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Abstract

Accurate prediction of a patient’s risk of a future fatal- or non-fatal event
is important to secure an accurate treatment of the patient. For this reason,
development of risk prediction models is a task of great interest in medical
research. Depending on the research question at hand, the motivation for
developing a prediction model may have different purposes; for example, it
may be of interest to evaluate the predictive value of a new biomarker over
established risk factors, or the aim may be to develop a prediction model that
can assist in clinical practice to inform patients on the probability of a prog-
nostic outcome. A statistical prediction model uses combinations of common,
clinical risk factors to predict the risks of future events in individual patients.
To secure accurate risk predictions, validation of the prediction models is
needed. For this task, various statistical methods have been suggested in the
literature, including the Brier score and AUC. The main aim of this thesis
is to make contribution to the research area of prediction models in medical
applications.

The first research paper in the thesis is a study on a large data set regard-
ing the predictive value of various blood pressure measurements on the risk
of future cardiovascular events. This paper illustrates how the accuracy of
statistical prediction models can be used to assess the predictive value of a
biomarker.

The second study in the thesis considers internal validation of statistical
prediction models in the setting of right-censored survival data. In this study,
we first review a well-known leave-one-out bootstrap estimator of the predic-
tion error in a binary outcome setting. Then, we introduce an extension of
this estimator to estimation of the time-dependent Brier score and the time-
dependent AUC in right-censored survival data. We derive the influence
function for these estimates and show how one can get the corresponding
standard errors.

In the last study we first review a logistic re-calibration approach that pro-
vide updated risk estimates when a prediction model is applied in a setting
different from the one in which the model was developed. We then demon-
strate how to construct confidence intervals of the updated risk estimates.
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Resumé

En nøjagtig prædiktion af en patients risiko for en given fremtidige fatal eller
ikke fatal hændelse er nødvendig for at sikre den korrekte behandling af
patienten. Af denne grund er interessen for at udvikle statistiske prædik-
tionsmodeller stor, blandt forskere indenfor den medicinske verden. Alt efter
det givne forskningsspørgsmål, kan interessen for at udvikle en prædiktion-
smodel være forskellig; der kan for eksempel være interesse i at evaluere
den prædiktive værdi af en ny biomarkør. Der kunne også være interesse
for at udvikle en model, der skal bruges i klinisk praksis til at informere pa-
tienter om deres risiko for en fremtidige hændelse hos den enkelte patient.
I en statistisk prædiktionsmodel kombineres forskellige risikofaktorer for at
prædiktere risikoen for en fremtidig hændelse. Fr at sikre nøjagtige risiko
prædiktioner er det nødvendigt at validere en statistisk prædiktionsmodel.
Til dette formål er en række statistiske metoder blevet foreslået i litteraturen,
bl.a. Brier scoren og AUC. Formålet med denne afhandling er at bidrage til
det biostatistiske forskningsområdet indenfor prædiktionsmodeller.

Den første artikel i denne afhandling er et studie på et stor datasæt omhan-
dlende den prædiktive værdi af forskellige blodtryksmålinger på den frem-
tidige risiko for at udvikle kardiovaskulære komplikationer. I denne artikel
er det demonstret hvordan nøjagtigheden af en statistisk prædiktionsmodel
kan benyttes, til at bestemme den prædiktive værdi af en given biomarkør.

Den anden artikel i denne afhandling omhandler ”internal validation” af
statistisk prædiktionsmodeller i højre-censureret overlevelses data. I denne
artikel bliver der først gjort rede for leave-one-out boostrap estimatoren for
binære outcome studier. Derefter foreslås en videreudvikling af denne esti-
mator til estimation af Brier scoren og AUC i højre-censureret overlevelses
data. I artiklen udvikles influence funktionen og det vises hvordan denne
kan bruges til at estimere standard error for de to bootstrap estimater.

I den sidste artikel redegøres først for en opdateringsmetode ”logistic re-
calibration” der kan benyttes til at opdatere en prædiktionsmodel fra en pop-
ulation til en anden. I dette studie viser vi hvordan man kan konstruere
konfidensintervaller for de opdaterede risiko estimater.
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Chapter 1

Introduction

This thesis is about prediction models that predict the risk of a future event
given a set of baseline risk factors. Prediction models of this type are of-
ten encountered in clinical settings where they are used to aid the clinical
decision-making [78]. Examples of these include the Framingham risk score
for cardiovascular events [93], the CHA2DS2VASc score for predicting the
risk of stroke, and the Gail model for predicting the risk of breast cancer [60].
In recent years there has also been an increasing interest in detection new
biomarkers that can improve decision-making in clinical settings [65, 76]. A
prediction model can broadly be defined as either a statistical model or a data
mining algorithm that has been trained in a given data set with the purpose
of predicting the outcome for future observations [11, 75].

Within the field of medical statistics there has historically been a tradi-
tion for statistical modeling with the aim of explaining a possible (causal)
association between the risk factors and the the likelihood of the event, i.e.,
etiological studies. In particular, the Cox proportional hazards model has
been used in a countless number of studies to obtain hazard ratios indicating
the relative effect of a variable on the hazard rate of the event of interest.
Although the mathematical models used in prediction studies often are the
same as those used in etiological studies the purpose of the modeling pro-
cesses is quite different. While etiological studies focus on finding causal
associations in the average patient, prediction studies focus on developing
the model that best predicts the outcome for individual persons. These quite
different purposes have consequence for the way the selection of risk factors
is approached and the way the models are validated [11]. Etiological studies
are often concerned with terms like confounding and effect modification and all
variables that are thought to be associated with the outcome are usually in-
cluded in the model. Whereas, in prediction studies a variable is thought to
be of value if it improves our ability to predict the outcome. Thus, a variable that

1



Chapter 1. Introduction

is causally related to the outcome may not be of interest in a prediction study
if the magnitude of its effect is too small too improve the model’s ability to
predict the outcome to a clinically meaningful extent.

The process of developing a prediction model has three basic steps: 1)
The first step is to develop the model. In this step a model is fitted to a given
data set (the learning data), this step includes common modelling strategies
such as variable selection and parameter estimation. 2) The second step is to
perform internal validation. This step includes assessing the accuracy of the
estimated event probabilities in the learning data. Measures of prediction ac-
curacy and different strategies for doing internal validation will be discussed
in more details later. 3) The last step is to do external validation, that is, to test
the accuracy of the prediction model in a data set (the validation data) that
is independent of the learning data. It is quite expected that the model will
perform worse in an independent validation data than in its own (learning)
data. The reason for this is simply that the model parameters are optimized
in the learning data.

This thesis will give a broad treatment of the topic risk prediction models
in medical applications, with a special focus on validation of risk prediction
models. Throughout the thesis it will be assumed that the risk factors are
measured at some baseline date, and the event can occur at any point in
time hereafter. The task in prediction studies is then to predict the probabil-
ity that the event will occur prior to some pre-specified prediction horizon
t > 0. In medical applications it is quite often the case that the learning
data and/or the validation data contain right-censored event times. That is,
some subjects are lost to follow-up prior to the prediction horizon t and the
event status at time t is thus unknown for these subjects. Another issue often
encountered in medical application is the existence of competing risks. In
analyses of survival data it is well-recognized that simply ignoring censored
event times and/or competing risks may seriously bias the results. Various
modeling strategies have been developed to properly analyze this type of
data [2]. Analogously, estimates of prediction accuracy measures that prop-
erly account for censored data and competing risks have been developed in
the past decades [33, 70].

The outline of this thesis is as follows: The aims of the thesis are given
in chapter 2. Chapter 3 presents an overview of risk prediction in medical
applications, introducing some of the most popular methods for validating
statistical risk prediction models. The mathematical background used in the
three papers is presented in chapter 4. Chapter 5 gives a summary of the
three papers. A final discussion of relevant themes in the thesis is presented
in chapter 6. Lastly, a discussion of the perspectives for future work is given
in chapter 7.

2



Chapter 2

Aims of the thesis

Within the field of medical statistics there is a still increasing interest in iden-
tifying combinations of biomarkers that can provide an accurate prognosis
for a patient. The overall aim of this thesis is to make contributions to this
research area by emphasizing the accuracy of risk prediction models and by
suggesting statistical tools that can be used in the analysis of such models.

The specific aims of the thesis are:

• To explain that significant hazard ratios do not necessarily translate into
improved risk predictions in particular when there are competing risks.

• To study asymptotic inference and to provide confidence intervals for
the internally validated performance of statistical risk prediction mod-
els (and differences thereof) when the outcome is a right-censored time-
to-event.

• To provide asymptotic inference and to provide confidence intervals
for risks predicted by a statistical model after re-calibration to a new
population.

3
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Chapter 3

The performance of risk
prediction models

This chapter gives an overview of methods used to validate risk prediction
models. The focus will be on the the measures most relevant to this thesis,
however references to other related measures will be given. Throughout T̃
will denote the time to event, Z 2 Rp will be a set of risk factors, and t > 0
will be a fixed prediction horizon. Further, F(u|Z) = Pn(T̃  u|Z) will be the
conditional distribution function of T̃ given Z and S(u|Z) = 1 � F(u|Z) will
denote the corresponding survival function.

Consider a data set Ln consisting of data for i = 1, . . . , n i.i.d. subjects. A
prediction modeling strategy Rt is a map on the set of datasets into the set
of prediction models. Estimating the internal parameters of Rt in Ln yields
a prediction model Rt,n = Rt(Ln). A risk prediction model is a mapping
Rt,n : Rp ! [0, 1] that for subject i at time t provides an absolute risk estimate
Rt,n(Zi). In medical applications popular modeling strategies include the lo-
gistic regression model and the Cox proportional hazards model. However,
one may also consider more flexible modeling strategies such as penalized re-
gression models or a random survival forest. An overview of these methods
can be found in e.g. [13, 44, 78].

1 Time-dependent prediction performance

To ensure valid risk estimates, it is desirable to assess the accuracy of a
trained prediction model. For this task various performance measures have
been suggested. Performance measures are usually categorized according to
whether they measure discrimination or calibration. Discrimination refer to

5



Chapter 3. The performance of risk prediction models

the models ability to discriminate high-risk patients from low-risk patients,
while calibration refer to the agreement between the estimated risk probabil-
ities and the actual event status. An important class of measures that falls
somewhat outside of these two categories is the class of scoring rules that is
given as the expected value of a suitable loss function [49]. This class scores
the estimated probabilities directly to the event status, and may thus be con-
sidered as measures of the overall performance of the prediction model. In
medical application the most important scoring rule is the Brier score that is
characterize by a quadratic loss function. Details on the Brier score will be
given in section 1.1 in this chapter.

The measures considered are time-depended because they measure the per-
formance of the model at a fixed prediction horizon t. In applied settings it
may be of interest to estimate the value of a performance measure at more
than one time point. For example if one is interested in the models ability
to predict the short-term risk and the long-term risk of a given event. In this
case it is very likely that the value of the performance measure for prediction
horizon, say 1 year is different from the value of the performance measure
for prediction horizon 10 year.

Regardless whether one is interested in a model’s overall performance, dis-
crimination ability, or calibration it is important to distinguish between inter-
nal validation and external validation. Internal validation is the assessment of
the model performance in the data in which the model was developed (the
learning data), and external validation is the assessment in a data (the valida-
tion data) that is independent of the learning data. Internal validation will be
discussed section 3 in this chapter. It is usually the case that the model per-
forms a lot better in the learning data than in the validation data. Th reason
for this is simply that the model parameters are optimized in the learning
data. In this section and section 2 it will assumed that the model is devel-
oped in a data Ln and the model performance is assessed in an independent
validation data Vm consisting of m i.i.d. observations. As a starting point
it is assumed that the event time T̃ is not censored, and the outcome in the
analysis is given by the event indicator Y(t) = I{T̃t}; here I{·} denotes the
indicator function. In section 2 extensions to right-censored survival data is
discussed.

1.1 Brier score
The Brier score was originally introduced as a measure to verify a weather
forecast [12]. Subsequently the Brier score has become a popular measure
of the mean squared error of a prediction model. A time-dependent version
of the Brier score is given as the expected squared difference between the

6



1. Time-dependent prediction performance

observed event status at time t and the estimated event probability [36, 40]:

Briert(Rt,n) = E[{Yj(t)� Rt,n(Zj)}2].

The Brier score can be interpret as the loss incurred by assigning probability
Rt,n(Zj) of event at time t for a subject with event status Yj(t). An empirical
estimate of the Brier score is given by:

[Briert(Rt,n,Vm) =
1
m

m

Â
j=1

{Yj(t)� Rt,n(Zj)}2.

1.2 Discrimination
A good prediction model must accurately discriminate between subjects with
event before time t and subjects with no event before time t. That is, subjects
with event prior to time t must be assigned a probability of event that is
higher than subjects without event at time t.

A popular method for describing the discrimination ability of the model
is to summaries the correct classification rates defined by the sensitivity
Pn
�

Rt,n(Zi) > c|Yi(t) = 1
�

and the specificity Pn
�

Rt,n(Zi)  c|Yi(t) = 0
�

[46, 47]. Here c 2 [0, 1] is threshold that is used to determine whether sub-
ject i is classified as a case (i.e. event before time t) or a control (i.e. event
after time t). It is common to depict the correct classification rates for the
full spectrum of cutoff points by considering the Receiver Operating Char-
acteristic (ROC) curve. This curve is a plot of the true positive rate (TPR)
against the false positive rate (FPR) for consecutive cutoff points. Here, TPR
is just another name for sensitivity and FPR is defined as 1-specificity, thus
FPRt(Rt,n, c) = Pn

�
Rt,n(Zi) > c|Yi(t) = 0

�
. The ROC curve is given by the

graph:

ROCt
�

Rt,n, ·
�
=
��

FPRt(Rt,n, c), TPRt
�

Rt,n, c)
�

: c 2 [0, 1]
 

.

The ROC curve provides a useful tool to visualize the performance of a
model. If the prediction model discriminate perfect between cases and con-
trols, that is, if Rt,n(Zi) > Rt,n(Zj) for all pair of subjects (i, j) in Vm with
Yi(t) = 1 and Yj(t) = 0, then TPRt(Rt,n, c) = 1 for all values of c for which
FPRt(Rt,n, c) > 0. In contrast, if the model is useless for discriminating
between cases and controls, then the distribution of predicted risks will be
identical among cases and controls and the ROC curve will lie on the 45� line.
Figure 3.1 shows the ROC curve for two different prediction models that pre-
dict the same outcome. The plot shows that model A is a better model than
model B because the curve for model A lies above the curve for model B for
all values of c. A measure that is closely related to the ROC curve is the area

7



Chapter 3. The performance of risk prediction models

under the ROC curve (AUC) [42, 66] which is defined by:

AUCt(Rt,n) =
Z 1

0
ROCt(Rt,n, c)dc.

The scale of the AUC ranges from 0.5 (no discrimination ability) to 1 (perfect
discrimination ability). It can be shown [66] that the AUC can be interpret as

AUCt(Rt,n) = Pn
�

Rt,n(Zi) > Rt,n(Zj)|Yi(t) = 1, Yj(t) = 0
�

In the binary outcome setting considered in this section, this definition of the
AUC is identical to the measure called Hareell’s c-statistic [45]. An estimate
of the AUC is given by

[AUCt(Rt,n,Vm) =
Âm

i=1 Âm
j=1 I{Rt,n(Zi)>Rt,n(Zj)}I{Yi(t)=1,Yj(t)=0}

Âm
i=1 I{Yi(t)=1} Âm

j=1 I{Yj(t)=0}

Various other measures of discrimination has recently been proposed [80]
including the Net Reclassification Improvement (NRI) and integrated dis-
crimination improvement (IDI) [64]. However, as pointed out by [48] these
measures are not proper performance measures [39, 59] and must thus be
used with care.

FPR

TP
R

0 % 25 % 50 % 75 % 100 %

0 %

25 %

50 %

75 %

100 %

Model A
Model B

Fig. 3.1: Example of ROC curve for two prediction models
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2. Extensions to censored survival data

1.3 Calibration
Calibration of a prediction model refer to the extend of bias in the predicted
event probabilities, that is, how close the estimated risk are to the true event
probabilities [45]. A prediction model is said to be well-calibrated if the
model provides risk estimates that coincide with the expected proportion of
events [44]. That is, if the model assigns a 25% risk of event then the event
should occur in approximately 25 out of 100 patients who all received an
estimated event probability of 25%. In a more formal manner the concept of
a well-calibrated model can be defined as [32]:

E[Y(t)|Rt,n(Z) = p] = p, for p 2 [0, 1]

Calibration of a prediction model is in particular important if the aim is to
develop a model that is intended to inform patients on their future risk of
some given event.

One method to assess the calibration of a prediction model is to use the
Hosmer-Lemeshow test [50]. This test is computed by dividing the observa-
tions in g groups e.g. percentiles. For group i = 1, . . . , g, let mi be number
of observations in the group, let Oi be the observed number of events in the
group, and let p̄i be the average estimated event probability in group i. The
Hosmer-Lemeshow test is then calculated as the Pearson chi-square statistic
from the table of observed and expected frequencies

cHL =
g

Â
i=1

(Oi � mip̄i)
2

mip̄i(1 � p̄i)

A main limitation of this test is that it is based on a arbitrate grouping of the
observations. Another popular method to assess calibration is to consider the
calibration plot in which the observed event status is plotted against the pre-
dicted risks estimates. To assist the interpretation, the plot is often equipped
with a calibration curve that can be obtained from a smoothing technique
such as the loess curve or using a kernel [32, 58]. For a calibrated model the
calibration curve will lie on the 45� line.

2 Extensions to censored survival data

The performance measures introduced in the previous section apply to the
case of binary outcome data and uncensored survival outcome. However
in medical applications the analysis is often complicated by right-censored
survival data and possible competing risks. In this section some comments
regarding estimation of performance measures in this situation will be given.
The focus will be on the Brier score and the AUC as these measures are most

9



Chapter 3. The performance of risk prediction models

important in relation to the papers in this thesis. Let C be a right-censoring
time and denote by G(u|Z) = Pn(C > u|Z) the conditional survival function.
In this section it is assumed that the data Vm contains survival data for m
i.i.d. observations. That is, for each subject j the observation consists of the
triplet Xj = (Tj, Dj, Zj); here Tj = min(T̃j, Cj) and Dj = I{T̃jCj}. Throughout
it will be assumed that the event time and the censoring time is conditional
independent given the covariates Z, that is, it is assumed that:

T̃ ?? C | Z (conditional independence). (A1)

It is well known that ignoring censored event times in analyses will induce
loss of information and result in biased estimates. For this reason the esti-
mates of the Brier score and the AUC (and other measures) must be modified
in order to proper account for the loss of information induced by censored
data. One of the first attempts to account for censoring was initiated by Korn
and Simon [56] who introduced a model-based estimator of the explained
variation, which is a measure closely related to the Brier score [41]. This
model-based estimation method relies on a correctly specified model of the
survival function of event times. Model-based estimators have also been sug-
gested to estimate the AUC [14, 77]. In the papers in this thesis we have
focused on estimation of accuracy measures based on the inverse probability
of censoring weighting (IPCW) technique. The main idea of this technique
is to weight each observation in the data with its probability of not being
censored. The method is discussed in more details in chapter 4. An IPCW
estimate of the Brier score were introduced in [40] and was further studied
in [36]. Let Ĝm be an estimate of G. The IPCW estimate of the Brier score is
given by

[Brier
ipcw
t (Rt,n,Vm) =

1
m

m

Â
j=1

{I{Tjt} � Rt,n(Zj)}2Wt(Xj, Ĝm), (3.1)

where the weights are defined by

Wt(Xj, Ĝm) =
I{Tjt}Dj

Ĝm(Tj � |Zj)
+

I{Tj>t}

Ĝm(t|Zj)
.

Gerds and Schumacher [36] showed that the estimate (3.1) is a consistent es-
timate of the Brier score provided that G(t|Z) > e > 0 and Ĝm is correctly
specified. Various authors [7, 51, 85] have likewise suggested an IPCW esti-
mate of the AUC:

[AUC
ipcw
t (Rt,n,Vm) =

Âm
i=1 Âm

j=1 I{Rt,n(Zi)>Rt,n(Zj)}Wt(Xi, Xj, Ĝm)

Âm
i=1

⇥
I{Tit}Di Ĝ�1

m (Ti � |Zi)
⇤

Âm
j=1

⇥
I{Tj>t}Ĝ�1

m (t|Zj)
⇤
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2. Extensions to censored survival data

where the weights are defined by

Wt(Xi, Xj, Ĝm) =
I{Tit}DiI{Tj>t}

Ĝm(Ti � |Zi)Ĝm(t|Zj)
.

In the previous section it was noted that the definition of the AUC coincide
with the definition of Harrells c-index. In the case of survival data the def-
inition of the two discrimination measures does not coincide [34], and one
may choose to use the c-index as a measure of discrimination. However, as
pointed out by Blanche et al [8], the definition of the c-index for survival data
does not use the prediction horizon twhen discriminating between cases and
controls. This means that the measure is in general not proper for assessing
the predictive value of the model at time t.

2.1 Competing risks
Competing risks are often encountered in applied settings where the event of
interest is not all-cause mortality [1]. One example is the risk of lung cancer
among people who smoke. These people are indeed at high risk of getting
lung cancer, however, they might also die due to other reasons before they
get lung cancer. In this case cancer-unrelated mortality is a competing risk
of the event lung cancer. A naive approach would be to analysis such data
by censoring people when they die to reasons not related to the event of
interest. However, this approach would correspond to analyzing a popula-
tion in which you cannot die before you have had the disease, which is not
applicable in most realist settings.

Let h 2 {1, 2} be an event indicator of two competing events; here, with-
out loss of generality, it is assumed that only two events can happen. Though,
in applied settings it is of course possible that more competing events can
happen. The data for subject j is given by the triplet Xj = (Tj, h̃j, Zj), here
h̃j = hjDj. Suppose h = 1 is the event of interest. The aim of a prediction
study is then to predict the cumulative incidence function

F1(t|Z) = Pn(T̃  t, h = 1|Z)

Traditional regression models for the competing risks setup include the Fine-
Gray model and cause-specific Cox regression, an overview of these models
can be found in [35]. In what follows R1

t,n(Zj) will denote a risk estimate of
F1(t|Zj) for subject j.

In the case of competing risks the Brier score is defined by [74]:

Briert(R1
t,n) = E[{I{T̃jt,hj=1} � R1

t,n(Zj)}2] (3.2)

This definition is a straight forward extension of the Brier score defined in
section 1. Shoop et al. [74] suggested an IPCW estimate of the Brier score
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Chapter 3. The performance of risk prediction models

(3.2) that is much similar to the estimate in (3.1). One extension of the AUC
to competing risks is given by [6, 95]:

AUCt(R1
t,n) = Pn(R1

t,n(Zi) > R1
t,n(Zj)|T̃i  t, hi = 1, {T̃j > t}[ {T̃j  t^ hj 6= 1})

(3.3)
This definition defines a case as a subject with event of interest prior to the
prediction horizon t and a control as any subject who either is event-free
prior to time t or who experienced the competing event prior to time t. This
definition of the AUC is used in paper I in this thesis. Another definition of
the AUC for competing risks is:

AUC⇤
t (R1

t,n) = Pn(R1
t,n(Zi) > R1

t,n(Zj)|T̃i  t, hi = 1, T̃j > t)

This defines a case as about, however, a control in this definition is a subject
without any event prior to time t. Dependent on the research question at
hand, one may choose any of the two definitions. IPCW estimates for these
definitions of the AUC were suggested by Blanche et. al [6].

3 Internal validation

In the previous sections it was assumed that the risk prediction model was
developed in a learning data Ln, and the performance measures were esti-
mated in a validation data Vm. This mode of validating a prediction model is
called external validation. Another mode of validation is internal validation
which means to estimate the accuracy of the prediction model in the learning
data. In this section a generic notation for the performance measures will be
used in order to accommodate all measures discussed in the previous sec-
tions. In what follows Qt(Rt,n,Ln) will denote a performance measure, e.g.
the Brier score, for the prediction model Rt,n estimated in data Ln.

Estimating the performance measure in the same data as the model was
developed is called the apparent performance:

QApp
t (Rt) = Qt(Rt,n,Ln)

As parameters of a trained model are optimized in the learning data, the
apparent performance will usually provide overoptimistic results regarding
accuracy of risk predictions in patients outside the learning data [25]. The
degree of overoptimism will increase with the complexity of the prediction
model as complex models will utilize information in the learning data to
a greater extent than more parsimonious models. In general, a prediction
model is said to be overfitted if the model specification is too complex to
capture the true underlying data structure.

Overfitted models are likely not to perform well in patients outside of
the learning data, and thus it is of interest to detect a model’s degree of
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3. Internal validation

overfitting. For this task it is common to use a cross-validation algorithm. The
usual scheme in a cross-validated algorithm is to repeatedly split the data Ln
into a training part and a validation part. For each split, the model is fitted in
the training part and the performance measure is estimated in the validation
part. Accordingly, a cross-validation algorithm imitates a process in which
the prediction model is applied to future patients and the prediction accuracy
evaluated in these new patients. The final step in a cross-validation algorithm
is to average the estimated accuracy measures over multiple splits of Ln. This
last step means that a cross-validated accuracy measure provides an (often
biased) estimate of the expected model performance over all possible learning
sets of size n:

ELn [Qt(Rt,n,Ln)].

A traditional cross-validated estimate is the K-fold cross-validated estimate
that is obtained by random splitting the data Ln into K mutually exclusive
subsamples L1, . . . ,LK of approximately equal size. Let Rt,n�k = Rt(L�k) be
the modelling strategy Rt trained on L�k = Ln \ Lk, for k = 1, . . . , K. The
idea is to train the model in L�k and evaluate the performance measure in
Lk. The K-fold cross-validated estimate is then given by

QCVK(Rt) =
1
K

K

Â
k=1

Q(Rt,n�k,Lk)

A popular choice is to set K = 10. The main advantages of this estimate
is that it is computationally efficient, provided K is not "too large". This
is in particular an advantages if it is time consuming to fit the prediction
modelling strategy. However, the K-fold cross-validated estimate is usually
subject to high Monte-Carlo variance [10, 57, 92]. Setting K = n defines the
classic leave-one-out cross-validated estimator [31, 81].

Another popular cross-validation algorithm is the bootstrap cross-validation
approach [24, 28, 29]. This approach is based on the general theory of boot-
strapping introduced by Efron [23, 26, 27]. In the bootstrap cross-validated
algorithm the data is splitted by drawing bootstrap samples from Ln. That
is, let Pn be the empirical measure of the data Ln. A bootstrap sample is a
random sample L⇤ of size n from Pn. In other words a bootstrap sample is
a sample X⇤

1 , . . . , X⇤
n drawn with replacement from Ln. The bootstrap cross-

validated estimate is obtained by drawing B bootstrap samples L⇤
1, . . . ,L⇤

B,
for some large number B. In each run of the algorithm the prediction strat-
egy is trained in L⇤

b yielding a trained prediction model R⇤
t,b = Rt(L⇤

b)
and the performance measure is evaluated in people how are out-of-bag i.e.
L0

b = {Xi : Xi /2 L⇤
b}. Averaging over all bootstrap samples yield the boot-
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Chapter 3. The performance of risk prediction models

strap cross-validated estimate:

QbootCV(Rt) =
1
B

B

Â
b=1

Q(R⇤
t,b,L0

b)

In paper II of this thesis we considered a bootstrap cross-validated estimate
that is defined a bit different, though comparable to the bootstrap cross-
validated estimate as defined above.
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Chapter 4

Mathematical background

This chapter discusses two specific mathematical techniques that played a
central role in the analysis of the aims of the thesis. The first is the inverse
probability of censoring weighting technique which we applied to deal with
censoring, the second is the functional delta method which we applied to
discuss the asymptotic inference of the estimators in papers II and III.

1 Inverse probability of censoring weighting

The method of inverse probability of censoring weighting (IPCW) is a gen-
eral weighting scheme that can be used to overcome the problem of censored
survival data in estimating problems. The method was originally introduced
in connection with a general methodology for parameter estimation in non-
and semi-parametric models with coarsed data, i.e. missing or censored
data [71, 72]. The ideas behind this methodology is based on an inverse
probability weighting technique introduced in the early 1950s [42] combined
with general results from semi-parametric theory [5, 84]. The method has
subsequently been used in various estimation problems, including estimates
of performance measures for prediction models as discussed in chapter 3,
and estimation of parameters in regression models [30, 35, 73].

The intuitive reasoning behind inverse probability weighting is as follows.
Let p(Z) be the probability that a person, with risk factors Z, has complete
data; here complete data means that the outcome variable is non-missing,
while the risk factors are assumed never to be missing. A person with com-
plete data and risk factors Z can thus be assumed to represented 1/p(Z) of
the intended study population (in which some subjects may have missing
data). This suggest a weighting scheme that put weight 1/p(Z) on subjects
with complete data and covariates Z. Specially, suppose p(Z) = 0.5, in-
tuitively this means that subjects with covariates Z is only half as frequent
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Chapter 4. Mathematical background

represented in the observed data as in the study population. Thus, in this
case observed subjects with covariates Z are weighted 1/0.5 = 2 to account
for both themselves and for missing subjects with the same set of risk factors.

In this thesis we have used the IPCW method to estimate performance
measures of prediction models for prediction horizon t in right-censored sur-
vival data [86]. See chapter 3 for examples. In what follows it assumed that
event time and censoring time is conditional independence given the covari-
ates, i.e. assumption (A1). The problem with right-censored event times can
be summarized as follows. For person i the data is the triplet (Ti, Di, Zi) with
Ti = min(T̃i, Ci) and Di = I{T̃iCi}. At prediction horizon t the contribution
of this person to the estimate of the performance measure falls into one of
the following three categories

• If Ti  t and Di = 1 then person i has observed event prior to time t,
and he contributes to the estimate as a case, cf. the definition in chapter
3.

• If Ti > t then person i is known to have event after time t, and he will
contribute to the estimate of the performance measure as a control, cf.
the definition in chapter 3.

• If Ti  t and Di = 0 then person i is censored before time t, and it is not
known whether the event will occur before or after time t.

Ignoring observations from the last category in estimation of a performance
measure will induce a loss of information and it will quite often result in a
biased estimate [7, 40]. The method of IPCW accommodate this by weighting
each subject that has "complete data" with the inverse of the probability that
this subject is uncensored at time t. Subjects with complete data are in this
case subjects that belongs to one of the two first categorizes above. Denote
by G the conditional survival function of the censoring time C. If subject i
has event prior to time t then the probability of being uncensored at time t
is G(T̃i � |Zi), and if subject i has event after time t then the probability is
G(t|Zi) [5, 36]. This means that subjects that are censored before time t will
only contribute to the IPCW estimate through an estimate of G.

The IPCW method depends on a working model G for G. Let Ĝm be an
estimate that converges to some element G⇤ 2 G. If the working model is
correctly specified, i.e. if G 2 G, then Ĝm

m!•���! G⇤ = G. As mentioned in
chapter 3, if Ĝm is a consistent estimator of G then a number of studies have
shown that the IPCW estimation method provides consistent estimators of
various performance measures [6, 7, 34, 36, 51, 74, 85, 94]. For example, if it
can be assumed that G(t|Z) = G(t), i.e. the censoring time C is independent
of the covariates Z, then the Kaplan-Meier estimator will provide a consistent
estimate of G. However, this choice is not efficient because information from
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covariates for subjects that are censored before time t will not contribute to
the IPCW estimate [71]. In general it is recommended to use an estimator
that ignores any prior knowledge of G such as a non- or semi-parametric
regression model that include all covariates effecting the event time distribu-
tion [71, 86].

2 Functional delta-method

The functional delta-method is a generalization of the classic delta-method
for estimators in Rd to functions defined on a normed vector space [38, 87]. In
paper II and paper III we used this method to study asymptotic properties of
statistical functionals. In this section an overview of the methodology behind
the functional delta-method is presented. In this section we let X1, . . . , Xn be
an i.i.d. random sample on the real line from a distribution function F, and
denote by Fn the empirical distribution function

Fn(x) =
1
n

n

Â
i=1

I{Xix}.

A statistical functional is a statistic that can be written in the form j(Fn)
for some functional j. As shall be explain, if the functional j is sufficiently
smooth then asymptotic properties of j(Fn)� j(F) can be obtained by com-
bining the functional delta-method with general limit results from the theory
of empirical processes. A comprehensive review of limit results for empirical
processes of i.i.d. observations can be found in [88]. In what follows it is as-
sumed that the functional j is defined on a the Skorohod space D[�•, •] of
cadlag functions on the extended real line equipped with the uniform norm
kzk• = supx2[�•,•] |z(x)| [87, 88].

We start with two well-known results from empirical processes theory re-
garding the asymptotic behavior of Fn � F [88]

Theorem 1 (Clivenko-Cantelli)
If X1, X2, . . . are iid random variables with distribution function F, then

kFn � Fk•
a.s�! 0

Theorem 2 (Donsker)
If X1, X2, · · · are iid random variables with distribution function F, then the
sequence of empirical processes Gn =

p
n(Fn � F) converges in distribution

in D[�•, •] to a tight Gaussion process GF.

The basic idea of the functional delta-method is translate the above results for
Fn � F into asymptotic results for j(Fn)� j(F) through a differential analysis
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Chapter 4. Mathematical background

of j. The idea of studying the asymptotic behavior of j(Fn)� j(F) through
a differential analyses of j was initiated by von Mises [91] who proposed an
expansion of statistical functionals similar to the Taylor expansion of smooth
functions. Heuristically, we would like to obtain an expansion of the follow-
ing form

j(Fn)� j(F) =
1p
n

j0
F(Gn) + oP(1)

=
1
n

n

Â
i=1

j0
F(dXi � F) + oP(1), (4.1)

for some linear functional j0
F. The existence of such an expansion depends

on the differentiability properties of the functional j.
The most basic type of differentiability for functions defined on normed

vector spaces is the type of Gâteaux differentiability [38, 87]. Let F and E be
normed vector spaces, a function y : F ! E is said to be Gâteaux differen-
tiable at q 2 F if

����
y(q + eh)� y(q)

e
� y0

q(h)
����
E
! 0, as e ! 0

for some fixed h 2 F . However, because h is not allowed to depend on
e, this form of differentiability is to weak for most statistical applications.
Intuitively, for asymptotic statistics it is useful to "allow the direction h to
depend on n". A stronger form of differentiability is the type of Hadamard
differentiability [38, 87]. Suppose the function y is defined on Fy ⇢ F . The
function y is said to be Hadamard differentiable at q 2 F if there exist a
continuous, linear map y0

q : F ! E such that
����

y(q + ehe)� y(q)
e

� y0
q(h)

����
E
! 0, as e ! 0, every he ! h.

Here the direction he is allowed to change with e and thus Hadamard differ-
entiablity is more suited for statistical applications. By the following theorem,
an expansion as the one in (4.1) can be obtained if the statistical functional
j is Hadamard differentiable. The theorem and its proof can be found in
e.g. [38, Theorem 3] or [87, Theorem 20.8].

Theorem 3 (Functional delta-method)
Let F and E be normed linear spaces. Let y : Fy ⇢ F ! E be Hadamard
differentiable at q. Let Tn : Sn ! Fy be maps such that rn(Tn � q)  T
for some sequence of numbers rn ! • and a random element T. Then
rn(y(Tn) � y(q))  y0(T). If y0 is defined and continuous on the whole
space F , then we also have that rn(y(Tn)� y(q)) = y0(rn(Tn � q)) + oP(1).
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Chapter 5

Summary of papers

1 Paper I

Rikke Nørmark Mortensen, Thomas Alexander Gerds, Jørgen Lykke Jeppe-
sen, and Christian Torp-Pedersen (2017). Office blood pressure or ambu-
latory blood pressure for the prediction of cardiovascular events. European
Heart Journal 38(44): pp 3296-3304.

Paper I is a study on a large data set regarding the predictive value of vari-
ous blood pressure measurements on the risk of future cardiovascular events.
The main aim of this paper was to use statistical risk prediction models to
study the relative prognostic value of office blood pressure measurements
and ambulatory blood pressure measurements on the 10-year risk of fatal
and non-fatal cardiovascular events. We further considered the relative prog-
nostic value of daytime blood pressure measurements and nighttime blood
pressure measurements on the 10-year risk of cardiovascular events. For this
task we used data from the International Database on Ambulatory blood
pressure monitoring in relation to Cardiovascular Outcomes.

Several studies have previously considered the relative importance of of-
fice blood pressure and ambulatory blood pressure on the risk of cardiovas-
cular events [15, 16], and the relative importance of daytime blood pressure
and nighttime blood pressure [9, 43]. These studies all claim that ambulatory
blood pressure measurements provide prognostic value beyond that of office
blood pressure, and similar nighttime blood pressure provides prognostic
value beyond that of daytime blood pressure. Thus, the general recommen-
dations from these studies are that it is import to measure the ambulatory
blood pressure, in particular ambulatory nighttime blood pressure, in order
to provide an accurate prognosis for a patient. These recommendations have
also been included in the current guidelines regarding cardiovascular disease
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prevention [68]. The motivation for our study was that these previous stud-
ies all used Cox regression analyses and conclusions are drawn solely based
on hazard ratios and corresponding p-values. No attempt has been made to
assess the accuracy of person-specific risk estimates, and thus the studies do
not formally consider prediction. This demonstrate a point that is not widely
appreciated in applied medical settings, namely that a strong statistical as-
sociation does not necessary translate into strong predictive power, and thus
explanatory power is often confused with predictive power.

In our study we used cause-specific Cox regression models to obtain 10-
year risk estimates of cardiovascular events, and the predictive accuracy of
these risk estimates were assessed by the time-dependent AUC for competing
risks. The conclusions from the study was that ambulatory blood pressure
measurements did not provide predictive value beyond that of office blood
pressure measurements, and nighttime blood pressure did not provide pre-
dictive value beyond that of daytime blood pressure.

2 Paper II

Rikke Nørmark Mortensen, Tianxi Cai, and Thomas Alexander Gerds. Un-
certainty of bootstrap cross-validation estimates of prediction performance in
censored survival data. (Manuscript)

In paper II we considered extensions of a leave-one-out bootstrap estima-
tor suggested by Efron and Tibshirani [29]. This estimator was originally
introduced to estimate the error rate in a binary outcome setting. In our
study we suggested a leave-one-out bootstrap IPCW estimator of the time-
dependent Brier score and a leave-pair-out bootstrap IPCW estimator of the
time-dependent AUC for right-censored survival data. To deal with censored
event times we used the inverse probability of censoring weighting technique.

We used von Mises calculus to obtain large sample properties for each of
the two estimators and derived the influence functions. From estimates of
these influences functions one can get estimates of the standard error of the
two bootstrap estimates and confidence intervals can be constructed.

The leave-one-out bootstrap IPCW estimator and the leave-pair-out boot-
strap IPCW estimator are implemented in the function from the R-
package [37, 83] that is public available at the Comprehen-
sive R Archive Network (CRAN) site [69].

3 Paper III

Rikke Nørmark Mortensen, Michael Mørk Petersen, Michala Skovlund Sørensen
and Thomas Alexander Gerds. On risk predictions from the logistic re-
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calibration method. (Manuscript)

In paper III we review a logistic re-calibration approach that provide updated
risk estimates when an established prediction model is applied in a data set
different from the one in which the model was developed [19, 62, 79, 90]. The
case considered in this paper were limited to a logistic prediction model.

The idea is that if the established model provides invalid risk estimates
in the new data then the calibration of the model can be improved by up-
dating the prediction model as follows. First risk predictions obtained from
the established prediction model is used to fit a logistic calibration model
in the new data. This step yields estimates of the regression coefficients a
and b of the calibration model. In a second step, the risk predictions are
updated according to the estimates â and b̂. The resulting re-calibrated risk
estimates will have better calibration properties in the new data compared to
the established model.

Because of this two-step updating approach, the re-calibrated risk esti-
mates will inherent variability from both the prediction model and the cal-
ibration model, and for this reason it is not straight forward to construct
confidence intervals for the re-calibrated risk estimates. In the paper we sug-
gested a method to construct confidence intervals that incorporate variability
from both the prediction model and the calibration model; for this task we
used von Mises calculus. In a small simulation study we demonstrated that
the coverage of the confidence intervals were close to the nominal level of
95%.
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Chapter 6

Discussion

The aim of most medical research is to identify patients with an increase
risk of some fatal or non-fatal event. In this thesis it was demonstrated how
statistical risk prediction models can be used to pursue this aim. Specially,
the results in paper I demonstrated that risk factors that are highly significant
associated to an event of interest may not provide predictive value that is
meaningful in a clinical application. It was demonstrated how statistical risk
prediction models provide a better tool to identify biomarkers that actual
improves the clinicians ability to predict the event for a patient. In paper
II and paper III we suggested statistical tools that can be used to assess the
predictive value of such prediction models. We now discuss some further
details of the materials presented in the three papers of the thesis.

1 Added value of a new marker

In paper I we used statistical risk prediction models to study the predic-
tive value of various blood pressure measurements on the risk of fatal and
nonfatal cardiovascular events. In clinical applications, it is well established
that a raised blood pressure is associated with an increased risk of cardio-
vascular events. Thus, a patient with a raised blood pressure may benefit
from treatment with antihypertensive drugs. As pointed out in chapter 5
it is generally accepted that ambulatory blood pressure, measured over a
period of 24-hours, is the strongest marker for prediction of cardiovascular
events [15, 16, 68]. The results of our study as presented in Paper I seemingly
contradict this contention. The approach taken in our study goes beyond the
often met, but too simple, approach which simply considers the p-value asso-
ciated with a predictor variable in Cox regression. However, if the biomarker
is intended to aid clinical decision-making, this etiological approach does not
address the question of direct interest, namely whether the biomarker im-
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proves our ability to predict the patients future outcome [4, 17, 54, 55, 67].
We assess the accuracy of the statistical prediction models obtained by in-
cluding versus excluding the predictor variable in question. The general idea
behind our approach is not new but it is rarely meet in medical applica-
tions [21, 54, 63]. In our Paper I, we deal with competing risks and right
censored data and we investigate the magnitude of the changes in patient
individual risk predictions that occur when a single new biomarker is added
to a standard prediction model.

2 Internal validation in paper I

As discussed in chapter 3 it is usually desirable to use cross-validation to
detect overfitting of a prediction model. In paper I we did not pursue this
aspect of model validation, and some comments regarding this will now be
made. A prediction model is said to be overfitted if the model specification
is too complex to capture the true underlying data structure. This will for
example occur if the model contains more variables than the data can justify.
In this case the trained model will contain "noise", i.e. trends inherent in
the training data that does not generalize to other data sets. The intend of
internal validation by cross-validation is to detect this "noise". In the case of
the study in paper I we compared the predictive value of two nested models;
a model containing office blood pressure and a model containing both office
blood pressure and ambulatory blood pressure (both of these models were
adjusted for the same set of risk factors). The results revealed that the AUC
of the two models were nearly identical, and we concluded that ambulatory
blood pressure did not add predictive value beyond that of office blood pres-
sure. As we did not attempt to detect overfitting by internal validation we
do not know whether the two models are overfitted; they might indeed be.
However, the bigger model did not contain predictive information beyond
that of the smaller model. This means that the possible "noise" in the bigger
model is not any worse than the "noise" in the smaller model, and thus it is
unlikely that cross-validation would change the conclusion of the study.

3 Internal validation of prediction performance

In paper II we discussed a leave-one-out bootstrap IPCW estimator of the
time-dependent Brier score, and a leave-pair-out bootstrap IPCW estimator
of the time-dependent AUC for right-censored survival data. In the paper we
used von Mises calculus to study large sample properties, and we derived the
influence function. An estimate of the standard error can be obtained from
the estimate of the influence function. An attractive feature of the estimate

24



3. Internal validation of prediction performance

of the influence function is that it only depends on the same set of boot-
strap samples that were used to calculate the point estimate, this means that
the standard error can be estimated in a computationally efficient manner.
We used the results to construct confidence intervals for the target parame-
ters, i.e., for the internally validated prediction performance of a model and
for differences between models. As explained in more detail in the paper,
the target parameters estimated by the leave-one-out bootstrap estimator and
the leave-pair-out bootstrap estimator are the expected Brier score and the
expected AUC, respectively. These expected performance measures can be
interpreted when the aim is to assess the performance of the prediction mod-
elling strategy rather than the performance of a prediction model which was
trained in a given dataset. However, the latter will often be the parame-
ter of actual interest for the applied researcher. For example, the expected
Brier score may be of little interest if the leave-one-out bootstrap estimator
is used in an internal validation analysis to detect overfitting of a prediction
model, and it may seem irrelevant to construct a confidence interval for this
parameter. However, if the aim of an analysis is to choose between two rival
prediction models it may be highly relevant to assess the standard error of
the leave-one-out estimator in order to construct statistical tests to compare
the performance of the two prediction models.

In the paper we use the IPCW estimation approach to deal with right-
censored event times. This approach has in the past decade become a pop-
ular method to estimate performance measures for risk prediction models
in censored survival data [6, 7, 34, 36, 51, 74, 85, 94]. The IPCW method is
in general recommended over other model-based estimation methods that
depend on a correctly specified model of the event time distribution, espe-
cially if the aim is to compare two competing prediction models [7, 33, 36].
The main reason for choosing an IPCW estimator over a model-based esti-
mate [56] is that a model-based estimate of the performance measures will be
biased as soon as the model of the event time distribution is wrong. Also the
bias will increase with increasing misspecification of the model. Comparing
two statistical prediction models is, by its very nature, a comparison of two
rival models for the event time distribution, and it follows that a comparison
based on a model-based estimator cannot be interpreted solely in terms of the
accuracy of the two models. The IPCW estimation approach does however
depend on a model of the survival function of the censoring distribution, and
the IPCW estimate will be biased if the model for the censoring distribution
is wrong. From a modeling perspective it may or may not be more difficult
to model the event time distribution than to model the censoring distribu-
tion. However, for the aim of comparing two prediction models the IPCW
estimate appears much more tractable compared to a model-based estimate.
The reason for this is that even if the model for the censoring distribution
is misspecified, then at least the bias in the estimated performance measures
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will be the same for the two rival prediction models.

4 Re-calibration of risk predictions

In paper III we considered the logistic re-calibration method to update a
logistic risk prediction model which has been proven not to provide valid
risk estimates in a data setting that is different from the one in which the
model was developed. The logistic re-calibration method is one among many
methods that can be used to update prediction models for use in a new
dataset [18, 53, 79, 82, 89]. It is relevant to discuss why we need to update
a model with poor calibration performance in the situation where we have
a new dataset that could in principle be used to refit the model formula. In
applied settings it is most common to refit a new model rather than to use
an updating method. In certain applied areas this practice has led to a large
number of different prediction models that all predict the same outcome,
and it may be hard to navigate between all these models when the aim is
to choose the model that is best suited for a given setting [22, 61]. For this
reason several studies have advocated the use of an updating method to re-
calibrate an existing model rather than refitting new models [52, 61, 82, 90].
The main argument is that by refitting a model one is potentially loosing
a lot of information regarding the choice of risk factors and their effect on
outcome. Another argument is that the data in which the established model
was developed is usually much larger than the data that is available from
the new data setting, and thus the refitted model is often less generalizable
compared to an updated model that contains information from both data
sets.

The logistic re-calibration method is a quite parsimonious updating method
as it only updates by adding and multiplying the intercept and slope from
the calibration model. Two important limitations are related to this updating
method. First, the method assumes that the difference in effect of the risk
factors on the outcome between the two data sets can be explained by the
same multiplying factor for all risk factors. This assumption simplifies the
problem considerably and one may wonder if it holds, for example, when
the age-gender distributions differ a lot between the two datasets. Secondly,
the logistic re-calibration method does not allow for incorporation of new
biomarkers. This may for example be problematic if the model updated in
calendar time as new important biomarkers may have emerged. Other more
flexible updating methods accommodate these limitations by allowing for
e.g. more flexible updating of the effect of the risk factors on the outcome,
or by allowing incorporation of new biomarkers. However, as these more
flexible updating methods are much more complex it may happen that the
resulting updated prediction models will require another validation analysis.
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4. Re-calibration of risk predictions

Risk prediction from an updated model will inherent variability from both
the prediction model and the updated prediction model, and it is likely that
the variability of the risk estimates will increase with the flexibility of the up-
dating method. Thus, if it is necessary to use a highly complicated updating
method to adapt the prediction model to the new data setting it may be more
sensible to simply refit a model to the new data.
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Chapter 7

Perspectives

1 Extension of the leave-out-out bootstrap estima-
tor

In paper II we defined leave-one-out bootstrap estimates of the expected Brier
score and the expected AUC in right-censored data. In future studies it may
be interesting to pursue this further by considering extension to other per-
formance measures. It is straight forward to extend the estimates to time-
dependent Brier score and time-dependent AUC for competing risks. How-
ever, other extension may be considered such as other scoring rules and the
time-dependent c-index.

2 Re-calibration for survival data and competing
risks

The re-calibration method considered in paper III is limited to a logistic pre-
diction model and a logistic calibration model. However, as censored survival
data and competing risks are common in medical applications it is relevant to
discuss extensions to such settings. In survival analysis without competing
risks the most popular model is the Cox proportional hazards model. Using
the same notation as in chapter 3, the Cox model can be written as

S(t|Z) = S0(t) exp(bZ),

where S0(t) is a baseline survival function and b is a vector of regression co-
efficients. Suppose the Cox model has been fitted in the data Ln which yield
a partial maximum likelihood estimate b̂ of the regression coefficients and
the usual Breslow estimate of the baseline hazard function. Suppose the aim
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is to re-calibrate the resulting prediction model to adjust to the data Vm. Fix
the prediction horizon t > 0 and let b̂Zj be the linear predictor for person j in
Vm. For this setting, one can obtain a re-calibration method that is analogue
to the logistic re-calibration method by fitting a Cox regression model in Vm
with the linear predictor b̂Zj as the only covariate this will yield a calibration
slope b̂ [78, p. 381] [90]. Then, for person j in Vm a re-calibrated risk estimate
can be calculated by multiplying the linear b̂Zj with b̂ and updating the Bres-
low estimator at time t according to this re-calibrated linear predictor. Other
related re-calibration methods have likewise been suggested to re-calibrate a
Cox prediction model in right-censored survival data [20, 90].

However, none of these methods seem to generalize to the case of com-
peting risks. A heuristic method to re-calibrate risk estimates for competing
risk is now discussed. Prediction models for competing risks settings aim at
predicting the cumulative incidence function F1(t|Z) = Pn(T̃  t, h = 1|Z);
here it is assumed that the event of interest is event h = 1. The cumulative
incidence function may be estimates by fitting a cause-specific Cox regression
model for event h = 1 and a cause-specific Cox regression model for event
h = 2. Then one can get an estimate of F1(t|Z) by using the formula

F1(t|Z) =
Z t

0
h1(s|Z) exp

⇣
�
Z s

0
h1(u|Z) + h2(u|Z)du

⌘
ds,

here h1(s|Z) is the cause-specific hazard function for event h = 1 and h2(s|Z)
is the cause-specific hazard function for event h = 2. As this prediction model
relies on Cox regression models it may be possible to use the re-calibration
method for Cox models to re-calibrate estimates of F1(t|Z). However, this ap-
proach requires re-calibration of two Cox models and it is not clear whether
this will result in valid re-calibrated risk estimates. A more sensible approach
is to use a calibration model that regress the risk estimate R1

t,n(Zj) directly to
F1(t|R1

t,n(Zj)). One solution is to use an absolute risk regression model [35]

log
�

F1(t|R1
t,n(Zj))

�
= a(t) + b · log(R1

t,n(Zj)),

with a(t) = log(F0(t)). Parameters of this model can be estimated using
either estimation based on IPCW [73] or pseudo-values for survival data [3].
A re-calibrated risk estimate is then given by

F̂1(t|R1
t,n(Zj)) = F̂0(t) exp

�
b̂ · log(R1

t,n(Zj))
�
,

Future work could examine if this re-calibration approach provides risk-
estimates that have better calibration properties compared to the estimate
R1

t,n(Zj).
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