frequency estimates. For this, we consider the voiced
female speech sentence "Why were you away a year, Roy?", sampled
at 8 kHz, with added babble noise from the AURORA database [21]
at an SNR of 3 dB. The fundamental frequency is estimated using the
NLS estimator every 25 ms from the interval [55 Hz, 370 Hz]: first
from WGN assumption and then, after applying an LPC-prewhitener
where the LPC coefficients are directly obtained from the noise sig-
nal using P = 7. The results are depicted in Fig.1. As observed, the
fundamental frequency estimates obtained after pre-whitening result
in fewer errors compared to the case with no pre-whitening (WGN
assumption).

We now consider the speech signals from the Keele reference
database [22], which consists of five male and five female speech
recordings, where the fundamental frequency is annotated from
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Fig. 2: Gross error rate (GER) as a function of the iSNR for male, female and general speech on different types of real noise.

laryngograph measurements at a frame rate of 10 ms. The signals
are resampled from 20 kHz to 8 kHz. The evaluation was done on
the first 80,000 samples (10 s) of each speech file. It is important
to notice that the annotated fundamental frequencies do not neces-
sarily correspond to the ground truth, but they also correspond to an
estimate which was obtained using an autocorrelation method [23].

For evaluating the fundamental frequency estimation accuracy,
only the voiced speech frames with periodicity in both the laryngo-
graph signal and on the speech data were considered (refer to [22]
for further description). The assessment was done in terms of the
gross error rate (GER), which is defined as the percent of voiced
frames whose estimated fundamental frequency deviates more than
a certain percentage from the ground truth [24]. We here use 10%.
The segment length was set to be N = 240 (corresponding to 30
ms), and the fundamental frequency was searched using the NLS es-
timator in an interval [55 Hz, 370 Hz]1, with a maximum possible
of L = 15 harmonics. In order to have the same frame rate as the
ground truth, the shift between frames was set to N = 80 (i.e., 10
ms). The evaluation was done with four noise types: street, babble,
exhibition and restaurant, which are obtained from the AURORA
database [21]. The iSNR is varied from -5 to 15 dB. Three different
LPC pre-whiteners were used, according to three noise PSD esti-

1The lowest fundamental frequency in an evaluated segment of the Keele
database is 57 Hz.

mates: MMSE [18], MS [16], and IMCRA [17], so the comparison
will allow us to determine which one of them helps better for the
task of fundamental frequency estimation. For the FIR pre-whitener,
only the MMSE noise PSD estimate is presented, since similar re-
sults were observed with respect to the other noise PSD estimators.
In order to get an insight in to what is the best performance that can
be achieved, the results also include the case where an LPC oracle
pre-whitener is used, i.e., where the LPC parameters were computed
directly from the noise signal. The order of the LPC pre-whiteners
was set to P = 7, as this seemed to work well (see also the expla-
nation for the next experiment). The results are displayed in Fig.2,
the results are shown separately for male and female speech, and
also for general speech. In general, the GER from the LPC oracle
pre-whitener is lower for female than for male speech, since most
of the power of the coloured noise is in the lower frequencies which
coincide with the range of fundamental frequencies of male speech.

The performance from the LPC pre-whitener based on MMSE
noise PSD estimation is mostly the closest to the LPC oracle pre-
whitener, followed by the one based on MS. For the case of male
speech above an iSNR of 10 dB, it seems that it is better to assume
WGN or to do FIR pre-whitening to estimate the fundamental fre-
quency (except in the exhibition noise case). Otherwise, in most
cases, the benefit of LPC pre-whitening is clear, as the GER result-
ing from WGN assumption and from FIR pre-whitening is higher.
The performance of LPC pre-whitening from noise PSD MMSE es-
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Fig. 3: Gross error rate (GER) as a function of the prediction order
P at iSNR = 0 dB, for general speech.

timates is very close to the oracle for the street noise case, while for
the other noise types (babble, exhibition and restaurant) there is still
room for improvement for attaining lower GERs (closer to the oracle
performance).

In the next experiment, we investigate the influence of the pre-
diction order P for LPC pre-whitening. We used the same setup
from previous experiment. Since from it, lower GERs were seen
from the MMSE noise PSD estimate, and due to the lack of space,
we only show the curves corresponding to the pre-whitener from the
MMSE noise PSD tracker and compare them to those obtained from
LPC oracle pre-whitening. The results are shown in Fig. 3 for an
iSNR = 0 dB for the general speech case. The GERs correspond-
ing to the WGN assumption and the FIR pre-whitening can be seen
for comparison purposes from Fig. 2 at 0 dB. From the oracle pre-
whitening curves, the best possible performance was obtained for
the exhibition noise, followed by restaurant and with street and bab-
ble noise having the highest GER depending on which P is used.
However, by increasing P the GER slightly reduced or kept nearly
constant. By applying LPC pre-whitening based on the MMSE noise
PSD estimate, the GER also slightly decreased or remained nearly
constant as P increased. The lowest GER is also seen for the exhibi-
tion noise, but the next lower GER is for street and not for restaurant
noise, as opposed to the oracle pre-whitener case. The differences
between the GER from oracle and estimated LPC pre-whitener are
larger for restaurant (between 8.5 and 16 %, increasing with P ) and
babble noise (between 6.5 and 17 %, increasing with P ) than for
street (between 1 and 4.5 %) and exhibition (between 3.5 and 5.5
%) noise types. We speculate that this is due to that street and ex-
hibition are more stationary than restaurant and babble noise types,
whose statistics may be more difficult to estimate. Larger differ-
ences occuring when P is high, for the babble and restaurant noise
types, implies that even if a better noise PSD spectrum could be cap-
tured (since a lower GER could be achieved), the conventional noise
PSD estimators do not react quickly to nonstationary noise condi-
tions and, therefore, the estimated noise PSD spectrum does not cor-
rectly fit the true one. This suggests a future improvement of pre-
whitening, for example based on codebook based approach [25, 26],
which can better encompass the noise characteristics. Based on this,
we did not select a very high value of P for the previous experiment.

Table 1: Comparison of SFM at iSNR = 0 dB for general speech.

SFM (Spectral Flatness Measure)
FIR LPC1 LPC2 LPC3 LPCO

Street
(0.04)

P = 7 0.13 0.45 0.44 0.34 0.50
P = 14 0.13 0.46 0.45 0.35 0.53

Babble
(0.07)

P = 7 0.17 0.40 0.39 0.37 0.47
P = 14 0.17 0.41 0.39 0.36 0.51

Exhib.
(0.29)

P = 7 0.43 0.45 0.45 0.43 0.48
P = 14 0.43 0.48 0.47 0.43 0.53

Rest.
(0.08)

P = 7 0.20 0.42 0.40 0.38 0.49
P = 14 0.20 0.43 0.40 0.35 0.52

A measure of the correlation structure of the noise, and therefore
its color degree, is given by the spectral flatness measure (SFM).
Therefore, the pre-whitening schemes can be compared in terms of
this SFM, which is defined as

SFM =
exp

(
1
2π

∫ π
−π lnφ(ω)dω

)
1
2π

∫ π
−π φ(ω)dω

(8)

which is interpreted as the ratio between the geometric mean and
the arithmetic mean of the power spectrum φ(ω) [19]. The larger
this value, the flatter the noise becomes. This quantity is bounded
between 0 and 1, where SFM → 0 means that the noise is more
coloured and SFM→ 1 implies white noise.

The mean SFM was calculated at an iSNR = 0 dB for the dif-
ferent noise types, for two prediction orders P = 7 and P = 14.
The SFM values after pre-whitening are similar to other iSNRs, as
was also evaluated in [13], so only the results at 0 dB are shown
in Table 1. The SFM for each noise type before pre-whitening is
shown in brackets. The table reports the SFM of the noise after pre-
whitening the noisy signal with the FIR method using MMSE noise
PSD estimate, and also with the LPC pre-whitening with the noise
trackers MMSE, MS and IMCRA (LPC1, LPC2 and LPC3, respec-
tively). The last column, LPCO, corresponds to the SFM obtained
by using the LPC oracle pre-whitener, i.e., the highest possible SFM
with a specific P . For MMSE and MS LPC pre-whiteners, the SFM
increases as P increases, something that not always happens by us-
ing IMCRA. The closest SFM to the oracle SFM can be obtained
from the LPC MMSE pre-whitener. The difference between them is
larger for P = 14 than for P = 7. The SFM obtained from FIR pre-
whitening is much lower compared to LPC pre-whitening in most
cases, except for exhibition noise, in which the value is very near
to the one attained from the LPC pre-whitening. Larger differences
between the SFM from oracle and noise trackers are seen for more
nonstationary noise types, i.e., restaurant and babble.

4. CONCLUSIONS

In this paper, we evaluated the influence of pre-whitening filters
based on noise PSD estimation methods for fundamental frequency
estimation. We also evaluated how well the LPC and FIR pre-
whiteners can distribute the noise power across the entire frequency
range in terms of the SFM measure. The LPC pre-whitening based
on MMSE results in lower GER of the fundamental frequency esti-
mates and highest SFM compared to the LPC pre-whitening based
on the other noise PSD estimates. Moreover, a better improvement
is still possible to be achieved, specially in the case of nonstationary
noise types.
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