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Abstract

This PhD dissertation concerns itself with the statistical modelling of
DNA samples quantified by massively parallel sequencing with appli-
cation to forensic genetics. The prevailing method of quantifying DNA
samples found at a crime scene is capillary electrophoresis (CE). CE
quantification determines the amount of DNA fragments of a given
length for a set of short tandem repeat (STR) regions. However, in
recent years MPS has become a viable alternative. MPS offers the abil-
ity to obtain the base compositions of the STR regions, thus, offering
a higher resolution than that of CE. The aim of thesis is to lay the
foundation for the statistical analysis of STR DNA mixture samples
quantified by MPS.

In paper A of the thesis, we classified and modelled the systematic
and non-systematic errors produced by the MPS process. The contri-
bution of this paper is the performed analyses.

In paper B, we took a closer look at a specific type of systematic
error called stutters, as they are by far the most common type of sys-
tematic error.

In paper C, we updated the DNA mixture models used for DNA
samples analysed by CE to account for the results found in papers A
and B. We examined the performance of the MPS model by its ability to
accurately predict the probability of the amplification of alleles failing
to reach a predefined (analytic) threshold.

In paper D, we constructed an evolutionary algorithm (EA) to (1)
find the unknown DNA profile of a DNA sample maximising the prob-
ability of the quantitative information, and (2) approximate the prob-
ability of the evidence using only a subset of unknown DNA profile
combinations.

Lastly, in paper E, we refined the MPS DNA mixture model, in-
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troduced in paper C, and provide a better defined scheme for the re-
duction of strings exhibiting base calling errors. The data reduction
scheme was an extension of a similar idea presented in paper A.



Resumé

Denne ph.d-afhandling omhandler statistisk modellering af resultater
af DNA-undersøgelser af biologiske spor karakteriseret af ’massively
parallel sequencing’ (MPS) med anvendelse i retsgenetik. Den fremhersk-
ende metode brugt til at karakterisere DNA fundet på et gerningssted
er kapillær-elektroforese (CE). Ved CE bestemmes mængden af DNA
fragmenter af en given længde for en række ’short tandem repeat’ (STR)
regioner, som også kaldes mikrosatillitter. Inden for de sidste fem år
er det blevet muligt at foretage DNA-sekventering ved hjælp af MPS.
MPS gør det muligt at bestemme DNA-baserne i STR regionerne i
stedet for blot deres længder. Derved, giver DNA-sekventering ved
MPS en højere opløsning, og derfor mere information, end CE. Målet
med denne afhandling er at ligge det statistiske fundament for anal-
yse af blandinger af STR DNA fra biologiske spor med flere personers
DNA, som er sekventeret med MPS.

I artikel A af denne afhandling klassificeres og modelleres de sys-
tematiske og ikke-systematiske fejl, som produceres nuder MPS-proces-
sen. Denne artikels primærer bidrag, er de udførte analyser. Ydermere
kaster artikel B et nærmere blik på den hyppigste forekommende type
systematisk fejl, kaldet stutter.

I artikel C modificeres DNA-mikstur-modellerne, som blev ud-
viklet til at analysere resultater af analyser med CE. Modellen tager
højde for resultaterne fra artiklerne A og B. Modellens præstationevne
undersøges ved at forudsige sandsynligheden for alleler ikke bliver
amplificeret over en forudbestemt beslutningsgrænse.

I artikel D udvikles en evolutionær algoritme med følgende to mål:
(1) at finde den ukendte DNA-profil, som maksimerer sandsynlighe-
den DNA-sekvensresultaterne for en DNA-prøve, og (2) at tilnærme
sandsynligheden for den bevismæssigevægt ved kun at bruge en del-
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mængde af de ukendte DNA-profilkombinationer.
I artikel E, modificeres MPS DNA-mikstur-modellen introduceret

i artikel C, og metoden, hvormed antallet af DNA strenge som inde-
holder forkert kaldte baser kan reduceres. Reduktionsmetoden er en
udvidelse af en koncept først skitseret i artikel A.
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Background

DNA profiling has become an essential part of the modern judicial sys-
tem. If the DNA sample is of high quantity and contains DNA from
a single contributor, analysis of the sample is trivial. However, DNA
recovered at a crime scene is often found in low quantity, is partly de-
graded, contains DNA from more than one contributor or some com-
bination thereof. When the sample contains DNA from more than one
contributor, it is referred to as a DNA mixture. DNA profiles are cur-
rently mainly created by examining the length of short tandem repeat
(STR) regions by capillary electrophoresis (CE). The analysis and inter-
pretation of such profiles is a mature and on- going field of research.
In recent years, massively parallel sequencing (MPS) has been intro-
duced in forensic genetics. MPS offers the DNA base composition of
the STR regions, i.e. it offers a higher resolution than that of CE. There-
fore, DNA profiles obtained using MPS will offer higher discrimina-
tory powers than those obtained with CE. It follows that developing
an expert system utilizing MPS is of great interest. In order to create
the foundation for such a system, we need to analyse and model the
results of STR sequencing with MPS.

The remainder of Part I will consist of a short introduction to
DNA, STR, polymerase chain reaction (PCR), and DNA investigation
in forensic genetics, calculation of the weight-of-evidence of DNA mix-
ture samples, evolutionary algorithms, and notes on the Poisson-gamma
distribution. The first two sections were heavily based on The Funda-
mentals of Forensic DNA Typing and Advanced Topics in Forensic DNA
Typing: Methodology by John M. Butler [6, 7].
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1 DNA, STR, and PCR

An organisms deoxyribonucleic acid (DNA) contains everything nec-
essary for passing down genetic attributes to future generations. A
DNA strand can be broken down into single units of DNA, called de-
oxynucleotide triphosphate (dNTP), polymerised together. A dNTP
consists of three parts: a nucleobase (nitrogenous bases), a deoxyri-
bose sugar and a phosphate group as from right to left in in Fig. 1.
The nucleobases will take one of four forms: adenine (A), guanine (G),
cytosine (C), or thymine (T). Each of the four bases are attracted to its
complimentary base, A is attracted to T and G to C, and form a base
pair (bp). This attraction is what binds two DNA strands into a double
helix.

Fig. 1: A generalised version of a deoxynucleotide triphosphate. The three parts (from
right to left): the nucleobase (in this case adenine), deoxyribose sugar and phosphate
group. Figure stolen from https://en.wikipedia.org/wiki/Nucleotide.

The human genome contains approximately 3.2 billion bp and is
organised into 22 chromosome pairs, called autosomal chromosomes,
and two sex chromosomes denoted X and Y. A chromosomal location
is called a marker (or a locus) and can be interpreted as a stochastic
variable. The realisations of a marker are called alleles. Examining ho-
mologous chromosomes (chromosomes of the same size containing the
same genetic information) will always yield exactly two alleles; these
alleles can be identical or different, making the marker homozygous
or heterozygous, respectively. The observed combination of alleles on
a given marker is referred to as the genotype and the combination of

4
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1. DNA, STR, and PCR

genotypes across multiple markers is called the DNA profile.

1.1 Short tandem repeats

STR sequences (STRs) are defined as short sequences of 2-7 bp re-
peated one after another (in tandem). The short, repeated sequences
are called motifs. In forensic genetics, the most common motif length
is four, though motifs of length three and five are also regularly em-
ployed. The following sequence is an example of an STR repeating the
motif AATG six times:

AATG AATG AATG AATG AATG AATG.

In order to ease notation, we will condense the sequence to only its
essential information and write:

[AATG]6 .

The structure of STRs can be divided into three distinct categories:
Simple, compound, and complex sequences. Simple STRs contain a
single motif with no inserted or missing bases, compound STRs are
combinations of directly adjacent simple STRs, and complex STRs
refers to the remaining sequences. In order to illustrate the differences,
we give three examples:

Simple: [AATG]6
Compound: [AATG]6 [ATTC]4

Complex: [AATG]6 T [ATTC]4 GGA

A common type of complex STRs are the so called microvariant
sequences. They appear as simple or compound STRs having lost or
gained one (or more) base(s). An example of a microvariant sequence
is the ’9.3’ allele at the HUM-TH01 marker (this microvariant is present
in approximately 34% of the Danish population), which has the follow-
ing structure:

[AATG]6 ATG [AATG]3

The sequence includes nine ’AATG’ motifs and an incomplete motif
of 3 bp, seen as the seventh motif missing an A. That is, the ’.3’ nota-
tion of the allele HUM-TH01 ’9.3’ refers to the number of bases in the
incomplete motif.
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Because of their structure, it follows that the variation between al-
leles of an STR marker can occur for one of the following two reasons:
(1) a difference in the number of times a motif is repeated, and (2)
nucleotide polymorphisms. The former results in alleles of different
lengths, and the latter in alleles of the same length, but with different
sequences, sometimes referred to as isoalleles.

1.2 Polymerase chain reaction

When DNA is found at a crime scene it is usually found in quantities
too small to be analysed directly. Therefore, the DNA sample needs
to be amplified. The polymerase chain reaction (PCR) is an in vitro
method for amplifying DNA, copying marked regions of the DNA
by heating and cooling the sample in a cyclic pattern, in which small
stretches of DNA is double a number of times.

A region is marked using a short DNA fragment, called a DNA
primer. The primer is used as both an identifier of the region and a
point, from which the polymerase enzyme starts to copy the DNA
fragment. Every region has two primers, a forward and a reverse
primer signifying the beginning and the end of a region to be am-
plified. A collection of primers is called a multiplex, and may differ
between manufacturers and technologies. With the current technology,
CE, 10-20 regions are captured, from this point referred to as markers,
while the newer technology this thesis is based on uses between 10
and 30 markers. It is worth noting that the primers are not necessarily
directly adjacent to the STR region, and in such cases naturally does
not just copy the STR region, but also the region between the primer
and the STR region. These regions are called flanking regions.

A single cycle of the PCR process is shown in Figure 2 and can be
broken into the three following stages:

(1) The sample is heated to 94 oC denaturing (separating) the two
DNA strands.

(2) The sample is cooled to 50− 60 oC, allowing the primers to an-
neal (bind) to the single strands of DNA.

(3) The sample is heated to 72 oC, the DNA polymerase extends the
primers copying the DNA strands.

6



1. DNA, STR, and PCR

This process is then repeated a number of times, in forensic ge-
netics typically between 26-30 cycles. If the PCR process was 100%
efficient, then 30 cycles would yield 230 replicates of the sample. The
PCR process efficiency is usually in the range of 0.8 to 0.9.

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC
TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

94 o

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC

TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC

TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG
CTAC

TAAC 

ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC

TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG
ATTG CTAG ATAT TGAG TTTA GGAT ATTC TGAT TCTA CTAC

TAAC GATC TATA ACTC AAAT CCTA TAAG ACTA AGAT GATG

50 - 60

72

C

oC

oC

Fig. 2: The three stages of a PCR cycle: denaturing, annealing, and copying.

1.2.1 Stuttering

The most common artefact of the PCR process is stuttering. We differ-
entiate between two types of stuttering: stuttering and back-stuttering,
occurring as the loss or gain of one (or more) motif(s), respectively. The
act of stuttering creates a stutter strand. We classify a stutter as single,
double, triple, etc., when its has lost (or gained) 1, 2, 3, etc., motifs,
respectively.

Given the DNA strand:

[AATG]6 [ATTC]4 , (1)

an example of the possible single stutter (usually just referred to as a
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stutter) of this strand is:

[AATG]5 [ATTC]4 ,

i.e. the [AATG]6 region of Eq. (1) has lost an AATG motif. A double
stutter would have lost two motifs from the [AATG]6 region, creating
the strand:

[AATG]4 [ATTC]4 .

The cause of stuttering is thought to be the repetitive nature of the
STR regions, and the rate with which it occurs is linked to the repeti-
tiveness of the region, leading to the hypothesis: ’the more repetitive the
region is the larger the probability of creating a stutter strand’.

2 Analysis of the PCR product

After the DNA sample has been amplified it can be analysed. In this
thesis, we exclusively analyse DNA samples investigated by massively
parallel sequencing (MPS). However, before outlining the MPS process,
we will give a short overview of the current state-of-the-art, capillary
electrophoresis (CE).

2.1 Capillary electrophoresis

During the PCR before capillary electrophoresis (CE), primers labelled
with different fluorescent chlorofores emitting light of different wave-
lengths are incorporated into the DNA strands. Thus, each DNA
copy is characterized by its length and the fluorescent colour. The
amplified DNA sample is suspended in a viscous solution and in-
jected into a capillary electrophoresis instrument that attracts the neg-
atively charged DNA molecules by an electric field, causing the DNA
molecules to move forward in the capillary. The polymer solution in
the capillary acts as sieve for the DNA strands allowing smaller DNA
strands to move through the capillary faster than larger strands, and
thus separating the DNA strands according to their length.

When the DNA strands have been separated, they will be detected
by a CCD camera that detects the light that is emitted by the the flu-
orescent dyes attached to the DNA strands that are excited by a laser
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2. Analysis of the PCR product

The amount of light emitted will be proportional to the amount of
DNA passing by the CCD camera. Thus, the signal produced by the
CE process tells us the length and amount of DNA in the sample. The
results are usually compared to a mixture of common alleles present
in the human population for the STR markers (an allelic ladder). The
results are presented as an electropherogram (Fig. 3). The amount of
light representing each DNA allele (i.e. the area under the curve rep-
resenting an allele) is proportional to the amount of DNA, while the
height of a peak is proportional to the intensity of the DNA. When the
electrophoresis is successful. The height of a peak is also proportional
to the amount of DNA.

Fig. 3: An electropherogram of a DNA sample containing DNA from a single contrib-
utor. Figure stolen from http://www.forensicsciencesimplified.org/dna/img/

SInglesourceprofile.png

2.2 Massively parallel sequencing

Massively parallel sequencing (MPS) was first introduced in 2005, as
an improvement of Sanger sequencing [25].

Dependent on the manufacturer the parallelisation of the sequenc-
ing is achieved in slightly different ways, but can all be split into three
stages:

(1) Library building.

(2) Clonal amplification.
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(3) High throughput sequencing.

Library building relies on primers and PCR amplification, but not
on fluorescent dyes. An advantage of MPS is that multiple samples can
be analysed at the same time. The samples are usually distinguished
by adding a ’barcode’ (different technologies utilise different nomencla-
ture, but we will always refer to it as a barcode) to each DNA strands
during the library building stage. Lastly, a key is also added, which is
used for quality control. If the quality of the key-sequence is to low,
then the strand is discard. In short, during library building we attach
primers, barcodes, and keys to the strands and the sample is then am-
plified by PCR. Note because the MPS process is based on PCR, it will
too suffer from stuttering.

The DNA samples analysed in this thesis were sequenced by two
slightly different technologies. The first marketed by Thermo Fisher
Scientific and the second by Illumina. In the first versions of com-
mercial softwares for analysis of MPS STR data, the the sequences
of primers, barcodes, and keys were removed by the software. Fur-
thermore, the software would typically identify errors systematic and
non-systematic, and try to identify the alleles of the sample under
the assumption that the sample contained a single contributor. With
that being said, the methodologies and implementations would dif-
fer from manufacturer to manufacturer, and only defined very loosely.
However, all commercial DNA sequencing devices offers the option to
export the (more or less) raw sequencing output. These are stored in
a FASTQ file. A FASTQ file contains two sets of information for every
strand in the DNA sample. The first corresponding to the sequenced
bases of the strand and the second the quality of the sequenced bases.
The two technologies are capable of sequencing DNA strands up to
approximately 400 bases. Note, that the restriction on the length of the
DNA strands implies that the primers used in MPS needs to be located
relatively close to the STR regions. Thus, some of the primers used for
CE can not be applied for MPS [8]

Systematic errors introduced during clonal amplification and se-
quencing can be broken into three categories:

(1) A base is called incorrectly.

(2) A base is skipped (deleted).
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2. Analysis of the PCR product

(3) A base in inserted.

The errors in items (2) and (3) are usually referred to as indel (short
for insertion and deletion).

In the remainder of this section, a short introduction to both of the
sequencing technologies used in this thesis is given.

2.2.1 AmpliSeq - Thermo Fisher Scientific

The clonal amplification and the high throughput sequencing used in
Thermo Fisher Scientific’s products are emulsion PCR and ion semi-
conductor sequencing, respectively. The following is based on the pa-
per by Rothberg et al. (2011) [28].

The DNA strands are amplified inside a water-in-oil emulsion PCR.
Each water droplet acts as a microreactor containing the PCR reagents
and ideally a single primer coated-bead with a single DNA strand.
Hence, multiple PCRs can be performed simultaneously. After the
emulsion breaks, the beads are covered in thousands (or millions)
of copies of the original DNA strand. The beads are then placed in
picoliter-volume wells containing the sequencing enzyme (DNA poly-
merase).

The ion semiconductor sequencing approach uses unmodified A,
T, G and C – dNTPs and add them sequentially to the growing comple-
mentary DNA strand by flooding the wells. If a complementary dNTP
is introduced to the next unpaired nucleotide in the original DNA
strand, it is incorporated into the complementary strand by the DNA
polymerase, releasing H+ ions. In the case of homopolymer repeats,
multiple nucleotides will be incorporated in a single cycle, which leads
to the release of more hydrogen ions. The release of hydrogen ions is
measured by a hypersensitive ion sensor, which produces an electrical
signal proportional to the amount of released H+ ions.

2.2.2 MPS with Illumina’s technology

Illumina’s MPS implementation involves a bridge PCR followed by
sequencing-by-synthesis. The following is based on the paper by Bent-
ley et al. (2008) [5].

During clonal amplification, an adaptor is attached to each of the
DNA strands. Using these adaptors, one end of the DNA strands are
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attached to a slide (also called a bridge or a flow cell). When the PCR
amplification, starts the other ends of the DNA strands are attached to
the slide and the strands are duplicated. The process is repeated and,
thus, forms clusters of DNA strands.

In sequencing-by-synthesis, the four dNTP’s are fluorescently la-
belled, and all are present in the reaction simultaneously. Thus, a
dNTP is incorporated onto every cluster. Thereafter, the fluorescent
dye is imaged in order to identify the incorporated complementary
base. The dyes are then chemically removed and the process is re-
peated.

2.2.3 Flanking region identification

The marker and STR region of a DNA strand is identified by marker
specific sequences in the flanking regions on either side of the STR
region [13]. The marker specific sequences are called the forward
and reverse flanking regions (flanks) of the STR region, dependent
on whether they occur before or after. If both the forward and reverse
flanks of a sequence (a string) are identified, we assume that the string
represents that that marker. In Fig. 4 the strings s1 and s4 would be as-
sumed to represent the marker, while the remaining sequences would
not.

TACACACATATGCCTAs1 : ATTG ATTG · · · ATTG GTCAGCCGGTGGAATG
GGCCCGACTAGTGGATs2 : CTGT CTGT · · · CTGT TGGTACTGATTGAAAC
GATCCACATATGGCAAs3 : CTTT CTTT · · · CTTT TTTGGCCGATGGGCGA
AATTCACATATGGTCTs4 : ATTG ATTG · · · ATTG CTTTGCCGGTGGACCG
AGCTCTAACTTGTCAAs5 : GCTA GCTA · · · GCTA GTCTGCCGGTGGAGCC

Fig. 4: Five example strings. The red shaded area indicates the STR region. We search
the strings for the forward and reverse flanks: CACATATG and GCCGGTGG, respectively.
If both are found in the string, we say the string represents the marker. If a flank was
found it was shaded using a light blue colour.

The distance from the end of the forward flank (and start of the
reverse flank) of the STR region are known. Thus, when we have iden-
tified the marker, the STR region can easily be found, and the string
can be trimmed to only include the STR region. Furthermore, when
we search for reads of the forward and reverse flanks, we typically also
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2. Analysis of the PCR product

allow for a number of mismatches in the flanking regions. We allow
for mismatches for the following two reasons: (1) the flanking regions
exhibit minor variations, SNPs in the flanking regions, in the popula-
tions, and (2) the MPS process does not always determine bases cor-
rectly. In the analyses performed in this thesis, the number of allowed
mismatches is always set to 1. This results in an increased estimate of
’true’ alleles in a sample, and at the ’cost’ of additional non-systematic
errors.

A number of methods of analysis of MPS STR data have been of-
fered [1, 14, 17, 22, 32–34, 36]. The author has suggested a method
found in the R-package STRMPS available on CRAN (The Comprehensive
R Archive Network: https://cran.r-project.org/). Of these im-
plementations, the STRaitRazor v3 implementation is the fastest and
best maintained [36]. However, STRaitRazor only exports the identi-
fied reads and completely ignores the associated quality. The quality
is not necessarily needed, but it can be used to reduce the number of
unique strings by identifying strings with bases called erroneously.

2.3 Major differences between MPS and CE

The major difference between the MPS and CE methods comes down
to resolution. We will demonstrate some of the consequences of the
added resolution by examining a sample made of 1 ng template DNA
(i.e. the sample contained 1 ng of DNA fragments before PCR am-
plification) sequenced by the Illumina MiSeq FGx using the Illumina
ForenSeqTM DNA Signature Prep Kit Primer Mix A. The sample con-
tained DNA from a single contributor. Furthermore, we will focus on
the vWA marker of the sample as it exhibits all of the characteristics
that we wish to highlight. In order to have a frame of reference, we
will start by showing the DNA sequences aggregated by their allele
length in Fig. 5. That is, a figure equivalent to what we would have
obtained if the sample had been quantified by CE.

Fig. 5 shows one large bar (peak) at 17 with a coverage of 190 and
what is most likely a stutter of the allele at the length 16 with a cov-
erage of 18. This observation coupled with the fact that the sample
contains DNA from a single contributor and is in large quantity, im-
plies that the contributor is homozygous with the genotype (17, 17).

If we do not aggregate the strings by allele length, we have 21
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Fig. 5: The coverage against the allele length of the VWA marker of a single contrib-
utor sample investigated with 1 ng.

unique strings, and of these 15 unique strings have an allele length of
17. The two most prevalent strings are:

TCTA [TCTG]3 [TCTA]14 TCCA TCTA and TCTA [TCTG]4 [TCTA]13 TCCA TCTA,

with coverages 95 and 80, respectively.
What looked like a homozygous marker when the data was aggre-

gated by allele length is in fact a heterozygote marker when looking at
the sequenced strings. This is sometimes referred to as isoalleles (alle-
les with different sequences of the same length). A few consequences
of having isoalleles include:

• Larger proportion of heterozygotes in the population.

• Higher discriminatory power.

• Multiple stutter sequences.
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3. Weight-of-evidence for DNA mixtures

Looking more closely at the last item, the sequenced VWA marker
had two strings with allele length 16:

TCTA [TCTG]3 [TCTA]13 TCCA TCTA and TCTA [TCTG]4 [TCTA]12 TCCA TCTA,

with coverages 10 and 8, respectively. Note that the first stutter se-
quence could be created by either of the two allele sequences (by loos-
ing a TCTAmotif from the [TCTA]14 region or a TCTGmotif from [TCTG]4,
from the first and second allele sequences, respectively), but that the
second stutter sequence can only be created by the second allele se-
quence.

Fig. 6 is an attempt to show the unique strings of alleles with the
same allele length, how they relate to the unique strings one motif
shorter, and their coverage. The abscissa shows the allele length given
an allele length, and each point corresponds to a unique sequence. The
size of the point is proportional to its coverage on the marker. Given a
sequence, A, an arrow pointing away from A to a shorter sequence, a,
should be interpreted as a being a potential stutter of A. The ordinate
is only used for separating the points. The points are always shown
in order of prevalence with the most prevalent point closest to zero
(for each length). The distance between two points depends on the
coverage (relative to the entire marker) and their prevalence within
strings of a given allele length (where ties are resolved randomly).

3 Weight-of-evidence for DNA mixtures

A central question when DNA evidence, E , is presented in court is
the probability of said evidence under two competing hypotheses,
typically referred to as the prosecution and the defence hypotheses,
denoted Hp and Hd, respectively. A way of comparing the two hy-
potheses would be through the odds of the two hypotheses given the
evidence:

P
(
Hp | E

)
P (Hd | E)

.

As it is often difficult to directly calculate the probability of an
hypothesis given evidence, we apply Bayes’ theorem in the numerator
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Fig. 6: A diagram of the unique strings on the vWA marker. Each point corresponds
to a unique string, and its size is proportional to the relative coverage of the marker.
The unique strings are ordered according to their allele lengths at the abscissa and
prevalences at the ordinate (starting with the most prevalent at the bottom).

and denominator, which yields:

P
(
Hp | E

)
P (Hd | E)

=
P
(
E | Hp

)
P (E | Hd)

P
(
Hp
)

P (Hd)
. (2)

That is, we can re-write the (posterior) odds of the two hypotheses
given the evidence, as the ratio of the evidence given the hypotheses,
called the likelihood ratio, times the (prior) odds of the two hypothe-
ses. We will denote the likelihood ratio of the evidence under the two
hypotheses by LR(E ,Hp,Hd) [2, 15, 23].

Of the two quantities on the right-hand side of Eq. (2), we will
focus on the likelihood ratio. In the case of DNA evidence the prior
odds would represent e.g. the prior guilt of a suspect. It is not upto
a statistician (or other expert witness) to interpret these prior odds.
That should be left for the court to determine. Which leaves us with
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3. Weight-of-evidence for DNA mixtures

the likelihood ratio.
From this point, we will assume that E represents quantified DNA

evidence. Quantifying DNA evidence will yields some quantitative
information, y (peak-heights in CE and coverage in MPS), about some
combined genetic information, gc, structurally specified by a hypoth-
esis, Hi. Thus, given the evidence and a hypothesis, we can write the
probability of the evidence given the hypothesis as:

P (E | Hi) = P (y, gc | Hi) = P (y | gc)P (gc | Hi) , (3)

where the last equality holds as the quantitative information is as-
sumed to only depend on the hypothesis, Hi, through the combined
genetic information, gc.

Thus, the probability of the evidence can be factored into two parts:
(1) the probability of the quantitative information given the combined
genetic information, and (2) the probability of the genetic information
given the hypothesis.

When the probability of the evidence is used in a DNA mixture
context, the prosecution and defence may each define some set of
known and unknown contributors reflecting their interpretation of the
DNA mixture evidence. For simplicity, assume that we have a sam-
ple with DNA from two contributors: a victim and a perpetrator with
DNA profiles gv and gp, respectively. The police has found a suspect
with DNA profile gs, who will be put on trail. Thus, the evidence in
this case is E = {y, gv, gs}.

The hypotheses of the prosecution and defence are both relatively
simply defined:

Hp: The suspect is the perpetrator of the crime, gs ≡ gp.

Hd: The suspect is innocent, gs 6≡ gp.

Assuming that the victims DNA profile was known, we can di-
rectly calculate the probability of the evidence, under the prosecutors
hypothesis, as:

P
(
y, gv, gs|Hp

)
= P (y|gv, gs)P (gv, gs) (4)

Note for convenience that we have dropped the hypothesis on the
right-hand side of the equation.
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We cannot do the same for the defence hypothesis. Even though
the stated hypothesis seems simple, we need to properly specify what
we mean by innocent. A convenient option is to assume that the per-
petrator must be someone else from the population. That is, we can
write the probability of the evidence under the defence hypothesis, as:

P (y, gv, gs|Hd) = ∑
g ∈ U

P (y|gv, g)P (g|gv, gs)P (gv, gs) , (5)

where U is the set of unknown DNA profiles in the population.
The innocence of the suspect is reflected in the first term on the

right hand side, where y is independent of gs given g and gv. From a
statistical perspective, we introduce an unknown parameter, g, to ac-
count for what is the unknown fragments of DNA under the defence
hypothesis. Then, as we are not interested in the joint probability of
the evidence and g (given the hypothesis), we remove it from consid-
eration by using the law of total probability.

Because we will be dividing the two probabilities derived in Eq. (4)
and (5) in accordance with Eq. (2), it follows that we can safely ignore
the term P (gv, gs) found in both equations: Note that this holds as
long as assumed relationship between gv and gs is the same under
both hypotheses. It follows that, the likelihood ratio of the evidence
under the two competing hypotheses simplifies to:

LR(E ,Hp,Hd) =
P (y|gv, gs)

∑
g ∈ U

P (y|gv, g)P (g|gv, gs)

This definition can be extended to any number of known and un-
known DNA profiles under the two hypotheses. Assume we have
a hypothesis, Hi, specifying a set of known DNA profiles gki

and a
number of unknown DNA profiles in population. If we further as-
sume that the set of known DNA profiles under both hypotheses is
denoted gK = gkp

, gkd
, we can write the general formulation of the of

the probability of evidence given the hypothesis as:

P (y, gK|Hi) = ∑
g ∈ U

P
(

y|gki
, g
)

P (g|gK) . (6)

Note that the sets U will not only dependent on the chosen popu-
lation, but also the number of unknown contributors specified by the
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3. Weight-of-evidence for DNA mixtures

hypothesis. That is, if the hypothesis states that two contributors were
unknown, then the set U is a set of 2-tuples.

We have until this point suppressed that the term P (y|g) will de-
pend on unknown parameters, θ, describing the uncertainty of the
measuring process. That is, Eq. (6) should be written as:

P (y, gK|Hi, θ) = ∑
g ∈ U

P (y|θ, gk, g)P (g|gK) . (7)

Given the set U , the quantified signal y, and the known profiles gK,
we can estimate θ by maximising Eq. (7). That is, we choose a θ̂ such
that:

θ̂ = arg max
θ

{
∑

g ∈ U
P (y|θ, gk, g)P (g|gk)

}
.

Furthermore, the unknown parameters are maximised separately
under each hypothesis in order to make it as fair to the suspect as
possible.

Lastly, the formulas derived and presented in this section will hold
for samples quantified by both CE and MPS. So where will models
based on the quantified products from the two technologies differ?
The answer has two parts corresponding to the two terms of the prob-
ability of the evidence given an hypothesis, seen in Eq. (3):

(1) Specifying the probability of the quantified information given
the combined genetic information, P (y|gc), will need to be re-
evaluated when changing from CE to MPS.

(2) The probability of the combined genetic information, P (gc|Hi),
will model-wise use the same formulation. Thus, we will ei-
ther assume that the population is in Hardy-Weinberg equilib-
rium [18, 35], or account for the sub-population effects using Fst

correction as described by Balding and Nichols [3]. The only
difference is the observed allele frequencies of the population.

The change in allele frequencies of the population is entirely a con-
sequence of the added resolution of the MPS process. That is, because
we will see an increase in the number of heterozygotes and novel STR
variants, when comparing MPS results with the results obtained with
CE.
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4 Evolutionary algorithms

When analysing a DNA sample with an unknown number of contribu-
tors, we want to be able to answer the following question: Which com-
bination of unknown genotypes is most likely given DNA evidence?
If we have the most likely combination of unknown genotypes, then
we could start searching through a criminal database for matching (or
partially matching) DNA profiles. This is referred to as deconvolution
of DNA mixtures.

Mathematically, the question can be boiled down to finding the
combination of genotypes, ĝ, which maximises the joint probability of
the qualitative and quantitative results, i.e.

ĝ = arg max
g ∈ U

{
P (y|θ, gk, g)P (g|gK)

}
. (8)

Because the space of combinations of unknown genotypes, U , is
discrete, performing the maximisation in Eq. (8) would require that we
examine every possible combinations of unknown genotypes. How-
ever, the size of the set, Um is enormous, and searching through the
space in this way, becomes nearly infeasible when the number of un-
known contributors exceeds three. A way of solving a problem of this
nature, without having to search through every possible state of the
space, is to use evolutionary algorithms (EAs).

4.1 Definition of evolutionary algorithms

Evolutionary algorithms (EA) are group population based meta-heuristic
optimisation methods (a branch of stochastic optimisation) [12, 21, 24,
26], which are based on the Darwinian principle of evolution: Survival
of the fittest. Given a function to be maximised, called the fitness func-
tion, then an EA can be broken down as follows: (1) A population of
individuals is randomly initialised, (2) the fitness of each individual is
evaluated, (3) pairs of individuals are selected for breeding, these are
called parents, (4) crossover is used to combine the parents into one (or
more) off-spring, (5) the off-spring is mutated creating children, (6) the
fitness of the children is evaluated, and (7) the new population is cre-
ated by selecting individuals from the child population (sometimes the
current or parent population is included in this process). Steps (2)-(7)
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4. Evolutionary algorithms

are then repeated until some convergence criteria has been satisfied.
The pseudo code can be seen in Algorithm 1.

Algorithm 1 The General Evolutionary Algorithm.

1: Initialise population.
2: repeat
3: Select parents.
4: Cross pairs of parents.
5: Mutate the resulting off-spring.
6: Evaluate the fitness of the children.
7: Select new population.
8: until Convergence.
9: return Last population.

From the description of the general EA, it follows that in order to
implement an EA, we would need to define the following:

• Representation: How do we define an individual?

• Fitness function: What are we trying to optimise?

• Parent selection: How are parents selected for breeding?

• Crossover: How are parents combined to create off-spring?

• Mutation: How are the off-spring mutated?

• Survivor selection: How are individuals selected for the new
population?

The implementation of these components will be more or less de-
termined by the application. However, depending on the choice of
individual representation, they generally fall into four overarching cat-
egories:

(1) Genetic algorithms (GAs): A string (or vector) over a finite al-
phabet.

(2) Evolutionary strategies (ESs): A real valued vector.

(3) Evolutionary programming (EP): Finite state machines.
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(4) Genetic programming (GP): Trees.

The EA that we defined and implemented as part of this thesis
to solve the problem described in the beginning of this section, is a
variant of a GA. It can be shown that if the implemented genetic op-
erators and selection methods are chosen correctly, then the GAs will
converge. Convergence of GAs cannot be described in terms of rate
of convergence as is the case for most stochastic optimisation meth-
ods, but a GA can be seen as a multistage Markov chain. As GAs by
definition operate in a discrete state space, it follows that the Markov
chain converges if, and only if, it is possible to get from one state to
any other state in a finite number of steps (’state’ in this context refers
to an entire population) [11, 19, 29].

In terms of the operators (genetic and selection), the consequences
are as follows:

• Parent selection: There needs to be a non-zero probability of an
individual to be selected as a parent.

• Crossover: The probability of any combination of the two par-
ents must exceed zero. This should include the two states where
the parents are not recombined. That is, when parent 1 and 2
turn into child 1 and 2, respectively, and when parent 1 and 2
turn into child 2 and 1, respectively, without any exchange of
information.

• Mutation: The probability of mutation is between 0 and 1 (0 and
1 not included).

• Survivor selection: The probability of an individual to survive
to the next generation must exceed zero.

In the remainder of this section, we show a simple maximisa-
tion example using a GA with bit-string representation (known as the
canonical GA) in order to show the steps necessary to implement a
GA.

4.2 Example: The canonical genetic algorithm

Say, we wanted to maximise the function f (x) given by:

f (x) = x| sin(4x)|,
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in some closed interval [l; u].
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Fig. 7: The function f (x) = x| sin(4x)| shown for the interval [−π; π].

The function shown in Fig. 7 exhibits two characteristics, which
could cause problems for a gradient based optimisation method: (1) it
is not differentiable everywhere, and (2) it contains many local max-
ima (sometimes referred to as the function being ’noisy’). We could
overcome the former by using a finite difference method and the latter
by forcing the method to take larger steps in some intervals. However,
we are still not guaranteed that a gradient based method would not
get stuck in a local maximum. Therefore, we will specify a canonical
GA to maximise the function.

Termination

We will terminate the algorithm after a pre-specified number of itera-
tions.

Fitness

Defining the fitness is in this case trivial. We want to maximise f (x),
thus, we will use it as a fitness function.
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Representation

The representation of the individual is in this case determined entirely
by the choice of algorithm (i.e. canonical GA): An individual in the
population is represented as a bit-string of fixed length N. The bit-
string representation is a common choice as it simplifies the genetic
operators (especially mutation).

It follows that an individual, I, can be represented by a vector
belonging to the space {0, 1}N , i.e. as:

I = (i1, i2, ..., iN)
T,

where ij ∈ {0, 1}.
Given the fitness function and the representation, we need a way

of mapping a bit-string to an element of the interval [l; u]. That is, we
want a map, d, satisfying:

d : {0, 1}N 7→ [l; u].

The simplest solution in this instance would be to treat the bit-
string as a binary encoded integer, and then rescale it to the interval
[l, u]. Thus, we define the decoding function, d:

d(I|l, u) = l +
u− l

2N − 1

N

∑
n=1

2n−1in. (9)

It should be clear from the formulation of the decoding function,
d, that by choosing to use a bit-string representation, we discretise the
interval [l, u]. Furthermore, the precision of the discretisation is com-
pletely determined by the size of the interval, (u− l), and the length
of the bit-string, N. That is, if we were maximising f in the inter-
val [−π; π], obtaining a precision smaller than 1/100 would require
N ≥ 10 (if N = 10 the discretisation size is approximately 0.006).

Example 4.1 (Decoding an individual)
Assume that we are interested in the interval [−π, π] and have pro-
posed the candidate solution:

I = (0, 1, 0, 1, 1, 0, 1, 0, 0, 1)T.
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By Eq. (9), the decoded individual is given as:

x = −π +
2π

210 − 1
(0 + 21 + 0 + 23 + 24 + 0 + 26 + 0 + 0 + 29)

= −π +
2π

1024− 1
602

≈ 0.56,

yielding a fitness of approximately 1.35.

Crossover

The crossover operator together with the mutation operator should
be designed to emulate the breeding process. In this context, the
crossover operators role is to splice information from a pair of parents
into two (new) individuals called the children or off-spring. Given
two parents, P1 and P2, we start by drawing a point called the point
of crossover. The point of crossover is drawn from {0, 1, ..., N} at ran-
dom. Given the point of crossover, the parents are split at that point,
and the upper half of a parent is combined with the lower half of the
other parent, creating two children from two parents. A diagram of
the operation is shown in Fig. 8.

P1 = (p11, p12, . . . , p1N)
T

P2 = (p21, p22, . . . , p2N)
Ty

C1 = (p11, . . . , p1j, p2(j+1), . . . , p2N)
T

C2 = (p21, . . . , p2j, p1(j+1), . . . , p1N)
T

Fig. 8: Example of crossover with the point of crossover being j of two parents of
length N creating two children.

Example 4.2 (Crossover)
Assume that we are still interested in the interval [−π, π]. Further-
more, assume that we have two parents:

P1 = (0, 1, 0, 1, 1, 0, 1, 0, 0, 1)T and P2 = (0, 0, 0, 0, 1, 1, 1, 0, 1, 0)T.
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Thus, the decoded parents are approximately 0.56 and -0.88, with
fitness 1.35 and -0.51, respectively.
We draw randomly from the interval [0; 10] the point of crossover 7
and create, as shown in Fig. 8, the two following children:

C1 = (0, 1, 0, 1, 1, 0, 1, 0, 1, 0)T and C2 = (0, 0, 0, 0, 1, 1, 1, 0, 0, 1)T.

When decoded, the two children yield -1.02 and 0.69 with fitness
-0.22 and 1.06, respectively.

Mutation

The mutation operator’s role in the breeding process is to introduce
more diversity into the population. The strength of the bit-string rep-
resentation is the simplicity, with which it makes the implementation
of the mutation operator. Given an off-spring, C, the child is mutated
by running through the bit-string element-by-element and flipping a
bit (changing a 0 to a 1 or vice versa) with probability π(m). For every
element, cj, we do the following:

(1) Draw a random number, u ∼ Unif(0, 1).

(2) If u < π(m), then
mj = (cj + 1) mod 2.

Heuristic investigations have shown that the probability of flipping
a bit should be around 1/N, implying an average of 1 flipped bit per
child. To the best of our knowledge, there is no theoretical result show-
ing that this is indeed the optimal choice of π(m). Furthermore, it is
likely that the optimal choice of π(m) would depend entirely on the
fitness function and choice of representation.

Example 4.3 (Mutation)
Assume that we are still interested in the interval [−π, π], and that
we want to mutate the off-spring given by:

C = (0, 0, 0, 0, 1, 1, 1, 0, 0, 1)T.
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4. Evolutionary algorithms

For each element in C, we draw a random number within the
unit interval and ’flip’ the entry if the random variate is less than 1
/ 10. In this case, we end up flipping entries 4 and 9:

M = (0, 0, 0, 1, 1, 1, 1, 0, 1, 1)T.

Thus, the decoded mutated child is approximately 2.31, with a fit-
ness of 2.49.

Selection

The way we design the selection mechanics should reflect the Dar-
winian principles of evolution: Survival of the fittest. That is, while
the genetic operators mimic breeding, the selection mechanics should
mimic natural selection. The selection mechanics, as seen above, can
be split into two parts: (1) parent selection, and (2) survivor selection.

Parent selection:
The most common choice of parent selection is proportional selection
(also called roulette wheel selection). In proportional selection, the
probability of an individual I j with fitness Fj being selected as a par-
ent is:

π(I j) =
Fj

∑K
k=1 Fk

,

where K is the size of the population. That is, the higher an individ-
ual’s fitness compared to the remainder of the population, the larger is
its probability of being selected as a parent. It follows that the parent
selection very clearly mimics natural selection. In total, we will draw
K pairs of parents creating a child population of size 2K.

Survivor selection:
At this point, we have a population of size K and a child population
of size 2K, i.e. 3K individuals in total. We need to reduce the size
to K. These K individuals could be chosen using proportional selec-
tion, they could be chosen completely at random, or we could use an
entirely different method (e.g. tournament selection, where two indi-
viduals are chosen in some way and battle for survival based on their
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fitness, and the winner survives to the next population and the loser
is removed from consideration).

A consequence of the randomness in both methods (in fact all three
methods) is that the individual maximising the fitness function is not
guaranteed survival. That is, if we find the global maximum in the de-
scritised search space (sometimes called the ’fitness landscape’), we are
not ensured that it stays in the population until convergence. A way
to get around this problem is by keeping a separate super individual.
The super individual represents the individual of largest fitness seen
throughout the runtime of the algorithm.

We have opted for a slightly different method called elitist selec-
tion. In elitist selection, only the K individuals of largest fitness sur-
vive. This is a very strict method, which will not work well in all
fitness landscapes. In fact, it does not comply with the type of sur-
vivor selection needed to have a convergent GA: The probability of
survival should be non-zero. This is why using a super individual is
more common. However, in this case the landscape is very simple and
using elitist selection will be fine.

Results

We wanted to find the maximum of the function f in the interval
[−π; π]. We compared the performance of the canonical GA described
above with that of the optimisation method ’L-BFGS-B’ (a low mem-
ory and bounded version of the BFGS method) using finite difference
to approximate the gradient. The two methods were compared using
the statistical software R and an in-house implementations of the GA
method and the optim function for the L-BFGS-B method.

The GA used to following settings:

• Population size: 5

• Bit-string size: 10

• π(m): 1 divided by the bit-string size.

• Number of iterations: 10

The implemented GAs and the L-BFGS-B method were randomly
initialised 250 times. Note, that randomly initialising a GA implies
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4. Evolutionary algorithms

randomly initialising 5 individuals. Lastly, note that we implemented
two versions of the GA. The first was implemented entirely in R [27],
while the second was implemented in C++, Eigen, and boost [16, 30,
31] through Rcpp, RcppEigen and BH [4, 9, 10]. The implemented GAs
can be found at:

http://github.com/svilsen/simpleGA.
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Fig. 9: Boxplots of the relative errors of the found and true maxima of f for each of
the three methods using 250 simulations.

Boxplots of the absolute relative error between the maxima found
by the methods and the true maximum are shown in Fig. 9. The fig-
ure shows that the medians of the two GA methods are comparable,
at 0.3% and 0.5% for the R and C++ implementation, respectively, (as
would be expected), while the L-BFGS-B method performs poorly with
a median absolute relative error of more than 20%. This is to be ex-
pected as the L-BFGS-B method is highly dependent on the starting
point for noisy functions.

Fig. 10 shows boxplots of the time (in microseconds) each method
took to be executed. The ordinate axis is shown on a log10-scale. We
see that the GA (R) method was on average more than 38 times slower
than the optim and GA (Rcpp) methods. This is again to be expected
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as the optim and GA (Rcpp) functions are implemented in C and C++,
respectively. Furthermore, we saw that the GA (Rcpp) method was
slightly faster than optim method (1.5 times faster on average).
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Fig. 10: Boxplots of the time it took to execute each of the three methods over 250
simulations. Simulations were made on a laptop with an Intel R© CoreTM i5-5300U
2.30GHz processor

5 Notes on the Poisson-gamma distribution

The quantitative results of CE investigations are continuously distributed
and may be modelled according to gamma, normal, log-normal, or
other relevant distributions. MPS data are expressed as counts, as the
coverage of a string is just a synonym for the count of the string. It
follows that the data should be modelled using a count model. The
simplest choice of count model is the Poisson distribution. However,
the Poisson distribution assumes that the mean and variance are equal,
which is an unrealistic assumption in most situations. Therefore, this
section will include notes on the Poisson-gamma distribution, that re-
laxes this assumption. In particular, we will derive the Poisson-gamma
distribution as an overdispersed count model and introduce two vari-
ants of the Poisson-gamma distribution: (1) the Poisson-gamma distri-
bution with a variance of order 1, and (2) the zero-truncated Poisson-
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gamma distribution. This section is based on the book ’Negative Bino-
mial Regression’ by Joseph M. Hilbe (2011) [20].

5.1 The Poisson-gamma distribution

The Poisson-gamma distribution is a mean parameterised negative bi-
nomial distribution. It is commonly interpreted as an overdispersed
count model. The distribution can be derived as a hierarchical model,
in which the intensity of a Poisson random variable is itself a random
variable following a gamma distribution, thereby giving it its name.

Theorem 5.1
If Y is a random variable given by the following hierarchical model:

Y|µ, u ∼ Poisson (µu)

u ∼ Γ (θ, θ) ,

where Γ(α, β) is the gamma distribution with shape-parameter α and
rate-parameter β. Then the marginal distribution of Y is a Poisson-
gamma distribution (negative binomial distribution):

Y ∼ PG(µ, θ).

Proof. The proof follows from direct calculation of the marginal prob-
ability mass function (pmf). The marginal distribution of Y is found
by integrating the joint pmf of Y and u over u:

p(y|µ, θ) =
∫ ∞

0

exp(µu)(µu)y

Γ(y + 1)
θθ

Γ(θ)
uθ−1 exp(−θu)du

=
µy

Γ(y + 1)
θθ

Γ(θ)

∫ ∞

0
exp(−(µ + θ)u)uy+θ−1du

=
µy

Γ(y + 1)
θθ

Γ(θ)
Γ(y + θ)

(µ + θ)y+θ

=
Γ(y + θ)

Γ(y + 1)Γ(θ)

(
µ

µ + θ

)y ( θ

µ + θ

)θ

, (10)

which is the pmf of a Poisson-gamma distribution with mean µ and
overdispersion θ.
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In order to find the mean and variance of a random variable Y
following in a Poisson-gamma distribution, we need the moment gen-
erating function (mgf).

Theorem 5.2
Assume Y is a random variable with pmf as defined in Eq. (10), then
the mgf of Y is given as follows

MY(t) =
(

1− p
1− p exp(t)

)θ

, (11)

where p = µ/(µ + θ) for t < − log(p).

Proof. It follows from direct calculation of the mgf that:

MY(t) = E [exp (tY)]

=
∞

∑
i=0

(
i + θ − 1

i

)
pi(1− p)θ exp(ti)

= (1− p)θ
∞

∑
i=0

(
i + θ − 1

i

)
(exp(t)p)i

= (1− p)θ
∞

∑
i=0

(
−θ

i

)
(− exp(t)p)i

= (1− p)θ (1− p exp(t))−θ ,

where the second to last and last equalities holds by:(
i + θ − 1

i

)
= (−1)i

(
−θ

i

)
,

and
∞

∑
i=0

(
θ

i

)
xi = (x + 1)θ ,

respectively.

We can now find the mean and variance of the Poisson-gamma
distribution:
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Theorem 5.3
Assume that Y follows a Poisson-gamma distribution with mean µ

and overdispersion θ, then the mean and variance of Y are:

E [Y] = µ and (12)

Var [Y] = µ
(

1 +
µ

θ

)
, (13)

respectively.

Proof. Taking the first and second order derivative of the mgf w.r.t. t
and then setting t = 0, we find the first and second order moments of
the Poisson-gamma distribution, as:

M′Y(0) = µ and M′′Y(0) = µ2 +
µ2

θ
+ µ,

respectively.
The mean follows directly from the first order moment, while the

variance follows by inserting the first and second order moments in
the definition of the variance:

Var [Y] = E
[
Y2]−E [Y]2

= µ2 +
µ2

θ
+ µ− µ2

= µ +
µ2

θ
.

As we see from Eq. (13) the variance is dominated by the mean to
the power of two. Therefore, the Poisson-gamma distribution is often
called Poisson-gamma distribution of order 2 (PG2).

In order to estimate the parameters of the PG2 distribution, we
utilise that the PG2 distribution can in certain situations be interpreted
as belonging to the exponential dispersion family.

Theorem 5.4
If the overdispersion parameter is known, then the PG2 distribution
is a member of the exponential dispersion family.
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Proof. Assume that Y ∼ PG2(µ, θ). We rewrite the pmf in Eq. (10) to
be in the exponential dispersion family form:

p(y|µ, θ) =
Γ(y + θ)

Γ(y + 1)Γ(θ)

(
µ

µ + θ

)y ( θ

µ + θ

)θ

=
Γ(y + θ)

Γ(y + 1)Γ(θ)
exp

{
y log

(
µ

µ + θ

)
+ θ log

(
θ

µ + θ

)}
= c(y, θ) exp {ηy + A(µ, θ)} ,

with

η = log
(

µ

µ + θ

)
,

A(µ, θ) = −θ(1− exp(η)),

c(y, θ) =
Γ(y + θ)

Γ(y + 1)Γ(θ)
, and

φ = 1.

If the overdispersion parameter, θ, is known, then the PG2 distri-
bution is a member of the exponential dispersion family.

Because the PG2 distribution is an the exponential dispersion fam-
ily when θ is known, the parameters of the PG2 distribution are typ-
ically estimated by assuming µ = exp(xT β) and alternating between
the two following states:

(1) Given the current estimate of θ: Estimate β by iteratively re-
weighted least squares (IRLS).

(2) Given the current estimate of β: Estimate θ by setting the deriva-
tive of Eq. (10) w.r.t. θ equal to 0 and use the Newton-Raphson
method to find the θ maximising Eq. (10).

A popular alternative to item (2) is to use deviance based esti-
mation equivalent to how the dispersion parameter is estimated in
a quasi-Poisson models.

5.2 The Poisson-gamma distribution of order 1

A downside to the PG2 distribution is that if the mean is large, then
the variance is very large. Therefore, we define the Poisson-gamma
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distribution of order 1 (PG1). The PG1 distribution can be defined
in multiple ways, but the simplest definition is in terms of the PG2
distribution.

Definition 5.1
We say that Y follows a PG1 distribution with parameters µ and γ if
Y follows a PG2 distribution with parameters µ and θ = µ/γ.

That is, the PG1 distribution is interpreted as a PG2 distribution,
where the overdispersion parameter is dependent on the mean. As
with the PG2 distribution, the PG1 distribution gets its name by be-
cause the variance of a random variable following the PG1 distribution
will be dominated by the mean to the power of 1.

Theorem 5.5
If Y ∼ PG1(µ, γ), then the pmf is given as:

p(y|µ, γ) =
Γ
(

y + µ
γ

)
Γ (y + 1) Γ

(
µ
γ

) ( 1
γ + 1

)y+µ/γ

(14)

and the mean and variance of Y are:

E [Y] = µ and

Var [Y] = µ (1 + γ) ,

respectively.

Proof. The proof is similar to the proof of Theorem 5.3.

Even though this formulation of the Poisson-gamma distribution
is very useful, it is worth noting the following: The PG1 distribution
can never be a member of the exponential dispersion family, because
the overdispersion depends directly on the mean. Therefore, the pa-
rameter estimation cannot be split into two parts, contrary to the PG2
distribution, but it has to be performed simultaneously. That is, pa-
rameter estimation is more difficult, and the results are less reliable.
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5.3 The zero-truncated Poisson-gamma distribution

The zero-truncated Poisson-gamma distribution (ZTPG) is useful when
modelling the coverage of strings, which cannot be classified as alleles
and are most likely not systematic errors (primarily stutters). These
needs to be zero truncated as the outcome zero is not possible in this
context. As with the PG1 distribution, the pmf of the ZTPG is found
in terms of the PG2 distribution.

Theorem 5.6
If Y follows a zero-truncated Poisson-gamma distribution, with
mean ω and overdispersion α, then the pmf is given by:

p(y|Y > 0, ω, α) =

Γ(y + α)

Γ(y + 1)Γ(α)

(
ω

ω + α

)y ( α

ω + α

)α

1−
(

α

ω + α

)α . (15)

Proof. The pmf of any zero-truncated discrete distribution can be writ-
ten as

P (Y = y|Y > 0, θ) =
P (Y = y|θ)
P (Y > y|θ) =

P (Y = y|θ)
1−P (Y = 0|θ) .

Eq. (15) is obtained by inserting the pmf of the PG2 distribution in
place of P (Y = y|θ) and P (Y = 0|θ), with θ = (ω, α)T.

As with the PG2 distribution, we need the mgf of the ZTPG to find
the mean and variance.

Theorem 5.7
Assume that Y follows a ZTPG distribution with mean ω and
overdispersion α, then the mgf of Y is given as follows

MY(t) =
(1− p)α

1− (1− p)α

[
(1− p exp(t))−α − 1

]
, (16)

where p = ω/(ω + α) for t < − log(p).
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Proof. The proof is similar to the proof of Theorem 5.2.

From the mgf we can find the mean and variance of the ZTPG.

Theorem 5.8
If Y follows a ZTPG distribution with mean ω and overdispersion α,
then its mean and variance are given by

E [Y|Y > 0] =
ω

(1− (1− p)α)
, and

Var [Y|Y > 0] =
pα− (pα)2(1− p)α − pα(1− p)α

(1− p)2(1− (1− p)α)2 ,

respectively, where p = ω/(ω + α).

Proof. The proof is similar to that of Theorem 5.3 with the first and
second order moments given by:

M′Y|Y>0(0) =
pα

(1− p)(1− (1− p)α)
, and (17)

M′′Y|Y>0(0) =
pα(pα + 1)

(1− p)2(1− (1− p)α)
. (18)

Parameter estimation for the ZTPG distribution is, as with the PG1
distribution, difficult. The parameters could be estimated by max-
imising the parameters simultaneously, using a sophisticated quasi-
Newton method. However, a viable alternative is to use iterative
method-of-moments based estimation:
Assuming yn ∼ ZTPG(ω, α) for n = 1, ..., N, the moment estimates of
ω and α can be found be iteratively solving the equations:

0 =

(
1
N ∑

n
yn

)
(1− (1− p)α)−ω, and (19)

0 =

(
1
N ∑

n
y2

n

)
−
(

1
N ∑

n
yn

)2

− pα− (pα)2(1− p)α − pα(1− p)α

(1− p)2(1− (1− p)α)2 ,

(20)
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for ω and α, respectively.
The parameters that solve these equations can be found using the

Newton-Raphson method. This implies that we need the derivatives
of the two equations. The derivative of Eq. (19) w.r.t. ω is:(

1
N ∑

n
yn

)
(1− p)α+1 − 1

The derivative of Eq. (20) w.r.t. α is very complicated. The most
simplified form is:

− p2ω(α2(s + 1)s + αvs + v2) + p2αvu + pα(αv + ω(u + α))s log(1− p))
α2(ω + α)3v3

where s = (1− p)α, v = s− 1, and u = αs + v.

6 Organisation of the remainder of the thesis

The aim of this section is to outline the relationship between the infor-
mation provided in Part I with the five papers included in Part II of
the thesis.

• Paper A: The aim of the paper was to classify and model the sys-
tematic and non-systematic errors produced by the MPS process,
presented in Sections 1.2.1 and 2.2. Furthermore, the behaviour
of the quality, mentioned in Section 2.2, was also analysed. The
primary contribution of this paper are the performed analyses.
While the analyses are simple, they are extremely useful for the
statistical modelling presented in later papers.

• Paper B: The main objective of the paper was to construct a pre-
dictor of stuttering, introduced in Section 1.2.1, which utilised
the added resolution of the MPS process. The reason for this
construction is two fold: (1) The added resolution can be used
to give more weight to the hypothesis ’the more repetitive the re-
gion is the larger the probability of creating a stutter strand’, and (2)
Stutters are by far the most common type of systematic error,
therefore, understanding stutters in the MPS setting is integral
to the modelling of samples quantified by MPS.
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• Paper C: We update the DNA mixture models used for DNA
samples quantified by CE to account for the results found in pa-
pers A and B. We examine the performance of the MPS model by
its ability to accurately predict the probability of the amplifica-
tion of alleles failing to reach a predefined (analytic) threshold.
The accuracy is assessed by comparing the observed Brier scores
to the expected Brier scores under the assumption that the model
is accurate. The contributions of the paper are the MPS DNA
mixture model and the derivation of the mean and variance the
Brier score.

• Paper D: We constructed an evolutionary algorithm (EA) to solve
the objectives outlined at the end of Section 3 and the beginning
of Section 4. That is, to (1) find the unknown DNA profile (or
combination of unknown DNA profiles) of a DNA sample max-
imising the probability of the quantitative information, called de-
convolution, and (2) approximate the probability of the evidence
using only a subset of the (set of) unknown DNA profile combi-
nations. Furthermore, we show that we can obtain quicker and
more reliable deconvolution, by using residuals of the model to
guide the genetic operators of the EA.

• Paper E: We took a critical look at the MPS DNA mixture model,
introduced in paper C, and refined it by changing the distribu-
tion of the quantitative information and level of stutter recursion
included in the model. Furthermore, we provide a better defined
scheme for the reduction of strings exhibiting base calling errors.
A scheme loosely presented in paper A.

Lastly, it should be noted that the workflow used analyse the all
data in these papers, was implemented in R as the package STRMPS
which is available on CRAN (The Comprehensive R Archive Network:
https://cran.r-project.org/). Furthermore, the evolutionary algo-
rithm used in paper D was primarily implemented in C++ with an
R interface through Rcpp, as the package MPSMixtures, available at
https://github.com/svilsen/MPSMixtures.
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Abstract

We investigated the results of short tandem repeat (STR) markers of dilution
series experiments and reference profiles generated using the Ion PGM mas-
sively parallel sequencing platform utilising the HID STR 10-plex panel. The
STR markers were identified by the marker specific flanking regions of the
STR region.

We investigated the following: (1) The usage of quality measures for iden-
tifying substitution errors, (2) the heterozygote balance and compared it to
that of capillary electrophoresis (CE), (3) the stability of the coverage and the
consequence of IonExpress Barcode adapter (IBA) sampling with decreasing
amounts of template DNA, (4) the hypothesis that the parental longest un-
interrupted stretch (LUS) is a better linear predictor of stutter ratio than the
parent allele length, (5) the use of parental allele length as a predictor of shoul-
der ratio, and (6) the removal of non-systematic erroneous sequences using
dynamic thresholds created by fitting the distribution of the non-systematic
erroneous sequences.

We found that, due to MID sampling, the average coverage on a marker
could not be used as an apt predictor of the amount of template DNA. The
parental LUS was shown to be better predictor of stutter ratio than the parental
allele repeat length, when markers with compound and complex repeat pat-
terns or markers which contained micro-variants were considered, such as
marker TH01 showed R2 of 0.02 and 0.78 for parent allele repeat length and
LUS, respectively. The one-inflated negative binomial method (OINB) and ge-
ometric model that can be used to remove non-systematic noise left on average
1.8 and 1.2 systematic errors per STR system, respectively.
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1 Introduction

In forensic genetics, the STR regions are typically analysed by exam-
ining the length of the regions by capillary electrophoresis (CE) [1, 2].
In recent years, massively parallel sequencing (MPS), also known as
Next- or Second-Generation Sequencing, has been introduced in foren-
sic genetics [3–16]. MPS offers the base composition of the STR re-
gions, i.e. it offers a higher resolution than that of CE. Therefore, DNA
profiles obtained using MPS will offer higher discriminatory powers.
It follows that developing an expert system utilizing MPS is of great
interest. In order to create such a system, we need to analyse and
model the results of STR sequencing with MPS.

As sequencing STRs with MPS is still in its early stages, most of
the research has not focused on modelling the artefacts. The majority
of the research has been focused on (1) showing that STRs could be
sequenced using MPS, (2) analysing the observed STR sequence vari-
ations [3–5, 9–12], and (3) creating methods for easily identifying STR
variants and sample genotyping [6–8, 13, 14, 17]. With the introduction
of the first commercial MPS STR typing kit for forensic genetics, the
Ion TorrentTM HID STR 10-plex from Thermo Fisher, we will soon be
able to add a fourth category: Evaluating STR MPS typing kit [16, 17].

The aim of this article is to establish the foundation for STR MPS
expert systems. With this in mind, we are going to investigate the data
presented in Fordyce et al. (2015) and Friis et al. (2016) by analysing
the following:

(1) The effect of marker and STR region identification on the quality
of reads.

(2) The influence of the average allele coverage on the variability of
the heterozygote balance.

(3) The influence of the amount of DNA on the coverage.

(4) The coverage of stutters and shoulders compared to those of the
parental alleles.

(5) The coverage distribution of the non-systematic erroneous sequences.

The general structure of the paper is as follows: The experiments
and the generated data are presented in Sections 2.1 and 2.2. Section
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2.3 introduces the statistical methods used to analyse the data. Results
of the performed analyses are found in Section 3. A discussion is
found in Section 4.

2 Materials and methods

2.1 Experiments

The experimental data consisted of two parts: Dilution series (2.1.1)
and reference samples (2.1.2). If having a large number of different
alleles was important for the focus of the analyses, e.g. stutter ratios,
the reference samples were used. When assessing the variability of a
quantity across a range of DNA concentrations, e.g. risk of allelic drop-
out, the dilution series data were used. The experimental data used
in this manuscript have previously been analysed by Fordyce et al.
(2015) [16] and Friis et al. (2016) [17]. Furthermore, unless otherwise
explicitly stated, we used the experimental data.

2.1.1 Dilution series experiments

The dilution series experiments ranged from 50pg to 2ng DNA, con-
taining six dilutions approximately halving the amount of DNA each
time, or more precisely each series contained samples at 2ng, 1ng,
500pg, 200pg, 100pg, and 50pg DNA. Four series were created from
two contributors in two experiments. The DNA strands were sequenced
with the Ion TorrentTM HID STR 10-plex and the Ion PGMTM (Thermo
Fisher Scientific) for all four experiments with two experiments per
Ion 318v2 chip, one from each contributor using IonExpress Barcode
Adaptors (IBA) to differentiate between contributors and dilutions.

2.1.2 Reference data

The reference files included results from DNA samples (randomly)
obtained from 207 individuals from the Danish population. In total,
13 pooled libraries were created each containing 16 samples. These
libraries were sequenced on 318v2 chips using the Ion TorrentTM HID
STR 10-plex panel and the Ion PGMTM [17].

2.1.2.1. Ethical considerations
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The work was approved by the Danish ethical committee (H-1-
2011-081).

2.2 Data

The data were provided in a raw FASTQ [18] format with unaligned
sequences and corresponding quality assignments. Preprocessing was
performed by the Torrent SuiteTM software that filtered and trimmed
the sequences in accordance with the default settings of the software.
In particular, the software removed (1) polyclonal beads, (2) wells with
phasing, (3) sequences of general low quality, and (4) trimmed the 3’
end to an acceptable level of quality. For a more detailed description
see the Torrent SuiteTM technical notes [19].

During the MPS workflow, stutters are created. Typically, stutters
occur as sequences four bases shorter or longer (assuming tetranu-
cleotide markers) than the parental allele [20].

Artefacts of the MPS workflow are insertion, deletion, and substi-
tutions. Substitutions result in sequence variations, i.e. sequences of
lengths equal to those of the true alleles, but with one or more base
differences in the sequences. The substitution of a base should ideally
be reflected in the quality of the sequence. The consequence of an in-
sertion or deletion is a sequence one or more bases longer or shorter,
respectively, than the analysed strand. We refer to these as shoulders
(right and left shoulders of insertions and deletions, respectively).

2.3 Statistical methods

2.3.1 Marker and STR region identification

Our analysis was based on unaligned FASTQ files. Therefore, we
needed to identify the STR regions. This was achieved by identifying
the STR region by searching for marker specific forward and reverse
sequences in the flanking regions adjacent to the STR regions [3]. A
sequence was identified if the following four conditions were met:

(1) The forward flank was observed before the reverse flank.

(2) The forward and reverse flanks was observed exactly once.

(3) Only the flanks of a single marker was found.
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(4) No more than one mismatch was observed in the flanking regions.

The sequences corresponding to the reverse complementary strand
were analysed in the same manner as described above by reversing the
forward/reverse flanking regions and finding their complementary.

2.3.2 The quality

When a base is called by the Ion Torrent software, a quality score is also
reported. The quality score is usually defined in one of two different
ways, both of which are based on the estimated probability of error.
The Ion Torrent software uses the Phred score [21]:

Q = −10 log10 P(Error). (A.1)

The probability of error, P(Error) or P for short, was estimated based
on six predictors of local quality and a lookup table [22]. Intuitively,
the quality score should decrease when a base is called erroneously,
however, this is not always observed for miscalled bases. The quality
score tends to decrease with each sequenced base as the risk of error
accumulates with the number of bases sequenced.

Our main interest in the quality lies in its use in identifying base
calling errors. If we knew whether a base calling error had occurred,
we could augment the coverage of the true strand with the coverage
of the erroneous strands or simply remove the erroneous strands from
consideration. However, this information is unavailable. Using the
quality score, Q (or equivalently P), we can assign this a probability.

The simplest approach would be to examine the effect of base call-
ing errors on the quality of the entire sequence. We defined the quality
of an entire sequence as the geometric mean of the base qualities of the
sequence. We used the geometric mean as it is more sensitive to out-
liers than the arithmetic mean. Bases with low quality scores will,
therefore, have a larger impact on the quality of the sequence. Thus,
given a sequence, Si, of length |Si|, its quality is:

Q(Si) =

(
|Si |

∏
j=1

qij

)1/|Si |

, (A.2)

where qij is the quality of the j’th base of the i’th sequence.
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We would like to assess if the quality drops at or around a base sub-
stitution. We did so by comparing the base quality of the most preva-
lent sequence with those of all other unique sequences of given mark-
ers and of specific lengths. Therefore, we needed the aggregate base
qualities of every unique sequence and every base in those sequences.
As with the sequence quality, we used the geometric mean of the base
qualities. Given a set of sequences of equal length, SI = {Si}i∈I for
some set of indices I , we defined the j’th base quality, Bj, of that set
in a similar way as that in Eq. (A.2):

Q(Bj;SI ) =
(

∏
i∈I

qij

)1/|I|

. (A.3)

This is also called the second dimension of quality. If the sequence set
used was clear from the context, the base quality was denoted Q(Bj).
Note that if the sequences were ordered into a matrix, theQ(Si) would
be the row average and Q(Bj) the column average.

In order to examine the difference in base quality between two sets
of sequences (assuming the sequences are of equal length), we define
the quality ratio, QR:

QR(Bj;SI1 ,SI2) =
Q(Bj;SI1)

Q(Bj;SI2)
. (A.4)

In order to assess if two sequence variants, si and sk, reflect the
same underlying DNA sequence, we compute the probability that si is
equivalent to sk. We propose calculating the probability of a random
sequence, Sk, being a variation of the sequence si (using the equiva-
lence notation "≡") by combining the coverage of the two sequences
and the quality in and around the bases, where the two sequences
mismatch. That is, the product of probability ratios, Pk(j), over the
mismatching bases, weighted by our belief, wi, in the sequence, si,
compared to sk, given the following information:

(1) The two sequences are not equal.

(2) We know the set indices, where the two sequences mismatch, IM.

(3) The probability of error at and around the mismatching bases, PIM .

52



2. Materials and methods

Thus, we propose

P (Sk ≡ si|sk 6= si, IM,PIM) = wi ∏
j∈IM

Pk(j). (A.5)

Let ϕi and ϕk be the coverage of sequence i and k, respectively. The
weights, wi, and the probability ratios, Pk(j), were given as:

wi =
ϕi

ϕk + ϕi
,

with Pkh being the h’th error probability of the k’th sequence

Pk(j) =
max
h∈∂(j)

{
Pkh

|h− j|+ 1

}
∑

h∈∂(j)

Pkh

|h− j|+ 1

,

where ∂(j) is the neighbourhood bases of j, i.e. defining j’s neighbours
at distance t:

∂(j) = {h|h ∈ [j− t; j + t]},

where ∂(j) was trimmed if j was close to the start or end of the se-
quence. In accordance with the Ion Torrent workflow, we set t = 5.
That is, ∂(j) is base j and its 10 closest neighbouring bases (5 to each
side).

Eq. (A.5) should be interpreted as the probability of Sk being a
variation of si. It follows that it creates an asymmetric matrix of prob-
abilities

P (Sk ≡ si|sk 6= si, IM,PIM) 6= P (Si ≡ sk|si 6= sk, IM,PIM) .

It should be noted that, as Eq. (A.5) includes weighted probabilities,
the sum over all k’s may differ from 1.

2.3.3 Heterozygote imbalance

We examined the variability of the coverage between the two alleles
of a heterozygous marker by analysing the heterozygote balance, Hb.
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When shown against the average coverage, ϕ̄ (see Eq. (A.8)), we com-
pared it with the heuristic limits 0.6 and 1/0.6 for CE [20]. We defined
the heterozygote balance, Hb, as

Hb =
ϕH

ϕL
, (A.6)

where ϕH and ϕL represent the coverage of the high and low molecular
weight alleles, respectively. Hb contains more information than e.g.
H′b = min{ϕH, ϕL}/ max{ϕH, ϕL} and is therefore preferred [23].

We analysed the frequency and coverage of sequences identified as
originating from the complementary strand to help explain imbalances
in coverage between the alleles of a heterozygous marker. That is,
we were not interested in large differences between the coverage of
forward and complementary strands of a specific allele in itself, but
the difference of the difference between the coverage of forward and
complementary strands of the two alleles on a heterozygous marker.

The coverage pertaining to the forward and complementary strands
were denoted as ϕF and ϕR, respectively. Let HF

b = ϕF
H/ϕF

L, i.e. the het-
erozygote balance where only the coverage of the forward strand was
used. The heterozygote balance was de-constructed as follows:

Hb =
ϕH

ϕL
=

ϕF
H + ϕR

H

ϕF
L + ϕR

L
=

1 +
ϕR

H

ϕF
H

1 +
ϕR

L

ϕF
L

ϕF
H

ϕF
L
=

1 + ϕR
H/ϕF

H

1 + ϕR
L /ϕF

L
HF

b,

dividing by HF
b and taking the logarithm on both sides of the equality

yields the following relation:

log

(
Hb

HF
b

)
= log

(
1 + ϕR

H/ϕF
H

1 + ϕR
L /ϕF

L

)
. (A.7)

If the coverage of the forward and complementary sequences of the
two alleles were perfectly balanced, it would be zero. The left-hand
side of Eq. (A.7) is an approximate measure of the percentage dif-
ference of Hb when the coverage of the complementary strands were
excluded. If the absolute value of the left- and right-hand side were
large simultaneously, we attributed the change in Hb to the difference
in coverage of the forward and complementary strands between the
two alleles on a heterozygous marker.
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2.3.4 Signal stability

In CE, the average peak height/area was used as an estimate of the
amount of DNA [24]. We examined the behaviour of the average cov-
erage as the amount of DNA was decreased. The average coverage of
a marker, m, was given as

ϕ̄m =
∑a ϕma

2
, (A.8)

where ϕma is the coverage of allele a of marker m. The sum in the
numerator is taken over all alleles a on marker m. If the marker was
unimportant or clear from the context, we dropped the subscript.

2.3.5 Stutters

We were interested in the rate of allele stutters. The stutter ratio
(and proportion) has been shown to increase as the parental allele
length increases if the repeat structure of the parental allele is sim-
ple [25, 26]. If the repeat structure is compound, complex, or has mi-
crovariants, stutters must be treated differently than stutters of simple
repeat structures. It has been proposed that the longest uninterrupted
stretch, LUS, is a better predictor of the stutter ratio than parental allele
length [27].

This hypothesis was tested as the sequences are known in MPS and
the LUS information is obtained. We defined the stutter ratio as

SR =
ϕStutter

ϕParent
, (A.9)

where ϕStutter and ϕParent are the coverages of the stutter and parent
alleles, respectively.

Linear regression models using both allele repeat lengths and LUS
as predictors were fitted and compared:

SR = β0 + β1X, (A.10)

where β0 and β1 are marker dependent, and X is either the allele
length or the LUS. We compared the linear model fits using R2-values
for numerical comparison, and we fitted a generalised additive model
[28], a flexible non-linear, smooth model, for visual comparison.
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2.3.6 Shoulders

We were interested in the frequency with which insertions and dele-
tions occurred. In order to analyse this frequency, we examined the
coverage of the shoulders surrounding an allele and defined the shoul-
der ratio analogous to Eq. (A.9), i.e.

SR′ =
ϕShoulder

ϕParent
, (A.11)

where ϕShoulder may refer to both left and right shoulders. In contrast
to stutter, prediction of the shoulder ratio is not commonplace. There-
fore, we examined the relationship between the parent allele lengths
and the shoulder ratios.

2.3.7 Non-systematic errors

We observed a large number of sequences with low coverage. Al-
though these sequences may have been the products of insertions,
deletions, substitutions, or stutters (or even multiple combinations
thereof), we found no association with known artefacts. Therefore,
we categorised them as non-systematic errors or noise.

The simplest method to handle the remaining noise would be to re-
move the sequences as is commonly done with CE, where peaks lower
than 50 RFU (relative fluorescence units) are removed from considera-
tion by applying thresholds.

A naïve approach to create such thresholds is to base it on the
percentage, p, of the total marker coverage or the coverage of the most
prevalent sequence, C, i.e.

Tnaïve = p · C. (A.12)

Applying static thresholds (which may be dependent marker) was not
considered a viable option due to the imbalance in allele coverages
among markers.

We propose fitting the distribution of the coverage with the aim of
recognising more of the systematic errors for the analysis of samples
with DNA mixtures as is seen in the probabilistic models applied to
CE, see e.g. [29]. We fitted the distribution using both a one-inflated
negative binomial model, OINB [30] (an extension of the zero-inflated
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count models [31]) and a geometric model. The OINB model was
defined, as follows:

OINB(x; θ, λ, π) =

{
π + (1− π) f (1; θ, λ) if x = 1
(1− π) f (x; θ, λ) if x > 1,

(A.13)

where x is a positive integer (here the coverage), λ is the mean value
parameter, θ is the shape parameter, π is the mixture parameter, and
f (·; θ, λ) is the zero-truncated negative binomial distribution. The one-
inflation was added to the negative binomial model as preliminary
analyses showed a larger number of sequences with a coverage of one,
when compared to the number of sequences with a coverage of two.

The threshold was then based on a quantile, q, and the theoretical
standard deviation, σ, of the fitted distribution:

T = q + 3σ, (A.14)

where q is based on the proportion p, which was chosen such that
T isolated the extreme values of the distribution, i.e. the alleles and
stutters. Note, that the scalar 3 was chosen arbitrary.

2.3.8 Simulating data samples

When analysing the signal variability, more data is needed. Therefore,
we simulated sequence coverage data in accordance with peak height
simulations made in CE. The simulations were performed using an
extension of the classic binomial sampling scheme [32]. The simulated
data was specifically needed in order to determine possible predictors
of the amount of template DNA. We extended the binomial sampling
scheme as follows: Given n copies of template DNA and the size of
the chip N, the sampling process was broken down as follows:

(1) The amount of DNA extracted for PCR amplification:

n0 = Bin
(
n, πaliquot

)
.

(2) The number of DNA copies in cycle t:

nt = nt−1 + Bin (nt−1, πPCReff) .
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(3) Given nIBA = N/(# of IBA’s), the total number of slots per IBA,
the amount of available slots was defined as:

IBAchip = Γ (nIBA, 1) .

The scale parameter was set equal to 1 as it implies:

E
[
IBAchip

]
= nIBA.

(4) If a IBA contained multiple markers, we defined the number of
available slots per marker using a multinomial distribution as:

MarkerIBA = Mult(IBAchip, πMarkerEff),

assigning the slots to the alleles on a heterozygous marker.

3 Results

3.1 Inclusion of reverse complementary sequences

In order to identify the STR regions, as described in Section 2.3.1, we
created plots similar to those of CE, as seen in Fig. A.1 panel (A),
showing the coverage against the length of the repeat region of marker
D3S1358 of a 2 ng sample. The figure shows that the individual had
genotype 17, 18 at D3S1358, which is the correct genotype. Fig. A.1
panel (B) shows the same marker of the same sample. However, only
reads identified in the forward read direction were included. The fig-
ure points to the genotype of 17, 17. The reduction in coverage of
alleles 17 and 18 were 4, 5% and 94%, respectively (i.e. the fraction of
reads originating from the reverse complementary strands were 4.5%
and 94% for alleles 17 and 18, respectively).

In order to identify similar heterozygote imbalances caused by im-
balances in the coverages of the fractions of forward and reverse com-
plementary strands between the two alleles of a heterozygote, we plot-
ted the left- and right-hand side of Eq. (A.7) against each other for all
autosomal markers in the 10plex, Fig. A.2. We observed large imbal-
ances at the coverages of the alleles of D3S1358 and D5S818. D3S1358
showed extreme values for one of the dilution series for contributor 2.
This imbalance was further illustrated in Fig. A.3 showing the fraction
of complementary strands for one of the extreme values.

58



3. Results

(A)

0

200

400

600

800

15 15
.3

16 16
.2

16
.3

17 17
.1

17
.2

17
.3

18 18
.1

18
.2

18
.3

19 19
.1

19
.3

15
.1

15
.2

16
.1

19
.2

Allele

C
ov

er
ag

e
(B)

0

200

400

600

16 16
.3

17 17
.1

17
.2

17
.3

18 18
.1

19 19
.1

15 15
.1

15
.2

15
.3

16
.1

16
.2

18
.2

18
.3

19
.2

19
.3

Allele

C
ov

er
ag

e

Fig. A.1: Panel (A) and (B) shows all unique sequences of marker D3S1358 of a 2ng
sample, aggregated by repeat length. Furthermore, panel (B) has been restricted to
sequences identified in the forward read direction.
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Fig. A.2: The log-change in Hb when excluding the coverage of complementary
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Fig. A.3: All unique sequences of D3S1358 of a 2ng sample, aggregated by repeat
length and split into sequences identified as belonging to the reverse complementary
strand or not shown in gray and black, respectively.

We, therefore, unless otherwise stated, summed the coverage of
the forward and complementary strands to avoid inducing this kind
of imbalance.

3.2 The quality

In analysing the sequence quality, we did not include the complemen-
tary sequences, as they were sequenced in opposite direction and they
could, therefore, not had been analysed simultaneously with the non-
complementary sequences. In order to understand why, assume we
had sequenced a read and its complementary and recall from Section
2.3.2 that the quality is decreasing with each sequenced base. If we
wanted to aggregate the information, as when calculating the base
quality in Eq. (A.3), then we would have reversed one of the reads and
taking its complementary and, therefore, its quality sequence would
have been reversed. Assuming we reversed the complementary read,
the quality would no longer be decreasing, but increasing; the con-
sequence being that when aggregating the base qualities, the quality
would become constant, as one read had decreasing quality, while the
other had increasing quality.

We excluded the reverse complementary strands when the qual-
ity was analysed. We could have analysed them separately, but the
resulting analysis would have been equivalent to that of the forward
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strands.

3.2.1 The qualities of sequences

The sequence quality of the 40 most prevalent sequences of repeat
length 11 and 12 of the D16S539 marker of a 2 ng sample is seen in
Fig. A.4. In both cases, the most prevalent sequence belonged to the
contributor of the sample and the remaining sequences were classified
as basecall errors of the most prevalent sequence. The figure shows
a uniform median quality across the 40 most prevalent sequences for
both alleles. We have only shown the results of a 2 ng sample, as we
saw similar results for the remainder of samples in the dilution series.
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Fig. A.4: The sequence quality, Q(S), shown for the 40 most frequent sequences of
repeat length 11 and 12 of the D16S539 marker of a 2ng sample. The 40 most frequent
sequences were shown in order of prevalence, called their sting rank.
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3.2.2 The quality ratios of bases

Fig. A.5 shows the base quality ratio for each of the 2-10 most frequent
sequences using the most frequent sequence as reference, i.e. D16S539
allele 12 of a 2 ng sample. The quality ratio dropped at or around the
base, where a substitution had occurred (indicated by the bullet in the
figure).
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Fig. A.5: The base quality against the base index for the two to ten most frequent
(as indicated above each subplot) of repeat length 12 of the D16S539 marker of a 2ng
sample using the most frequent sequence as the reference.
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3.2.3 Probability one sequence is a variation of another (based on
base quality)

As an example, we considered the five most frequent sequences with a
repeat length of 20 at the vWA STR locus. Table A.1 shows sequences
in order of frequency, their coverage, and the number of base call er-
rors when compared to the sequence of the most frequent sequence.

Table A.1: The probability matrix corresponding to the five most frequent sequences
of vWA allele 20 of a 2 ng sample. The sequences s2, ..., s5 each had one mismatch
when compared to s1.

Sk

s1 s2 s3 s4 s5 Coverage

si

s1 – 0.3625 0.3018 0.3187 0.3683 11,626
s2 0.0022 – 0.0237 0.0303 0.0391 102
s3 0.0016 0.0169 – 0.0257 0.0406 77
s4 0.0014 0.0142 0.0157 – 0.0236 56
s5 0.0011 0.0105 0.0124 0.0172 – 52

From the frequencies in Table A.1, s1 is far the most likely true
sequence of the allele (most likely the allele of the victim in the case
of a DNA mixture sample). Now, the question comes up: Are the
remaining sequences, s2, . . . , s5, simply variations caused by errors of
the most frequent sequence? Using Eq. (A.5), we calculated that the
probability of the sequence s2 being variation of s1 was 36.3%. We
could also have asked the converse, i.e. if sequence s1 is a variation of
s2, in which case the probability was 0.2%. The remaining comparisons
can be found in Table A.1, where the value seen in row i of column
k corresponds to the probability of sequence Sk being a variation of
sequence si.

3.2.4 Preferential detection

The quality decreases, or conversely the probability of error increases,
with each sequenced base, which had two consequences due to the
method for identification of the STR regions:

(1) The regions were typically found in the beginning of the read, as
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was illustrated in Figure A.6 showing the average beginning and
end of D16S539 marker identified reads of a 2ng sample with re-
peat length 12.

(2) Longer alleles could be more difficult to detect. Thus, shorter alle-
les were preferentially detected, which could create a coverage im-
balance between heterozygotes far apart from each other in length.
The preferential detection was partly combated by allowing for
mutations in the flanking regions; allowing for more mutations in
the flanking region would make the imbalance smaller, but more
erroneous reads would be retained.
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Fig. A.6: The average base quality of a 2ng sample against the base number. The two
vertical bars show the average beginning and end position of all D16S539 allele 12.
The shaded areas indicate the mean quality plus/minus two standard deviations.

3.3 Heterozygote imbalance

Fig. A.7 shows Hb against the average allele coverage. The dashed
lines were set at 0.6 and 1/0.6 ( [32]). The figure resembles similar
plots from CE, an indication of the common underlying dynamics of
the PCR amplification.

3.4 Signal stability

Plotting ϕ̄ against the amount of input DNA (Fig. A.8) showed that ϕ̄

is not an apt predictor of the amount of template DNA in contrast to
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Fig. A.7: The heterozygote balance, Hb, plotted against the average allele coverage,
ϕ̄. The horizontal dashed lines indicate the heuristic limits 0.6 and 1/0.6, that are
frequently used in CE.

the situation with CE [24]. This is a consequence of IonExpress Bar-
code adapter (IBA) normalisation. As MPS allows for multiple sam-
ples to be sequenced in parallel, the number of samples for each IBA
were approximately equimolecular, thereby, normalising the number
of strands for each IBA.
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Fig. A.8: The average allele coverage, ϕ̄, against the amount of input DNA measured
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By applying the simulation scheme introduced in Section 2.3.8, we
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simulated 1,000 dilution series of six dilutions, halving the amount
of DNA each time with an initial amount of template DNA set at n =

1, 000. Fig. A.9 and A.10 show that the simulated heterozygote balance
had a similar shape as the real data.
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Fig. A.9: The heterozygote balance, Hb, against the amount of input DNA measured
in nanogram for the real data. The abscissa is shown on a log10-scale.
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Fig. A.10: The heterozygote balance, Hb, against the amount of input DNA, for the
simulated data. Both the abscissa and ordinate are shown on a log10-scale.
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3.5 Stutters

Fig. A.11 shows a clear example of the difference between the two
predictors of stutters at TH01. The R2 value for the linear model fitted
using allele lengths and LUS were 0.02 and 0.78, respectively. The
LUS hypothesis was further supported by the non-linear fitted line,
as it was laying directly on top of the linear one. The TH01 marker
was chosen as it very clearly showed the differences between the two
methods due to the microvariant at 9.3. In Fig. A.12 the stutter ratio is
plotted against the parent allele length and LUS for the vWA marker.
The R2 values for the vWA marker were 0.58 and 0.64, respectively,
using parental allele length and LUS as predictors. The remainder of
the markers can be seen in Fig. A.13 and A.14 for allele lengths and
LUS, respectively.
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Fig. A.11: The stutter ratio against the allele length and LUS, respectively, of the
TH01 STR marker. The dashed and solid lines represent linear model and generalised
additive model fits, respectively. The boxplots were constructed such that the boxes
showed the first, second, and third quartiles (Q1, median, and Q3, respectively), while
the whiskers were defined as Q3 + 1.5×IQR and Q1 - 1.5×IQR for the upper and
lower whisker, respectively (IQR = Q3 − Q1). Any point outside these whiskers
were classified as outliers and indicated by dots. All boxplots followed the same
structure [33].
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Fig. A.12: The stutter ratio against the allele length and LUS, respectively, of the
vWA STR marker. The dashed and solid lines represent linear model and generalised
additive model fits, respectively.

When comparing the remaining markers of the two figures, we saw
a clear difference in the non-linear fitted (solid) lines for markers with
a compound, complex, and micro-variant repeat structure. The LUS
had a clear advantage as a linear-predictor of stutter-ratio compared
to that of allele length, with the markers D3S1358 and TH01 showing
the biggest improvement. However, as the markers in the HID STR
10-plex are fairly short and simple, the gain is not as large as it may
be expected for more heterogeneous STRs.

3.6 Shoulders

Shoulders can be observed as sequences, one base shorter or longer,
depending on whether a deletion or an insertion has occurred, respec-
tively. The shoulders of e.g. allele 18, seen in Fig. A.1 panel (A) had
the sequences of lengths 17.3 and 18.1, referred to as the allele’s left
and right shoulder, respectively.

As in the case of stutters, we were interested in the rate at which a
shoulder was observed and it the length of the allele had any impact
on this rate. We measured this rate by the shoulder ratio defined in Eq.
(A.11). Plotting the shoulder ratio against the allele length (Fig. A.15)
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Fig. A.13: The stutter ratio against the allele length for all markers in the HID STR
10 plex. The dashed and solid lines represent linear model and generalised additive
model fits, respectively.

showed that the shoulder ratio varied among the markers, though it
was fairly stable for all allele lengths.

3.7 Non-systematic errors

The total number of drop-outs, drop-ins (total as well as sequence vari-
ations, stutters, and shoulders), adjusted drop-ins, marker drop-outs
for the OINB, geometric, and naïve methods can be seen in Table A.2.
The OINB method had two drop-outs and no adjusted drop-ins, while
the geometric method had both a drop-out and an adjusted drop-in.
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Fig. A.14: The stutter ratio against the LUS for all autosomal markers in the HID STR
10 plex. The dashed and solid lines represent linear model and generalised additive
model fits, respectively.

The naïve threshold at 0.05 had no drop-out and adjusted drop-in,
whereas the threshold of 0.1 had 12 drop-outs and no adjusted drop-
in.

The OINB and geometric method retained on average 1.83 and 1.20
systematic errors per marker, respectively, for potential use in DNA
mixture samples. The naïve thresholds at 0.05 and 0.1 on the other
hand retained only 0.14 and 0.0048 systematic errors per marker, re-
spectively. It follows that if the systematic errors are shown to be use-
ful in MPS, as they are in CE, we would prefer the OINB or geometric
method.
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Fig. A.15: Boxplots of the shoulder ratio against the parent allele length.

Table A.2: The number of drop-outs, drop-ins (total, sequence variants, stutters, and
shoulders), adjusted drop-ins, and total marker drop-outs for thresholds created using
the OINB, geometric distributions, and naïve method (at 5% and 10%).

Drop-out Drop-in
Sequence variant Stutter Shoulder Adjusted Marker

Drop-in Drop-in Drop-in Drop-in Drop-out

OINB 2 379 42 196 141 0 0
Geometric 1 250 32 156 61 1 0
Naïve 5% 0 30 0 9 21 0 0
Naïve 10% 12 1 0 0 1 0 0
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4 Discussion

The extreme strand bias presented in Section 3.1 and illustrated in
Fig. A.1 and A.3 was mainly included as a warning for others, as we
could not specifically pinpoint the cause of this bias from the data
at hand, and we have not observed a similar extreme in other data.
Our best guess is that during the PCR process, secondary structures
were created in one sequence, which were not created in the other
sequence, and that these secondary structures were difficult for the
polymerase to pass during sequencing, see e.g. [34, 35] for a more
thorough discussion on this matter.

The usefulness of the sequence quality, Q(S), is debatable because
of the shear number of bases in a sequence and the fact that our
method of STR identification restricts the number of sequences based
on the quality, which is why the more complicated asymmetric proba-
bility is introduced.

It is clear from the analysis of stutter ratio that the LUS is a better
linear predictor than the allele repeat length, see Fig. A.13 and A.14.
However, the markers from the HID STR 10-plex panel are, compared
to markers used in CE, short and the repeat patterns are not as compli-
cated. Thus, the hypothesis should be investigated using compound,
complex, and micro-variant STR markers.

The plot of the heterozygote balance against the average allele cov-
erage (Fig. A.7) resembles its counterpart in CE. However, to get a
clearer picture, more data is needed.

A simple consequence of IBA normalisation (and subsequent nor-
malisation) implied that we were unable to estimate the amount of
template DNA using the average coverage directly. Calculating the
probability of drop-out, therefore, becomes more complicated.

By examining Fig. A.9, A.10, and A.16, we saw that the variation
of the heterozygote balance increased as the amount of template DNA
was decreased. We, therefore, hypothesise that the standard devia-
tion of the heterozygote balance could be used as an estimate of the
amount of template DNA. The increase in standard deviation is a di-
rect consequence of binomial sampling and, therefore, the hypothesis
should hold for both MPS and CE. Furthermore, if the distribution of
the coverage was assumed to follow a gamma distribution, as the peak
height in [29], the hypothesis would follow directly from the choice of
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distribution. This hypothesis was not tested here, but is offered for
future research.
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Fig. A.16: The standard deviation of the heterozygote balance against the amount of
input DNA, for the simulated data. Both the abscissa and ordinate are shown on
log10-scales.

When applying the noise threshold, we aimed to preserve some of
the systematic errors as we assume that they will be useful as they are
in CE when mixture samples are going to be investigated with MPS in
the future.
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Abstract

Stutters are common and well documented artefacts of amplification of short
tandem repeat (STR) regions when using polymerase chain reaction (PCR)
occurring as strands one or more motifs shorter or longer than the parental
allele. Understanding the mechanism and rate by which stutters are created
is especially important when the samples contain small amounts of DNA or
DNA from multiple contributors. It has been shown that there is a linear
relationship between the longest uninterrupted stretch (LUS) and the stutter
ratio. This holds if there is only a single type of stutter variant. However, with
massively parallel sequencing (MPS), we see that alleles may create different
stutters corresponding to stuttering of different parts of the parental allele.
This calls for a refinement of the LUS concept.

We analysed all uninterrupted stretches, here called blocks, and identified
the block from which the stutter originated. We defined the block length of
the missing motif (BLMM) as the length of the identified block. We found
that the relationship between the stutter ratio and BLMM was linear using a
simple system of recurrence relations. We found that the mean square error
decreased by a factor upto 17.5 for compound and complex autosomal markers
when using BLMM instead of LUS.
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1 Introduction

DNA at a crime scene is often found in very small quantities. In foren-
sic genetics, short tandem repeat (STR) regions are amplified using a
polymerase chain reaction (PCR) [1]. A common artefact of amplify-
ing STR regions is stuttering [2–7]. When a DNA strand is copied, the
polymerase enzyme can skip (or repeat) a motif, denoted stutter (and
back-stutter). As stuttering is a common artefact, it follows that pre-
dicting the rate of stuttering is important for interpretation of DNA
profiles. Because massively parallel sequencing (MPS) also depends
on the PCR process, it follows that understanding and predicting the
rate of stuttering is important for the modelling and interpretation of
MPS STR DNA mixture samples.

We measured the rate of stuttering by the stutter ratio (or stutter
proportions), defined as:

SR =
ya

yA

(
or SP =

ya

yA + ya

)
, (B.1)

where ya and yA are the coverages (the MPS analogue of the peak
height/width in capillary electrophoresis (CE)) of the stutter and parental
allele, respectively.

The hypothesis is that the more repetitive a strand is, the more
likely the PCR process is to stutter (and, thus, to increase the stutter
ratio). The simplest measure of the repetitiveness of a strand is its
length. It has been shown that the relationship between the stutter ra-
tio and the allele length is linear when the structure of the STR region
is simple [4, 7]. However, this is not necessarily true if the structure
is compound or complex. This led to the introduction of the LUS, de-
fined as the longest uninterrupted stretch of repeated motifs within the
allele [4]. Thus, the LUS works under the same hypothesis as the allele
length. However, it takes into account that the probability of stutter-
ing ’resets’ when changing from one motif to another in compound or
complex strands. It has been shown, that the relationship between the
stutter ratio and LUS is linear in (1) capillary electrophoresis [4, 6–9]
and (2) massively parallel sequencing (MPS), if only the most promi-
nent stutter was considered [10].

With MPS, we can differentiate between different stutters of the
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same parental allele. Consider the allele

[AATG]10[ACTT]4, (B.2)

and assume that the following two possible stutters of the allele were
observed:

[AATG]9[ACTT]4 and [AATG]10[ACTT]3.

Note that all strands written in this paper follows the notation recom-
mended by the ISFG DNA commission [11].

As they are both possible stutters of Eq. (B.2), they have the same
LUS (i.e. 10). However, it is hypothesised that the stutter ratio of the
second stutter would be much smaller than that of the first stutter as
the second stutter has lost a motif from a much shorter stretch of the
allele.

We propose a new predictor of stuttering, which we call the block
length of the missing motif (BLMM). The BLMM determines the length
of the stretch from where a motif has been lost. Thus, the BLMM
works according to the same principles as the LUS but utilises the extra
information obtained from sequencing of the DNA sample. We have
restricted the analysis in this paper to consider only single stutters, but
note that the BLMM concept could be extended to any type of stutter.

2 Materials and methods

2.1 Data

DNA was extracted from blood samples and buccal swabs collected on
FTA cards from 366 individuals. DNA libraries were built using the
ForenSeqTM DNA Signature Prep Kit (Illumina R©) Primer Mix A and
B. DNA sequencing was performed with MiSeq FGx (Illumina R©) [12].
The genotypes of each sample was found by using a heterozygote
threshold, for the autosomal markers (and X chromosome markers
in samples belonging to female contributors), of 40% of the maximum
coverage of the marker. Furthermore, we used a minimum detection
threshold of 10 for the called allele sequenced (stutter sequences could
have coverage as low as one).

Allele sequences were excluded from the analysis if they were the
parent or stutter of another allele sequence (i.e. if difference between
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two heterozygotes was exactly one motif). We also excluded stutter
sequences with multiple parental alleles for reasons explained in sec-
tion 2.3. In total 68,045 stutter sequences were identified of those 2,838
were removed because the allele sequence was a parent or stutter of
another allele sequence and 768 were removed because the stutter had
multiple identified parents leaving 64,439 observations.

2.2 The block length of the missing motif - BLMM

The definition of block length of the missing motif (BLMM) is based
on the same hypothesis underlying allele length and the longest unin-
terrupted stretch (LUS). Hence, the underlying hypothesis is that the
more repetitive a stretch of the strand is, the more likely the PCR pro-
cess is to stutter. In order to define the BLMM, we first need to define
’a block’.

2.2.1 Block

We define a block of a motif, m, of an allele, A, as an uninterrupted
stretch of m in A, such that it is not fully included in another block.
We see the blocks of an allele as the identifiable points from which a
motif could have stuttered, and the length of the block as having an
influence on the probability that the PCR process stutters. Thus, the
BLMM is an extension of the LUS concept. The LUS is equivalent to
the longest block of the parent allele.

Figure B.1 shows the blocks of the string (also shown in Eq. (1.2)):

[AATG]10[ACTT]4,

and will in the remainder of this subsection describe the five blocks
found in the string.

AATG AATG AATG AATG AATG AATG AATG AATG AATG AATG ACTT ACTT ACTT ACTT 

AATG AATG AATG AATG AATG AATG AATG AATG AATG AATG

 ATG AATG AATG AATG AATG AATG AATG AATG AATG AATG A
ACTT ACTT ACTT ACTT

TG AC
G ACT

(1)

(2)

(3)

(4)

(5)

4 8 12 16 20 24 28 32 36 40 44 48 52 56

Sequence:

Blocks:

Fig. B.1: A diagram of the blocks contained in the sequence [AATG]10[ACTT]4 and their
relation to the sequence. Every vertical solid arrow constitutes the start of a block and
the dashed arrow of the same length indicates the end of the block.
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The two first blocks seen in the figure are easily obtained:

(1) [AATG]10: a block with the motif AATG, starting at base one, con-
taining 10 repeats of AATG, and

(2) [ACTT]4: a block with the motif ACTT, starting at base 41, (4 · 10 +
1), containing four repeats of ACTT.

The number of repeats contained in a block is the same as the length
of the block. Furthermore, it is indicated by the subscript. Thus, the
block [AATG]10 has the length 10.

By rewriting the strand [AATG]10[ATTC]4, as

A[ATGA]10[CTTA]3CTT,

we identify the third block:

(3) [ATGA]10: a block with the motif ATGA, starting at base two, con-
taining 10 repeats of ATGA.

Notice that the stretch [CTTA]3 is by definition not a block, as it is fully
contained within the [ACTT]4 block. Thus, if a stutter was created by
loosing a CTTA motif, it would not be identified. However, it would be
identified as a lost ACTT motif, because the stretch is fully contained in
the [CTTA]3 block. Furthermore, the [ATGA]10 block is entirely depen-
dent on the A at the 41st base. If the A was not there, we would just
have a [ATGA]9 stretch, which would be fully included in the [AATG]10

block.
Working with compound (or complex) STRs, we will always be

able to find short blocks between two directly adjacent blocks. As
illustrated in Figure B.1, we found two blocks of length one when
moving from the [AATG]10 block to the [ACTT]4 block:

(4) [TGAC]1: a block with the motif TGAC, starting at base 39, (4 · 10−
1), containing a repeat of TGAC, and

(5) [GACT]1: a block with the motif GACT, starting at base 40, (4 · 10),
containing a repeat of GACT.

Note that because we assume a stutter to be exactly one motif
shorter, we are only interested in blocks with motifs of the same length
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as the region. In the example above, the region contained tetranu-
cleotides. Thus, we searched for motifs of length four. If the region in
question contained tri- or penta-nucleotides, we would have searched
for motifs of length three and five, respectively.

Given a stutter, all that remains to be determined is which motif
is missing and from which block it originated when comparing the
stutter sequence to a potential parental allele.

2.2.2 Determining the missing motif and the BLMM

In order to determine the missing motif and identify the block to find
its BLMM, we aligned the potential stutter to a potential parental al-
lele. We defined a stutter as a string missing exactly one motif when
compared to its parental allele. In the case of a tetranucleotide, a po-
tential stutter would be missing four consecutive bases when com-
pared to the parental allele.

When aligning the stutter sequence, a, with a potential parental
allele, A, the two strings are matched from left to right. When a no
longer matches A, a gap is opened and extended. If the number of
consecutive extensions is equal to the motif length (in that region), A
is classified as a parent of a. It follows that from aligning the stutter
sequence with a potential parental allele, we get a missing motif and
the block from which it originated. However, because of the way the
alignment is performed, it is in some cases only possible to determine
the missing motif up to a shift of the motif. As an example, assume
that the parental allele, A, is given by the string in Eq. (1.2), and as-
sume that we have observed the following stutter sequence, a:

[AATG]9[ACTT]4. (B.3)

Stutter sequence a could have been created by loosing a motif from
one of the following two blocks:

(1) [AATG]10 starting at base 1 ending at 40, or

(2) [ATGA]10 starting at base 2 ending at 41.

As illustrated in Figure B.2, when aligning from left to right, the stutter
would match the parental allele until the 37th base. At this point, the
parental allele has an ATGA motif, which did not appear in the stutter
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sequence. We would, therefore, identify ATGA as the missing motif in
both cases. Thus, the motif can in some cases only be determined upto
a shift of the motif.

AATG AATG AATG ACTT ACTT
403632 44 48

... ...

AATG AATG A...

ATG A

Stutter sequence

Potential parent allele

Identified missing motif:

CTT ACTT ...

Fig. B.2: The stutter sequence, [AATG]9[ACTT]4, aligned to a potential parent,
[AATG]10[ACTT]4. The two sequences match up until the 37th base, at which point
the potential parent has an additional ATGA not found in the stutter sequence.

Given the missing motif and its position, we can find the block
from which the missing motif (or a shift thereof) stuttered. The BLMM
is the length of this block, thereby, giving it the name: The block length
of the missing motif.

In the example above, the BLMM would be 10 for both of the stut-
ters. In fact, whenever a missing motif can only be determined upto
a shift, all of the shifted blocks from which the motif could have orig-
inated would always have the same length. Resulting in the same
predictor for our regression model.

In order to showcase the difference between BLMM and LUS, we
return to the example used in the introduction. That is, let the parental
allele be defined by:

[AATG]10[ACTT]4

with two observed stutter sequences defined by:

[AATG]9[ACTT]4 and [AATG]10[ACTT]3.

The LUS of the parental allele is 10. Thus, the LUS assigned to
both stutter sequences is 10. However, when the stutter sequences are
aligned to the parental allele from left-to-right, we will for the first stut-
ter sequence identify a missing ATGA from the [ATGA]10 block and for
the second stutter sequence identify a missing ACTT from the [ACTT]4
block. Yielding BLMMs of 10 and 4, respectively. The hypothesis is
that the stutter sequences identifying a missing BLMM of 10 would
have a higher rate of stuttering than those with a missing BLMM of 4.
Therefore, the sequenced stutters of the larger BLMM would result in
a larger coverage.
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2.3 Stutters with multiple potential parents

Above, we only considered the cases where the potential stutter has
a single potential parent. However, if an individual had two different
alleles of the same length (i.e. heterozygous in MPS, but homozygous
in CE), or if the sample contained DNA from multiple contributors,
then a stutter sequence could have multiple potential parental alleles.

To illustrate this point: Assume that we have two alleles A1 and A2

with equal lengths and given by:

[AATG]10[ACTT]4 and [AATG]9[ACTT]5.

Then the stutter sequence a given by [AATG]9[ACTT]4 would have re-
ceived stutter product from both A1 and A2, as depicted in Figure B.3.
The BLMM of a given A1 would be 10 while the BLMM of A2 would be
5. The difference in BLMMs could potentially be large and, thus, the
difference in stutter ratio could be large. In fact, the observed coverage
of a would have been affected by stuttering from both of the parental
alleles. Thus, the coverage would be inflated when compared to stutter
sequences with a single parental allele. Therefore, we removed such
observations from consideration.

[AATG]9[ATTC]4

[AATG]10[ATTC]4 [AATG]9[ATTC]5

p1 p2

Fig. B.3: Sketch of the two alleles of equal length creating the same stutter product,
where p1 and p2 are probability of the stutter being created from allele [AATG]10[ACTT]4
and [AATG]9[ACTT]5, respectively.

2.4 Modelling stutter ratio

We modelled the relationship between the BLMM and the stutter ratio
using a linear model with intercept through (1, 0) in accordance with
the derivation seen in Appendix A. That is,

SR = β · (BLMM− 1). (B.4)
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Note by subtracting one from the predictor we have moved the
intercept to the origin, which is equivalent to the predictor intercepting
the abscissa axis at 1.

As the MPS process suffers from very large marker imbalances,
we also examined the effect of marker dependence on the slope. We
further note that in forcing the intercept of the model through zero,
we avoided the problem of predicting any negative stutter ratios.

Because of the very large amount of data (see Section 2.1), even
minute differences in marker specific parameter estimates will be sta-
tistically significant. We are interested in assessing the predictive ca-
pabilities of the models. Therefore, we compared the models using
cross validation (CV). The most common choice of CV is k-fold CV
with k equal to 5 or 10, see e.g. [13, Chapter 7]. However, we chose a
special case of k-fold CV: the leave-one-out cross validation (LOOCV)
method. We chose to use LOOCV, because if we had chosen k-fold CV,
then we would have needed to ensure that every motif and marker
was included in every training set. This implies that the training and
test sets would not have been created randomly and, thus, defeating
the purpose of using k-fold CV. The LOOCV method works as follows:
(1) use one data point as the validation set, while using the remaining
data as a training set, (2) calculate the squared validation error, and (3)
repeat (1)-(2) for every data point in the data set. The LOOCV error is
then the average squared validation error.

3 Results

3.1 Comparing LUS and BLMM as predictors of stutter ratio

At the left-hand side of Fig. B.4, the stutter ratio is plotted against the
LUS. We see large difference in stutter ratios between stutter sequences
with the same LUS. Looking more closely at this difference, the larger
stutter ratios corresponded to stutter sequences having lost a motif
from the longest uninterrupted stretch of the parental allele. While
the smaller stutter ratios corresponded to stutter sequences which had
lost a motif from a region other than the longest uninterrupted stretch,
thereby, splitting the plot into two parts. Comparing the left- and right-
hand side of the figure, we see that this split could be explained by the
BLMM. This is the case for all markers with compound or complex
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motif structures. Similar plots for the remaining markers can be found
in the supplementary material.
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Fig. B.4: Stutter ratios of D13S317 plotted against the longest uninterrupted stretch
(LUS) and the block length of the missing motif (BLMM) shown on the left and right,
respectively. The points are shaded according to the motifs missing from the stutter
sequence when compared to those of the parental allele. The dashed and solid lines
correspond to the models with (1) only a marker specific intercept, and (2) marker and
motif specific intercepts, respectively. Note that a jitter has been added to visualise
the density of the points.

The colouring in Fig. B.4 was made according to the missing motif,
when sequences of the stutter sequence were compared to that of the
parental allele. We see that the missing motif could explain the split
seen in the LUS. Fig. B.5 shows a similar split when using BLMM as
a predictor, but that split is much less pronounced when compared to
that of the LUS.

Thus, we also considered models of the form:

SR = βMissing motif · x,

where x is either (BLMM− 1) or (LUS− 1). The slope now depends
on the missing motif. Furthermore, we also considered a marker de-
pendent version of this model, i.e. SR = βMissing motif, Marker · x.

Table B.1 shows the LOOCV errors for each of the four models
using both LUS and BLMM as predictors. We see that the model with
one common slope for all markers had by far the largest error, and that
the model with marker and motif dependent slopes had the smallest.
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3. Results
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Fig. B.5: Stutter ratios of D12S391 plotted against the longest uninterrupted stretch
(LUS) and the block length of the missing motif (BLMM) shown on the left and right,
respectively. The points are shaded according to the motifs missing from the stutter
sequence when compared to those of the parental allele. The dashed and solid lines
correspond to the models with (1) only a marker specific intercept, and (2) marker and
motif specific intercepts, respectively. Note that a jitter has been added to visualise
the density of the points.

That was expected as these are the least and most flexible models,
respectively.

Table B.1: The leave-one-out cross validation (LOOCV) error linear models with the
slope dependent on nothing, the missing motif, the marker, and both missing motif
and marker, using BLMM and LUS as predictors.

LOOCV Odds
(LUS / BLMM)

Model BLMM LUS

SR = β · x 1.54× 10−3 2.99× 10−3 1.94

SR = βMissing motif · x 1.02× 10−3 1.95× 10−3 1.91

SR = βMarker · x 7.42× 10−4 2.55× 10−3 3.44

SR = βMissing motif, Marker · x 5.20× 10−4 1.12× 10−3 2.15

Note that the LOOCV was only averaged across the markers with compound and

complex repeat structures.

Furthermore, when creating the LOOCV, we restricted the analysis
to the compound and complex markers, because there is no difference
between the LUS and BLMM for markers with simple repeat struc-
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Paper B.

tures. We defined the marker as simple if the LUS was equal to the
allele length, and, therefore, excluded the following markers: CSF1PO,
D5S818, D7S820, D10S1248, D13S317, D17S1301, D18S51, D20S482,
PENTAD, PENTAE, TPOX, DXS8378, HPRTB, DYS391, DYS438, DYS439,
DYS460, DYS549, DYS576, and DYS643.

In all four cases, the BLMM models had a smaller LOOCV than the
LUS models. Furthermore, we noticed that the LOOCV of the BLMM
model dependent on marker was slightly lower than that of the LUS
model dependent on both marker and the missing motif.

Supplementary Table B.2 shows the LOOCV for every marker (in-
cluding markers with simple repeat structures) of the two marker de-
pendent models. We see that for markers containing compound or
complex repeat structures (e.g. D3S1358, FGA, vWA, etc.) the BLMM
did better than the LUS in every single case. Furthermore, we see that
the difference in LOOCV can be rather large. Looking at the model not
dependent on the missing motif, we see that the LOOCV decreased by
a factor upto 17.5, 16.5, 17 for the autosomal, X, and Y STRs, respec-
tively, when switching from LUS to BLMM.

Table B.2: The leave-one-out cross validation (LOOCV) error shown of 27 autosomal,
7 X, and 23 Y markers for the marker dependent models presented above using both
predictors (BLMM and LUS).

LOOCV

SR = βMissing motif, Marker · x SR = βMarker · x

Marker Type BLMM LUS LUS/BLMM BLMM LUS LUS/BLMM

Autosomal CSF1PO 1.74×10−4 1.74×10−4 1.00 1.74×10−4 1.74×10−4 1.00
Autosomal D5S818 4.81×10−4 4.81×10−4 1.00 4.81×10−4 4.81×10−4 1.00
Autosomal D7S820 2.07×10−4 2.07×10−4 1.00 2.07×10−4 2.07×10−4 1.00
Autosomal D10S1248 2.78×10−4 2.78×10−4 1.00 2.78×10−4 2.78×10−4 1.00
Autosomal D13S317 1.09×10−4 1.09×10−4 1.00 1.09×10−4 1.09×10−4 1.00
Autosomal D17S1301 4.83×10−4 4.83×10−4 1.00 4.83×10−4 4.83×10−4 1.00
Autosomal D18S51 2.77×10−4 2.77×10−4 1.00 2.77×10−4 2.77×10−4 1.00
Autosomal D20S482 1.73×10−4 1.73×10−4 1.00 1.73×10−4 1.73×10−4 1.00
Autosomal PENTAD 6.01×10−5 6.01×10−5 1.00 6.01×10−5 6.01×10−5 1.00
Autosomal PENTAE 1.70×10−4 1.70×10−4 1.00 1.70×10−4 1.70×10−4 1.00
Autosomal TPOX 7.46×10−5 7.46×10−5 1.00 7.46×10−5 7.46×10−5 1.00
Autosomal D1S1656 1.77×10−3 2.51×10−3 1.42 1.79×10−3 2.97×10−3 1.66
Autosomal D2S1338 3.19×10−4 5.77×10−4 1.81 1.23×10−3 3.65×10−3 2.96
Autosomal D2S441 6.88×10−5 7.80×10−5 1.13 6.88×10−5 1.45×10−4 2.11
Autosomal D3S1358 8.54×10−5 2.22×10−4 2.60 1.11×10−4 1.94×10−3 17.5
Autosomal D4S2408 8.99×10−5 8.99×10−5 9.99×10−1 8.98×10−5 9.62×10−5 1.07
Autosomal D6S1043 9.54×10−5 9.54×10−5 1.00 2.35×10−4 1.39×10−3 5.91
Autosomal D8S1179 3.32×10−4 1.14×10−3 3.45 3.33×10−4 4.23×10−3 12.70
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4. Discussion

Autosomal D9S1122 2.40×10−4 2.43×10−4 1.01 2.40×10−4 1.17×10−3 4.86
Autosomal D12S391 4.26×10−4 4.33×10−4 1.02 2.02×10−3 4.54×10−3 2.25
Autosomal D16S539 2.01×10−4 2.03×10−4 1.01 2.01×10−4 2.03×10−4 1.01
Autosomal D19S433 1.75×10−4 1.78×10−4 1.02 1.75×10−4 1.16×10−3 6.63
Autosomal D21S11 2.52×10−4 6.93×10−4 2.75 4.90×10−4 8.57×10−4 1.75
Autosomal D22S1045 6.73×10−4 6.73×10−4 1.00 6.75×10−4 1.42×10−3 2.11
Autosomal FGA 3.70×10−4 2.27×10−3 6.13 3.80×10−4 3.86×10−3 10.20
Autosomal TH01 8.68×10−5 8.68×10−5 1.00 1.97×10−4 5.83×10−4 2.96
Autosomal VWA 6.46×10−4 7.44×10−4 1.15 6.80×10−4 2.82×10−3 4.14
X DXS8378 4.63×10−5 4.63×10−5 1.00 4.63×10−5 4.63×10−5 1.00
X HPRTB 8.37×10−5 8.37×10−5 1.00 8.37×10−5 8.37×10−5 1.00
X DXS7132 1.91×10−4 1.92×10−4 1.01 1.91×10−4 1.92×10−4 1.01
X DXS7423 4.05×10−5 3.42×10−4 8.45 4.05×10−5 3.86×10−4 9.53
X DXS10074 9.58×10−5 1.51×10−4 1.58 9.65×10−5 7.58×10−4 7.85
X DXS10103 1.94×10−3 1.95×10−3 1.00 1.96×10−3 2.54×10−3 1.30
X DXS10135 2.05×10−4 1.78×10−3 8.66 2.36×10−4 3.91×10−3 16.50
Y DYS391 1.90×10−4 1.90×10−4 1.00 1.90×10−4 1.90×10−4 1.00
Y DYS438 1.57×10−5 1.57×10−5 1.00 1.57×10−5 1.57×10−5 1.00
Y DYS439 1.50×10−4 1.50×10−4 1.00 1.50×10−4 1.50×10−4 1.00
Y DYS460 2.73×10−4 2.73×10−4 1.00 2.73×10−4 2.73×10−4 1.00
Y DYS549 7.73×10−5 7.73×10−5 1.00 7.73×10−5 7.73×10−5 1.00
Y DYS576 1.25×10−4 1.25×10−4 1.00 1.25×10−4 1.25×10−4 1.00
Y DYS643 3.73×10−5 3.73×10−5 1.00 3.73×10−5 3.73×10−5 1.00
Y DYF387S1 5.15×10−3 5.55×10−3 1.08 5.72×10−3 7.58×10−3 1.32
Y DYS19 2.11×10−4 1.09×10−3 5.18 2.11×10−4 1.43×10−3 6.79
Y DYS385 1.28×10−4 6.71×10−4 5.26 8.71×10−4 3.48×10−3 3.99
Y DYS390 1.77×10−4 8.09×10−4 4.56 3.33×10−4 9.37×10−4 2.81
Y DYS392 6.32×10−3 6.48×10−3 1.03 6.32×10−3 6.48×10−3 1.03
Y DYS437 2.70×10−4 1.16×10−3 4.30 2.76×10−4 1.29×10−3 4.70
Y DYS448 1.38×10−5 1.39×10−5 1.01 1.41×10−5 2.38×10−5 1.69
Y DYS461 1.80×10−3 1.85×10−3 1.03 1.80×10−3 2.51×10−3 1.39
Y DYS481 1.54×10−3 1.54×10−3 1.00 1.55×10−3 1.06×10−2 6.84
Y DYS505 6.88×10−5 6.85×10−5 9.96×10−1 6.87×10−5 7.22×10−4 10.50
Y DYS522 1.50×10−4 1.54×10−4 1.03 1.50×10−4 1.54×10−4 1.03
Y DYS533 1.68×10−4 1.68×10−4 1.00 1.68×10−4 2.69×10−4 1.61
Y DYS570 2.73×10−4 3.91×10−4 1.43 2.73×10−4 3.91×10−4 1.43
Y DYS612 5.77×10−4 1.18×10−2 20.4 1.06×10−3 1.80×10−2 17.0
Y DYS635 1.76×10−4 7.26×10−4 4.12 1.77×10−4 8.31×10−4 4.69
Y Y-GATA-H4 4.95×10−4 4.93×10−4 9.94×10−1 4.95×10−4 2.24×10−3 4.52

4 Discussion

The strength of moving from LUS to BLMM is clearly seen when visu-
ally comparing the two predictors plotted against the stutter ratio in
Fig. B.4. This point is further emphasised, in Table B.1. It is clear that
BLMM is a better predictor of stutter ratio than LUS. It is also clear
that it is beneficial to make the model dependent on both marker and
motif. However, including the missing motif as a predictor may not be
a viable option unless we are absolutely sure that the sample used to
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fit the parameters is representative of the population. If it is not, we
might find a motif in the population not represented in the sample. In
that case, we would not be able to predict the stutter ratio making it a
poor choice of model for predictive purposes. Therefore, we advocate
to use the marker dependent model, even though we in Fig. B.5 saw
that there is a small difference between the motifs for the BLMM.

Furthermore, the BLMM avoids the need for a two component mix-
ture model as the one presented in Bright et al. (2013) [9]. They
noted that the second component, with larger variance, hypothetically
caught "those alleles with complex repeat structures comprising variant re-
gions with differing LUS values". The BLMM handles this problem.

The supplementary figures show some unexpected patterns, be-
sides those caused by the difference in the stuttering motif. The right-
hand side of Fig. B.9 shows the stutter ratio and the BLMM of the
D2S441 marker. The stutter ratio for a BLMM of 8 was significantly
larger than the expected stutter ratio (a similar pattern can be seen
in Fig. B.30). We put forward the hypothesis, that this is caused by
the repeat composition of the DNA. Two of the most frequent STR
structures of the D2S441 marker are: (1) [TCTA]x[TCTG]1[TCTA]1 and (2)
[TCTA]x. Focusing on the stutter sequences with a BLMM of 8, their
observed stutter ratios have more in common with the expected stut-
ter ratios of stutter sequences with larger BLMM’s. Furthermore, the
repeat structure of the stutter sequences with a BLMM of 8 are domi-
nated by the structure depicted in (1). Our hypothesis is that the PCR
process reacts to the [TCTG]1 as if it were a [TCTA]1. That is, the PCR
process reacts to the repeat structure [TCTA]x[TCTG]1[TCTA]1 as if it were
[TCTA]x+2, increasing the length of the longest block from x to x + 2,
thereby increasing its rate of stuttering. However, we do not have
enough data on the phenomenon to draw any conclusion regarding
this hypothesis.

A way of handling this phenomenon was presented in a recent pa-
per Woerner et al. (2018) [14]. They suggest modelling these sequences
independently of the regular variants. However, extending the BLMM
concept to identify and account for these sequences is not straight for-
ward and, therefore, left to future research.

Trying to utilise more sub-repeat information than just the LUS is
not new to MPS. Taylor et al. (2016) [15] defined the multi-sequence
model (MSM) as the average length of the blocks most likely to stutter.
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A. The relationship between BLMM and stutter ratio

The MSM was designed to handle the problem described in Bright et
al. (2013), i.e. it would eliminate the need for a two component model.
However, the MSM would always be equal for every stutter sequence
of the same parental allele. Thus, it would exhibit similar behaviour
as that seen of the LUS in Fig. B.4.

Accounting for stuttering can help determine the relationship be-
tween the relative contributions of DNA from the contributors in the
case of DNA mixtures. Thus, we expect that the primary use of the
BLMM will be in modelling the allele coverage in MPS STR DNA mix-
ture samples. Furthermore, it gives some insight into a long consid-
ered hypothesis: that the rate of stuttering during PCR amplification
increases the more repetitive the DNA strand is.

A The relationship between BLMM and stutter ra-
tio

This appendix aims to determine the relationship between the block
length of the missing motif and the stutter ratio. We will assume that
we are in the copying stage of the PCR process. Without loss of gener-
ality, we can assume that the STR regions are simple, as the probabil-
ity of stuttering ’resets’ when the motif being copied is changed. For
simplicity, we will assume (1) that the probability of a repeated motif
stuttering is constant and equal to p (the probability of not stuttering
is (1− p)), (2) that there are only two strings, i.e. the parent allele and
the stutter sequence, and (3) the strings have been copied correctly
upto and including the r’th repeated motif.

Assume that the probability of a repeated motif stuttering is con-
stant and equal to p (i.e. the probability of not stuttering is (1− p)),
and that we have correctly copied the parental allele and stutter se-
quence upto, and including, the r’th repeated motif.

It follows, that we can describe the number of parental allele strands
at the (r + 1)’th motif, A(r + 1), as: The number of parental allele
strands correctly copied upto the r’th repeat, A(r), multiplied by the
probability of not stuttering, 1− p, implying the equation:

A(r + 1) = (1− p)A(r). (B.5)

Whereas we can describe the number of stutter strands at the (r +
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1)’th motif, a(r + 1) as: The number of stutter strands correctly copied
until the r’th repeat, a(r), multiplied by the probability of not stutter-
ing, 1− p, plus the number of parental allele strands, at the r’th repeat,
A(r), times the probability of stuttering, p, which implies the equation:

a(r + 1) = (1− p)a(r) + pA(r). (B.6)

Solving the system of equations defined by Equation (B.5) and (B.6)
yields the following solutions:

A(r + 1) = (1− p)r A(0) and a(r + 1) = rp(1− p)r−1A(0), (B.7)

where A(0) is the number of parental allele strands at the beginning
of the process. We assumed that there was no stutter at the beginning
of the process, i.e. a(0) = 0.

Taking the ratio between the number of stutter and parental strands
yields:

a(r + 1)
A(r + 1)

=
p

1− p
r, (B.8)

i.e. the relationship between the stutter ratio, a(r + 1)/A(r + 1), and
the repeat position in the strand, r, is linear through the point (1, 0).
Note that the intercept is not through the origin as the smallest possi-
ble value of r is 1, as the parent allele would need at least one motif to
lose.
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B. Supplementary figures

B Supplementary figures
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Fig. B.6: The stutter ratio plotted against the LUS and BLMM of CSF1PO. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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Stutter ratios of D1S1656 with LUS and BLMM methods.

Fig. B.7: The stutter ratio plotted against the LUS and BLMM of D1S1656. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.
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Fig. B.8: The stutter ratio plotted against the LUS and BLMM of D2S1338. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.
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Fig. B.9: The stutter ratio plotted against the LUS and BLMM of D2S441. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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B. Supplementary figures
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Fig. B.10: The stutter ratio plotted against the LUS and BLMM of D3S1358. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.11: The stutter ratio plotted against the LUS and BLMM of D4S2408. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.12: The stutter ratio plotted against the LUS and BLMM of D5S818. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.
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Fig. B.13: The stutter ratio plotted against the LUS and BLMM of D6S1043. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

0.00

0.05

0.10

7 8 9 10 11 12 13 14

Longest Uninterrupted Stretch

S
tu

tte
r 

ra
tio

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

0.00

0.05

0.10

7 8 9 10 11 12 13 14

Block Length of the Missing Motif

S
tu

tte
r 

ra
tio

Missing Motif
● TATC

Stutter ratios of D7S820 with LUS and BLMM methods.

Fig. B.14: The stutter ratio plotted against the LUS and BLMM of D7S820. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

● ●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

0.0

0.1

0.2

8 9 10 11 12 13 14 15 16

Longest Uninterrupted Stretch

S
tu

tte
r 

ra
tio

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●●

●

●

●
●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

● ●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

0.0

0.1

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Block Length of the Missing Motif

S
tu

tte
r 

ra
tio Missing Motif

● TCTA

TGTC

Stutter ratios of D8S1179 with LUS and BLMM methods.

Fig. B.15: The stutter ratio plotted against the LUS and BLMM of D8S1179. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of D9S1122 with LUS and BLMM methods.

Fig. B.16: The stutter ratio plotted against the LUS and BLMM of D9S1122. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of D10S1248 with LUS and BLMM methods.

Fig. B.17: The stutter ratio plotted against the LUS and BLMM of D10S1248. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures

●
●●
●

● ●

●

●
●

●●

●

●
●

●●
● ●●● ●

●
●

●

●
●●

●
● ●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●
●

●
●

● ●
●

● ●
●●●

●

●

●●
●

●●
●

●
●

●
●

●

●●

●
● ●
●

●

●

●●
●● ●

●
●

●

●

●
●

●

● ●

●
●

●
● ●

●
●●

●● ●
● ●

●●

●●

● ●
●●

●

●
● ●
●

●

●●
●●

●
●

●

●
● ● ●●

●

●
●

●

●● ●●
●

●
●

●

●
●

●
●

●●
● ●

●
●

●
●

●

●● ●●
●

●

●

●

●
●

●

●
●
●●

●
●●

●

●
●

●

●

●

●
●●

●
●

●
●

●● ●● ●
● ●

●
●

●
●

●

● ● ●
●●

● ●

●●

●

●

● ●

●

●

●
●●

●

●● ●●
●● ●

●●

● ●

●
●

●

●
●●

●
●●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●
●●

●
●

●

●●

●●●

●
●

● ●●

●

● ●

●
●

●
●

●

●

● ●

● ●
●

●●

●

●

●

● ●●

●

●

●●

●
●

●● ●
●

●

●●● ●●●
●

●

●

●●
●

●

● ●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●● ●

●
●

●

●

●

●●

●

●

●
●

●

●

●●
●

●●

●
●

●

●

●
● ●

●
●

0.0

0.1

0.2

0.3

8 9 10 11 12 13 14 15 16 17 18

Longest Uninterrupted Stretch

S
tu

tte
r 

ra
tio

●
●●
●
●●

●

●
●

●●

●

●
●

●●
●● ●●●

●
●

●

●
●●

●
●●

●
●

●

●

●

●
●
●

●

●●

●●

●

●
●

●
●

●
●

●●
●

● ●
●●●

●

●

●●
●

● ●
●
●
●

●
●
●

●●

●
●●

●
●

●

●●●●●
●
●

●

●

●
●

●

●●

●
●

●
●●

●
●●
●●●

● ●
●●

●●

● ●
●●
●

●
●●

●

●

●●
●●

●
●

●

●
●● ●●

●

●
●

●

●●●
●

●

●
●

●

●
●

●
●

●●
● ●

●
●

●
●

●

●● ●●
●

●

●

●

●
●

●

●
●

● ●
●

●●
●

●
●

●

●

●

●
●●
●

●
●

●

●●●●●
●●
●

●

●
●

●

● ● ●
●●

●●

● ●

●

●

●●

●

●

●
●●

●

●●●●
●● ●

●●

● ●

●
●

●

●
●●

●
●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●
●
●●

●
●

●

●●

●●●

●
●
●●

●

●

●●

●
●

●
●
●

●

●●

●●
●

● ●

●

●

●

●● ●

●

●

● ●

●
●

●●●
●

●

●●●●●●
●

●

●

●●
●

●

● ●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●●●
●●

●
●

●

●

●
● ●

●
●

0.0

0.1

0.2

0.3

5 6 7 8 9 10 11 12 13 14 15 16 17 18

Block Length of the Missing Motif

S
tu

tte
r 

ra
tio

Missing Motif
● AGAC

GACA

TAGA
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Fig. B.18: The stutter ratio plotted against the LUS and BLMM of D12S391. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.19: The stutter ratio plotted against the LUS and BLMM of D13S317. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.20: The stutter ratio plotted against the LUS and BLMM of D16S539. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.21: The stutter ratio plotted against the LUS and BLMM of D17S1301. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.

104



B. Supplementary figures
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Fig. B.22: The stutter ratio plotted against the LUS and BLMM of D18S51. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.
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Fig. B.23: The stutter ratio plotted against the LUS and BLMM of D19S433. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.24: The stutter ratio plotted against the LUS and BLMM of D20S482. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.25: The stutter ratio plotted against the LUS and BLMM of D21S11. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.
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Fig. B.26: The stutter ratio plotted against the LUS and BLMM of D22S1045. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.27: The stutter ratio plotted against the LUS and BLMM of FGA. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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Fig. B.28: The stutter ratio plotted against the LUS and BLMM of PENTAD. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.29: The stutter ratio plotted against the LUS and BLMM of PENTAE. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Fig. B.30: The stutter ratio plotted against the LUS and BLMM of TH01. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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Stutter ratios of TPOX with LUS and BLMM methods.

Fig. B.31: The stutter ratio plotted against the LUS and BLMM of TPOX. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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Fig. B.32: The stutter ratio plotted against the LUS and BLMM of VWA. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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Stutter ratios of DXS7132 with LUS and BLMM methods.

Fig. B.33: The stutter ratio plotted against the LUS and BLMM of DXS7132. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Stutter ratios of DXS7423 with LUS and BLMM methods.

Fig. B.34: The stutter ratio plotted against the LUS and BLMM of DXS7423. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.35: The stutter ratio plotted against the LUS and BLMM of DXS8378. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of DXS10074 with LUS and BLMM methods.

Fig. B.36: The stutter ratio plotted against the LUS and BLMM of DXS10074. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.37: The stutter ratio plotted against the LUS and BLMM of DXS10103. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Stutter ratios of DXS10135 with LUS and BLMM methods.

Fig. B.38: The stutter ratio plotted against the LUS and BLMM of DXS10135. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.39: The stutter ratio plotted against the LUS and BLMM of HPRTB. The plots
are coloured according to the missing motifs when the stutter sequence were com-
pared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the miss-
ing motifs. The black dashed lines correspond to the linear model with intercepts
through zero and marker dependent slopes. Note that a jitter has been added to
visualise the density of the points.
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Fig. B.40: The stutter ratio plotted against the LUS and BLMM of DYF387S1. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.41: The stutter ratio plotted against the LUS and BLMM of DYS19. The plots are
coloured according to the missing motifs when the stutter sequence were compared to
those of the parental alleles. The solid lines correspond to linear models with intercept
through zero and slope dependent on both the markers and the missing motifs. The
black dashed lines correspond to the linear model with intercepts through zero and
marker dependent slopes. Note that a jitter has been added to visualise the density
of the points.
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B. Supplementary figures
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Fig. B.42: The stutter ratio plotted against the LUS and BLMM of DYS385. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of DYS390 with LUS and BLMM methods.

Fig. B.43: The stutter ratio plotted against the LUS and BLMM of DYS390. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.44: The stutter ratio plotted against the LUS and BLMM of DYS391. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of DYS392 with LUS and BLMM methods.

Fig. B.45: The stutter ratio plotted against the LUS and BLMM of DYS392. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Fig. B.46: The stutter ratio plotted against the LUS and BLMM of DYS437. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.47: The stutter ratio plotted against the LUS and BLMM of DYS438. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.48: The stutter ratio plotted against the LUS and BLMM of DYS439. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.49: The stutter ratio plotted against the LUS and BLMM of DYS448. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Stutter ratios of DYS460 with LUS and BLMM methods.

Fig. B.50: The stutter ratio plotted against the LUS and BLMM of DYS460. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.51: The stutter ratio plotted against the LUS and BLMM of DYS461. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Paper B.
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Fig. B.52: The stutter ratio plotted against the LUS and BLMM of DYS481. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.53: The stutter ratio plotted against the LUS and BLMM of DYS505. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Fig. B.54: The stutter ratio plotted against the LUS and BLMM of DYS522. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.55: The stutter ratio plotted against the LUS and BLMM of DYS533. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Paper B.

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
● ●

● ●

●

● ●

●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●●

●

0.000

0.025

0.050

0.075

10 11 12 13 14 15

Longest Uninterrupted Stretch

S
tu

tte
r 

ra
tio

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
● ●

●●

●

● ●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●●

●

0.000

0.025

0.050

0.075

10 11 12 13 14 15

Block Length of the Missing Motif

S
tu

tte
r 

ra
tio

Missing Motif
● GATA

Stutter ratios of DYS549 with LUS and BLMM methods.

Fig. B.56: The stutter ratio plotted against the LUS and BLMM of DYS549. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●
●

● ●●

●●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

14 15 16 17 18 19 20 21 22 23

Longest Uninterrupted Stretch

S
tu

tte
r 

ra
tio

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●
●

● ●●

●●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Block Length of the Missing Motif

S
tu

tte
r 

ra
tio

Missing Motif
● TTTC

Stutter ratios of DYS570 with LUS and BLMM methods.

Fig. B.57: The stutter ratio plotted against the LUS and BLMM of DYS570. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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B. Supplementary figures
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Stutter ratios of DYS576 with LUS and BLMM methods.

Fig. B.58: The stutter ratio plotted against the LUS and BLMM of DYS576. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of DYS612 with LUS and BLMM methods.

Fig. B.59: The stutter ratio plotted against the LUS and BLMM of DYS612. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Fig. B.60: The stutter ratio plotted against the LUS and BLMM of DYS635. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of DYS643 with LUS and BLMM methods.

Fig. B.61: The stutter ratio plotted against the LUS and BLMM of DYS643. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Stutter ratios of Y−GATA−H4 with LUS and BLMM methods.

Fig. B.62: The stutter ratio plotted against the LUS and BLMM of Y-GATA-H4. The
plots are coloured according to the missing motifs when the stutter sequence were
compared to those of the parental alleles. The solid lines correspond to linear models
with intercept through zero and slope dependent on both the markers and the missing
motifs. The black dashed lines correspond to the linear model with intercepts through
zero and marker dependent slopes. Note that a jitter has been added to visualise the
density of the points.
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Abstract

We used a Poisson-gamma model to analyse the allele coverage of autosomal
short tandem repeat (STR) systems obtained by massively parallel sequencing
(MPS). The Poisson-gamma coverage model was created using the peak height
models from capillary electrophoresis (CE) based detection of PCR products as
a starting point. The CE models were modified to account for the differences
between CE and MPS signals by accounting for the large marker imbalances
seen for MPS data and by using the Poisson-gamma distribution instead of
the normal, log-normal, or gamma distributions that were applied for CE
data. We took two approaches to estimate the marker imbalance parameters
by (1) using a work-flow data base, and (2) using the results of replicate
investigations of the samples.

The Poisson-gamma model was used to estimate the rate of drop-outs of
(1) single contributor dilution series experiments and (2) the minor contribu-
tor in two-person mixture samples. We examined the predictive capabilities of
the model by comparing the observed and expected Brier scores of each sample.
We derived the expected Brier scores and their variances to create asymptotic
confidence intervals of the Brier scores. We found that the Poisson-gamma
model performed well when using the work-flow data base, but that the repli-
cate approach is not necessarily a viable option.
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1 Introduction

DNA recovered at a crime scene is often found in low quantity and
may be highly degraded. This affects the efficiency of the PCR and
may lead to partial profiles with frequent locus and allele drop-outs,
and in some situations also allele drop-ins, due to stochastic effects.
[1–13]. We will only consider drop-outs. Typically, forensic genetics
laboratories define a minimum threshold for acceptance of an allele. If
this threshold is not reached, the allele is not detected and the DNA
profile will suffer from allele drop-out. Accurate estimation of the
probability of allelic drop-out is important since allele drop-outs will
lead to mismatches between the DNA profile of the trace sample and
the reference sample from a victim, a potential suspect, or an unre-
lated third party. The methods developed for assessing allelic drop-
out of amplified PCR products detected by capillary electrophoresis
(CE) cannot be used directly for massively parallel sequencing (MPS)
assays. Thus, the methods need to be modified for use in the MPS
setting.

Estimation of the probability of allelic drop-out in CE has generally
taken one of two forms: (1) direct marker dependent estimation by
logistic regression [14, 15], or (2) modelling the peak height signal and
calculating the probability of being smaller than the threshold under
the model [16–20].

The logistic regression model relied on H, the average peak height
[14, 15]. In a previous paper [21], we concluded that the average al-
lele coverage (equivalent to the average peak height in CE) was not an
apt covariate of the probability of drop-out because the libraries were
normalised prior to sequencing. While this was the case for the Ion
PGM 10-plex data, it was not necessarily the case for the data gener-
ated by the Illumina R© ForenSeqTM Signature Prep Kit. In our previous
paper [21], we suggested the standard deviation of the heterozygote
balance as a possible replacement. This hypothesis was tested during
the preliminary data analysis. However, the performance was deemed
too poor and, thus, not included.

Therefore, in order to estimate the probability of allelic drop-out,
we will model the allele coverage. Many of the lessons learned by
modelling peak heights in CE should translate when modelling the
coverage,because the data are based on analysis of PCR products. As
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peak heights are inherently continuous (though often round to near-
est integer), they have been modelled using normal, log-normal, and
gamma distributions [16–20]. Even though the choice of distribution
differs, these models exhibit similar mean and variance structures. We
have chosen to focus on the ’gamma model’ [18, 22, 23], which assumes
that for sample s and the marker m, the peak height of allele a, Hsma,
follows a gamma distribution with mean and variance given as:

E [Hsma] = ηsρs

C

∑
c=1
{(1− ξs)gsmac + ξsgsm(a+1)c}ϕc, and (C.1)

Var [Hsma] = ηsE [Hsma] , (C.2)

respectively, where c is a contributor to the mixture, C is the total
number of contributors to the mixture, ρs is proportional to the amount
of input DNA, ϕc is the mixture proportion of individual c, ξs is the
average stutter proportion of the sample, and gsmac is the number of
alleles a that contributor c has. Thus, gsmac is 0, 1, or 2 if the contributor
c does not have any allele a, is heterozygous, or homozygous for allele
a, respectively.

If the coverage was large enough (for all contributors), the coverage
could be modelled using the CE methods, as the continuous models
would provide a satisfactory approximation of the discrete coverage.
However, if the DNA of the sample is of low quantity, if the sample
is degraded, or if the DNA mixture proportions is skewed (e.g. with
DNA from one contributor in low quantity compared to that of the
major contributor to the mixture), a continuous model would lead to
a poor approximation.

Using the mean structure of the gamma model as a starting point,
we modelled the allele coverage by a Poisson-gamma distribution (also
known as a negative binomial distribution parameterised by its mean).
We made modifications to the mean structure because: (1) The MPS
data suffers from large marker imbalances, which was accounted for
by multiplying the expected coverage by a marker dependent scaling
factor, and (2) parental alleles can produce multiple stutters, and a
stutter can have more than one possible parental allele [24].

If thresholds have not been applied, the coverage model presented
in this manuscript quite naturally accounted for drop-out by its def-
inition. However, as thresholds limit the amount of information, we
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took two slightly different approaches to estimate the marker depen-
dent parameters of the model, to ensure we had enough information
to estimate all the parameters. The first approach relied on a database
of reference samples (a workflow database), while the second used
multiple replicates of the sample. Given the estimated parameters, we
found the probability of allelic drop-out by calculating the probability
of the coverage being smaller than the threshold.

The aim of this manuscript is to present an MPS DNA mixture cov-
erage model, called the Poisson-gamma coverage model, and investi-
gate its behaviour when used to analyse DNA samples. The DNA sam-
ples analysed in this manuscript were described in Hussing et al. [25].
They also described the marker imbalances, marker drop-out rate, and
other characteristics of the samples.

In order to measure the performance of the presented model, we
examined the how well the coverage model predicted the probability
of drop-out. We compared the observed drop-out with the probability
of drop-out predicted under the model using the Brier-score. The ob-
served Brier-score was compared to the expected Brier-score in order
to investigate whether the coverage model behaved as expected. We
believe that the model and thoughts presented in the manuscript may
serve as a foundation for the work going forward in modelling STR
DNA mixture samples.

2 Materials and methods

2.1 Experimental data

DNA libraries were build using the ForenSeqTM DNA Signature Prep
Kit (Illumina R©) Primer Mix A and B. Primer Mix A amplifies markers
for human identification (HID), while Primer Mix B amplifies the same
HID markers plus ancestry informative markers (AIMs) and markers
associated with eye and hair colour. DNA sequencing was performed
with the MiSeq FGx (Illumina R©) as previously described in [25, 26].

DNA was extracted from blood samples and buccal swabs collected
on FTA cards from 363 individuals. The samples were amplified and
sequenced in duplicate.

Dilution series of DNA were created from four contributors. The
DNA was amplified and sequenced in triplicate using Primer Mix A.
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The amounts of DNA in each series were 1 ng, 500 pg, 250 pg, 125
pg, 62.5 pg, 31.25 pg, 15.63 pg, and 7.86 pg. A consensus DNA profile
from each individual was generated based on all experiments with 1
ng input.

Fifteen two person DNA mixture samples (in proportions: 1:1,000,
1:100, 1:50, 1:25, 1:12, 1:6, 1:3, 1:1, 3:1, 6:1, 12:1, 25:1, 50:1, 100:1, and
1,000:1) were made with a male and a female contributor. The total
amount of DNA was 1 ng in all cases. The DNA mixtures were am-
plified and sequenced in duplicate using Primer Mix B. The profiles of
the two contributors were known.

Sequences were identified by their flanking regions using STRait
Razor v3.0 [27]. They were subsequently trimmed to include just the
STR region and the coverage of every unique sequence found. Thus,
if two sequences had the same length, but their sequences were differ-
ent (sometimes referred to as isoalleles), they were treated as different
sequences throughout the manuscript.

2.2 Analytic thresholds

We opted for simple marker dependent thresholds, taking a percent-
age, p, of the maximum coverage of the marker [21]. That is, the
threshold of marker m from sample s is:

tsm = p ·max
a
{ysma}, (C.3)

where ysma is the coverage of sample s, marker m, and allele a. Thus,
given a marker where we have observed three strings a, b, and c, with
coverage 100, 90, and 4, respectively, i.e. the maximum coverage on
the marker is 100. Assuming that p = 0.05, then the threshold t = 5,
implying that the observation c was classified as noise.

We chose this method for establishing the thresholds because it
was the simplest method for defining marker dependent thresholds.
This method does not change the modelling approach, the determi-
nation of the probability of drop-out (other than slight changes to the
probabilities, themselves), or the conclusions.

2.3 The coverage model

The coverage of an allele is not continuous. The coverage of a string
is a synonym for the count of the string. Thus, it would be natural

135



Paper C.

to model the coverage as count data, i.e. discrete. The most common,
and simplest, choice of model for count data is the Poisson distribu-
tion that assumes equal mean and variance, which is unrealistic for
MPS STR data. We modelled the coverage by using a Poisson-Gamma
distribution (see Appendix A), which includes a dispersion parameter
to account for the possible deviations from the assumption of equal
mean and variance.

We introduce the mean structure of the coverage model in three
stages, by (1) introducing the model corresponding to the situation,
where there is only one contributor and no artifact, (2) accounting for
multiple contributors, and (3) accounting for stutters.

2.3.1 The mean structure of the coverage model

Under the assumption that sample s was a single contributor and with-
out any artefact, i.e. the sample did not show drop-outs, drop-ins, or
stutters. The mean structure of the gamma model seen in Eq. (C.1) is
reduced to ηsρsgsma. We wanted the Poisson-gamma model to behave
in a similar fashion. However, the MPS process suffers from large
marker imbalances. Therefore, we defined the mean of the single-
contributor Poisson-gamma model with no artefacts, µ̃sma, as

µ̃sma = νsβmgsma, (C.4)

where βm is the marker imbalance parameter, the average of the marker
imbalance parameters is equal to one in order to avoid overspecifica-
tion of the model (i.e. (∑m βm)/M = 1), and νs could be interpreted as
the average coverage of the heterozygotes of sample s.

However, the genotype of a crime scene stain is potentially a mix-
ture of genotypes from multiple contributors. Thus, we need to ex-
tend the mean structure in Eq. (C.4) to handle multiple contributors.
We denoted the genotype and relative contribution to the mixture of
contributor, c, as gsmac and ϕc, respectively, with 0 < ϕc < 1 and
ϕ+ = ∑c ϕc = 1. Thus, for allele a, we get a sum of the contributor’s
genotypes weighted by their relative contributions to the mixture:

C

∑
c=1

gsmac ϕc, (C.5)

assuming a total of C contributors to the mixture.
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Stutter products are a common artefact of the PCR amplification of
STRs and, thus, the rate with which stutters are created needed to be
incorporated into the model. Two measures of the stutter rate are com-
monly used: stutter ratio and stutter proportion. We used the stutter
ratio for modelling purposes. Because of the added resolution of the
MPS process, a stutter sequence can have received coverage from mul-
tiple parental alleles. Therefore, we needed a predictor of the stutter
ratio, which could handle the added resolution. The block length of
the missing motif (BLMM) is such a predictor [24]. The BLMM was
created as an extension of the longest uninterrupted stretch (LUS).
However, instead of using the longest stretch, we find the stretch from
which the parental allele had lost a motif when compared to the stut-
ter. The length of the found stretch is the BLMM.

It has been shown [24] that a suitable model for the relationship
between the stutter ratio and the BLMM is linear through the point
(1, 0), i.e.

SR = αm · (BLMM− 1), (C.6)

where αm are marker dependent slope parameters of the linear model.
The slope parameters were estimated on a database of samples se-
quenced using the same technology, panel, and settings (i.e. the same
number of PCR cycles, preparation, etc.), called a workflow database,
as the analysed samples.

As a stutter can have multiple parental alleles (imposed by the
higher resolution of the MPS process), the very simple term accounting
for the stuttering in Eq. (C.1), ξsgsm(a+1)c, needs to be extended to a
sum over the set of parental alleles of sequence a, P(a), i.e.

∑
A∈P(a)

ξmA gsmAc,

where A is a parental sequence of the sequence a and ξmA is the pre-
dicted stutter ratio of the parental sequence A.

It follows that we can write contributor c’s contribution to allele a
as (

gsmac + ∑
A∈P(a)

ξmA gsmAc

)
ϕc. (C.7)
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2.4 Estimation of parameters

Assuming that the sample contains a single contributor, no stutter
reads, no drop-in, and no drop-out, the expected coverage of the model
takes the form described in Eq. (C.4). This model requires M + 1 pa-
rameters (M− 1 accounting for marker imbalances, one for the param-
eter corresponding to the average coverage of heterozygote alleles, and
one for the dispersion parameter). A sample with a single contributor
would have between M and 2M alleles. That is, if the sample did not
have any drop-outs, we would in most (if not all) practical applica-
tions have enough observations for the parameters to be estimated by
maximising the likelihood (MLE). However, if the sample suffers from
allele (and/or marker) drop-out, this would no longer be guaranteed.

Preliminary analyses (not included in this manuscript) showed that
the marker imbalances were consistent across samples, batches, and
preparation kits. In order to reduce the number of parameters, which
needed to be estimated, we studied two slightly different approaches
of utilising this consistency:

(1) The reference approach: A workflow database is used to estimate
the marker dependent parameters. The marker dependent param-
eters in the reference approach were fitted to the model with mean
structure in Eq. (C.4) using a database samples. These parameters
were used in subsequent analyses, which reduced the number of
parameters from M + 1 to two per sample (as the M − 1 marker
imbalances are considered known with this approach).

(2) The replicate approach: The R replicates of the sample were col-
lected, and the M− 1 marker dependent parameters were assumed
to be equal among all R replicates. This reduced the number of pa-
rameters from R(M + 1) to 2R+ (M− 1) for the R replicates. Note
R(M + 1) is equal to 2R + (M− 1) only if R = 1 or M = 1.

The reference approach utilises the marker information from the
technology as a whole, while the replicate approach only uses the in-
formation of the replicates. The reference approach is more stable,
while the replicate approach is more flexible. The replicate approach
can be used for any sample using any MPS technology as it would
only depend on the replicates, while the reference approach would al-
ways need an entire database of sample data sequenced with the same
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technology, panel, and settings (e.g. the same number of PCR cycles,
preparation, and so on) as the sample in question, referred to as a
workflow database. The workflow database used in this manuscript
consisted of the 363 Danes sequenced in duplicate presented in Huss-
ing et al. [26].

2.5 Assessment of predictive capabilities

The predictive capabilities of the models were assessed by the Brier-
score [28]. Given the observed vector of drop-out, d = (d11, ..., dMAM)

T

with dma = I [ysma ≤ tsm], and the predicted probability of drop-out,
p̂ = ( p̂11, ..., p̂MAM)

T with p̂ma = P (ysma ≤ tsm|µsma, ηs) of a sample, s,
the Brier-score of sample s is defined as:

Bs(d, p̂) =
1
A+

∑
m

∑
a
(dma − p̂ma)

2, (C.8)

where A+ = ∑mAm, and Am is the number of alleles on marker m.
Note, that Eq. (C.8) is a special case of the Brier-score, also called ’the
half Brier score’ or ’the mean square error’. In order to assess the per-
formance of the methods, we plotted the observed Brier score against
the expected Brier score with point-wise confidence intervals for each
sample. The derivation of the expected Brier score, the variance of the
Brier score, and the confidence intervals are shown in Appendix B.

Lastly, we should note that the Brier-score has a tendency to be-
come more insensitive as the events (probability of drop-out) become
more extreme [29]. This resulted in an increase in the variance of the
Brier-score and, therefore, larger confidence intervals, as the probabil-
ity of drop-out tended to zero (or one).

3 Results

We analysed the data (1) without analytic thresholds, and (2) with
analytic thresholds using the method described in Section 2.2. The
first approach is the best case scenario under which the model has
to perform well to be a viable option. The second approach tests the
model in conditions that are closer to real case work scenarios. In the
case of the former, the coverage of an allele is set to zero if not observed
(i.e. if it dropped out).
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3.1 Dilution series experiment

For each of the four individuals, who contributed to the dilution sam-
ples, we created a consensus profile. This consensus profile was used
as the known genotype in the dilution series and replicates thereof.

The first column in Figure C.1 shows the observed Brier score
against the expected Brier score for each sample in the dilution se-
ries experiments using the reference approach to estimate the marker
dependent parameters. The shaded 95% confidence areas in the fig-
ure were created on a sample-by-sample basis connecting the lower
and upper limits of the confidence intervals of the samples. Without
thresholds, the observed Brier score of one sample was found out-
side the confidence interval, i.e. approximately 99% of the results were
within their 95% confidence limits. However, if thresholds were ap-
plied, the number of samples who had observed Brier scores outside
the confidence limits increased to six. As noted above, this difference
was expected because of the loss of information.

The second column of Figure C.1 shows the observed Brier score
against the expected Brier score for the replicate approach. If thresh-
olds were not used, a single sample had an observed Brier score out-
side its confidence limits, i.e. approximately 99% of the samples were
inside the their confidence limits. Compared to 12 samples outside
their confidence limits when thresholds were used (approximately 88%
inside their confidence limits). The 12 samples who had observed
Brier scores outside their confidence limits were samples with small
amounts of input DNA (four with 7.81 pg, one with 31.25 pg, five
with 62.50 pg, and two with 125 pg). This was in part a consequence
of the added variability in allele coverage. However, it was mainly due
to the loss of information introduced by applying thresholds.

3.2 Mixture samples

For DNA mixture samples, the drop-out rate of interest is that of the
minor contributor to the mixture. Thus, after parameter estimation,
we limited the calculation of the observed and expected Brier scores
to the alleles of the minor contributor that were not shared with the
major contributor. Note that isoalleles (alleles of the same length, but
with different genetic sequences) were treated as being different, i.e.
not shared in case mixtures.
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Fig. C.1: The observed and expected Brier scores for all 96 samples in the dilution
series. The solid line is the one-to-one relationship between the observed and expected
Brier scores. The shaded areas were created by connecting the confidence intervals of
each sample. The marker dependent parameters of the Poisson-gamma model were
estimated using the reference and replicate approaches shown in the first and second
column, respectively.

The observed Brier score against the expected Brier score for the
mixture samples can be seen in the first and second column of Fig-
ure C.2 using the reference and replicate approaches, respectively. In
both cases, a single sample was found to exceed its confidence limits
when thresholds were not applied versus four samples when using
thresholds to censor the coverage (though it was not the same four
samples in the replicate as in the replicate approach). Furthermore,
we saw that even though only a single sample falls outside the con-
fidence bounds when not using thresholds, the expected Brier score
was much smaller than when using thresholds, in both the reference
and replicate approaches. The difference in the observed and expected
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Fig. C.2: The observed and expected Brier scores for all 30 mixture samples. The
observed and expected Brier scores were restricted to alleles of the minor contributor
not shared with the major contributor. The solid line is the one-to-one relationship
between the observed and expected Brier scores. The shaded areas were created by
connecting the confidence intervals of each sample. The marker dependent param-
eters of the Poisson-gamma model were estimated using the reference and replicate
approaches shown in the first and second column, respectively.

Brier score, is most likely a consequence of the number of drop-outs
being much smaller, when not using thresholds. This will decrease the
average probability of drop-out and, thereby, the expected Brier score.

Note that even though the samples were within the confidence lim-
its, when thresholds were not applied, their observed Brier scores ap-
peared slightly biased when compared to the expected Brier scores, in
both the dilution and mixture experiments.
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4 Conclusion

The primary consequence of treating all isoalleles (strings of the same
length, but with genetically different sequences) as different alleles
was an increased number of allele drop-outs. This is a simple con-
sequence of observing a larger number of heterozygotes due to the
increased resolution of the MPS process. As heterozygote alleles have
lower coverages, than homozygote alleles it follows that they will have
larger probabilities of falling below a given threshold for samples with
low quantities of template DNA (or for contributors in DNA mixtures
contributing a small amount of DNA to the sample).

Using a workflow database, the reference approach created more
robust estimates of the marker imbalance parameters than the repli-
cate approach if we applied thresholds. However, if thresholds were
not used, we saw nearly no difference between the reference and repli-
cate approaches. This is a simple consequence of using thresholds as
these more frequently create drop-out, because they censor informa-
tion. Thus, from a modelling perspective: if thresholds were applied
to the coverage, we would prefer to use a work-flow database when
estimating the marker imbalance parameters.

The main advantage of the replicate approach is that it would only
need the replicates of the sample of interest. Thus, would require
much less preparation, or would it? The answer is: it depends. It
depends on whether the laboratory sequencing the samples has made
internal calibration and validation of the machines (PCR, sequencing,
etc.) and kits used to perform the sequencing. If they have, then
the samples sequenced during validation can be used as a workflow
database. The samples used to create the workflow database would
not need to be obtained from dilution series experiments, though these
could be included if needed as long as the DNA profile of the sample
donor is known. The workflow database can be extended over time, as
any sample even from unknown donors can be used. Thus, after cre-
ating e.g. reference samples or samples used for parentage testing, the
resulting sequenced samples can be added to the workflow database.
Furthermore, the workflow database would also be needed to estimate
the slope parameters of the (BLMM) stutter model [24]. Thus, having a
workflow database would still be implicitly necessary even if we used
the replicate approach.
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In creating the Poisson-gamma coverage model, we matched the
mean as close to current CE methods as possible. However, the vari-
ance of the Poisson-gamma model is:

Var [Ysma] = µsma(1 + η−1
s µsma), (C.9)

as seen in Eq. (C.12). That is, the standard deviation is approximately
proportional to the mean for fixed ηs:

sd(Ysma) = (µsma + η−1
s µ2

sma)
1/2 ≈ (η−1

s µ2
sma)

1/2 = η−1/2
s µsma,

for large values of µsma.
The most common CE peak height models define the mean to be

proportional to the variance (in case of the gamma model see Eq. (C.2),
but is also true for the log-normal model used by STRmix [17]). We
can create an equivalent Poisson-gamma model by assuming

Var [Ysma] = µsma(1 + θs), (C.10)

where θs is the new overdispersion parameter. This parameterisation
is usually called the Poisson-gamma model of order 1, or PG1 model,
because the variance is proportional to the mean to the power of 1. Us-
ing similar reasoning, the Possion-gamma coverage model in Eq. (C.9)
is called the PG2 model, as the variance is approximately proportional
to the mean squared. We compared the performances of the PG1 and
PG2 models to each other, as described in Section 2.5. Figure C.3
shows the observed Brier scores against the expected Brier scores for
the PG1 and PG2 models. Focusing on the blue coloured points and
shading, the figures shows that the PG1 model is inferior to the PG2
model whether thresholds were applied or not.

During the preliminary analyses, early results showed that the cov-
erage of homozygotes might not necessarily be twice that of heterozy-
gotes, and that this effect might be marker dependent. Therefore, we
also tried to estimate a marker dependent homozygote scaling factor.
The Brier-scores of the estimated models are shown in Figure C.3. The
red and blue coloured points (and shadings) correspond to the case
where the homozygote scaling factors were estimated using a refer-
ence approach, and the case where the homozygote scaling was set to
two for all markers, respectively. It is evident that for the PG2 model,
there is no difference between the predictive capabilities whether the
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Fig. C.3: The observed and expected Brier scores of 96 samples in a dilution series.
The solid line is the one-to-one relationship between the observed and expected Brier
scores. The shaded areas were created by connecting the confidence intervals of each
sample. The marker dependent parameters of the Poisson-gamma model were es-
timated using the reference approach. The samples were fitted using the PG1 and
PG2 models shown on the left and right column, respectively. The bottom and top
rows shows results with and without thresholds, respectively. The red and blue dots
shows the Brier scores when estimating the homozygote scalars and fixing them at 2,
respectively.

homozygote scaling factor was estimated or set to two. We will note
that, if the homozygote scaling was different from two, it would imply
that the coverage is not necessarily additive. This implication would
not just effect homozygotes. When analysing a two person mixture,
if both contributors have a common allele, the coverage of said allele
would not be the sum of the individual coverages provided by each
of the contributors. That is, if this was true, then it would have disas-
trous consequences for the usage of the MPS technology. However, as
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we found no difference in the predictive capabilities and we did not
find any biochemical reason for this behaviour, we recommend using
the PG2 model with a fixed homozygote scaling factor of two.

Appendices

A The Poisson-gamma distribution

Assuming that the coverage of sample s, marker m, allele a, denoted
Ysma, follows a Poisson-Gamma distribution with mean µsma and dis-
persion ηs, then the probability of observing ysma is given as:

P (Ysma = ysma|µsma, ηs) =
Γ(ysma + ηs)

Γ(ysma + 1)Γ(ηsma)

µ
ysma
sma η

ηs
s

(µsma + ηs)
ysma+ηs

,

where Γ(x) is the gamma function. The mean and variance of Ysma are
given as:

E [Ysma] = µsma and (C.11)

Var [Ysma] = µsma(1 + η−1
s µsma). (C.12)

B Expectation and variance of the Brier score

Assume dn follows a Bernoulli distribution with parameter pn for n =

1, ..., N, then the Brier score is given as:

B(d, p) =
1
N ∑

n
(dn − pn)

2. (C.13)

Furthermore, assuming that dn is independent of dm when n 6= m,
then taking the expectation of Eq. (C.13) yields:

E [B(d, p)] =
1
N ∑

n
E
[
(dn − pn)

2]
=

1
N ∑

n
pn(1− pn)

= p̄(1− p̄)− 1
N ∑

n
(pn − p̄)2.
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The variance of the Brier score is:

Var [B(d, p)] =
1

N2 ∑
n

Var
[
(dn − pn)

2]
=

1
N2 ∑

n
E
[
(dn − pn)

4
]
−E

[
(dn − pn)

2]2

=
1

N2 ∑
n

pn − 5p2
n + 8p3

n − 4p4
n,

where the first equality holds as we assumed dn and dm to be indepen-
dent when n 6= m.

In order to ensure that the lower and upper confidence bounds stay
between 0 and 1, we create the confidence interval on the logit-scale
by using the delta approximation, and then transforming the created
bounds back to the scale of the Brier score using the sigmoid transfor-
mation (the inverse of the logit transformation). Thus, the point-wise
confidence interval is given by:

f−1
(

f (E [B(d, p̂)])± z1−α/2

f ′ (E [B(d, p̂)])
(Var [B(d, p̂)])1/2

)
, (C.14)

where z1−α/2 is the 1− α/2 quantile of a standard normal distribution
and f (·), f ′(·), and f−1(·) are the logit function, the derivative of the
logit function, and the sigmoid function, respectively.
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Abstract

DNA mixtures frequently occur in crime cases analysed in forensic genetics.
These are convolutions of the DNA profiles of each contributor to the mixture.
We introduce a multiple population evolutionary algorithm (MEA) used for
the deconvolution of the DNA mixtures. The mutation operator of the MEA
utilised that the fitness is based on a probabilistic model and was guided by the
deviation between the observed and the expected value for every element of the
encoded individual. The guided mutation operator (GMO) was designed such
that the larger the deviation the higher probability of mutation. Furthermore,
the GMO was inhomogeneous in time, decreasing to a specified lower bound
as the number of iterations increased. This ensured that the operator would
not fixate on the elements with large deviance residual, which could not be
improved.

We analysed 30 two-person DNA mixtures in varying mixture propor-
tions. The DNA profiles deconvoluted by the MEA were compared to the
true DNA profiles, for a series of sensitivity experiments varying the sub-
population size, comparing a completely random homogeneous mutation op-
erator to the guided operator with varying mutation decay rates, and allowing
for hill-climbing of the parent individuals. We found that using either hill-
climbing or GMO yield high quality solutions to our problem, while using
RMO and no hill-climbing yield solutions of poorer quality and using both
hill-climbing and GMO did not improve the fitness proportionally to added
computational burden.
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1 Introduction

Evolutionary algorithms, and meta-heuristics in general, have been
shown to be very versatile tools for discrete and continuous optimi-
sation in a wide range of applications [1–4]. This versatility is that
they by nature are extremely simple yet flexible. Furthermore, they
provide convergence to a global optimum, without requiring gradient
or Hessian information to search through the space of possible solu-
tions. This is achieved by repeatedly applying operators of Darwinian
evolution, i.e. cross-over, mutation, and selection, which over time will
breed better and better possible solution of the problem.

In most applications, the mutation operator is applied completely
at random. Either by setting a flat mutation rate (which may be inho-
mogeneous in time) for every element of an individual, or by choosing
the element(s) to be mutated at random. We will refer to this as the
random mutation operator (RMO). The main advantage of the RMO is
that it searches the state space thoroughly. However, if the state space
is large relative to the set of optimal solutions, then most of the steps
taken by the RMO will have little to no change of increasing the fitness
of the individual (i.e. the proposed solution).

We propose to guide the mutation, called the guided mutation op-
erator (GMO), by augmenting the probability of an element (of an in-
dividual) mutating based on the deviation seen between the observed
data and what is expected given the decoded individual. Thus, the
GMO was designed to have a larger chance of making mutation, which
will increase the fitness of the individual, at the cost of not searching
the state space as thoroughly as the RMO, and being more quickly
fixated at a local optimum. In order to compensate for these two dis-
advantages, we added multiple randomly initialised sub-populations,
and allowed for migration between these sub-population [5, 6].

The manuscript is organised as follows: Section 2 introduces the
necessary background to understand the MEA implementation. In
Section 3, we introduced the general structure of the MEA algorithm
and its operators. Section 4 contains a sensitivity study and an exami-
nation of performance of the MEA implementation. Lastly, concluding
remarks are given in Section 5.
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2 Background

A central question when DNA evidence, E , is presented in court is the
determination of the posterior odds of the evidence under the compet-
ing hypotheses of the prosecution, Hp, and defence, Hd. Given DNA
evidence, a DNA profile can be created, even from small samples of a
few hundred pico-grams. A DNA profile is created by examining lo-
cations of the DNA, called markers. The markers are chosen such that
they have a large variation in the population, but have a low mutation
rate. At each (autosomal) marker a person may take two values, called
alleles, and the collection of these alleles constitutes the persons DNA
profile. If the sample is in large quantity and contains DNA from a
single contributor, then identification is simple. However, when the
DNA is found at a crime scene, the sample can be contaminated, be in
extremely low quantity, contain DNA from multiple contributors, or
any combination thereof [7, 8]. If the sample contains DNA from mul-
tiple contributors, called a DNA mixture, then accurately representing
the posterior odds is very difficult, because the number of contribu-
tors, their relative contribution to the mixture, their DNA profiles, etc.,
are all unknowns.

In general the posterior odds of the two hypotheses can, by ap-
plying Bayes’ theorem and denoting a probability by P (·), be written
as:

P (Hd|E)
P
(
Hp|E

) =
P (E|Hd)

P
(
E|Hp

) P (Hd)

P
(
Hp
) .

The prior odds of the two hypotheses should be supplied by the
court, as it should represent the odds of the two hypotheses based on
the evidence introduced to the court prior to the introduction of the
DNA evidence. This leaves the likelihood ratio:

LR(Hd,Hp) =
P (E|Hd)

P
(
E|Hp

) ,

for which, we write LR in the remainder of the manuscript.
The prevailing method of analysing DNA evidence is by deter-

mining the length of short tandem repeat (STR) regions using capil-
lary electrophoresis (CE). In recent years, massively parallel sequences
(MPS) has started to be introduced in forensic genetics casework. MPS

157



Paper D.

offers not just the length, but the entire base composition of the STR
regions. That is, DNA samples analysed with MPS will be of higher
resolution than those analysed with CE [9].

When a DNA sample is analysed it will yield some quantitative
information y (called the coverage in the MPS setting) about some
combined genetic information gc, structurally specified by a hypothe-
sis Hi. Therefore, we can factorise P (E|Hi) as:

P (E|Hi) = P (y, gc|Hi) = P (y|gc)P (gc|Hi) .

That is, the probability of the evidence, given a hypothesis, has
two parts: (1) The probability of the quantitative information given
the genetic information [10], and (2) the probability of the genetic
information under the hypothesis, which is usually assumed to fol-
low a Dirichlet-Multinomial distribution, as described in Balding and
Nichols (1994) [11].

It is suppressed that the probability of the quantitative information
given the genetic information, P (y|gc), will depend on unknown pa-
rameters, θ, describing the uncertainty of the measuring process, the
signal intensities and the mixture proportions.

If a hypothesis, Hi, states that a contributor is unknown it is neces-
sary to sum over the set of possible unknown contributors, U , to obtain
the probability of the evidence. That is, if we assume (1) the sample
contains DNA from two contributors, (2) one DNA profile is known,
gk (this could e.g. be the victim), and (3) Hi states that the DNA is
a mixture of the known profile and a random unknown profile from
the population. The evidence under the hypothesis is E = (y, gk) and
probability of the evidence reduces to:

P (y, gk|Hi) ≈ ∑
g ∈ U

P
(
y|gk, g, θ̂U

)
P (g|gk) , (D.1)

where θ̂U is the θ maximising the sum of the probabilities:
∑g ∈ U P (y|gk, g, θ). The notation θ̂U should be interpreted as: the pa-
rameters were dependent on the entirety of the evidence, i.e. including
every possible unknown genotype. Note that this formulation of the
probability of the evidence can be extended to an arbitrary number of
known and unknown DNA profiles.

The sum over the set of unknown contributors, U , may be in-
tractable because of the size of U . In the CE setting, this problem
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is largely solved by using a Bayesian network [12, 13], by sampling
from the posterior distribution using Markov chains [14], or by simply
limiting the number of unknown contributors to cases where the sum
is tractable [15, 16]. However, as MPS is still relatively immature in
the forensic genetics setting, the methods used for analysing CE DNA
mixtures cannot be applied directly to MPS data, at least not without
modification [10].

The set U is discrete and does not have any natural ordering, mak-
ing an Evolutionary Algorithm (EA) the perfect tool. The algorithm
presented here was implemented to achieve the following two objec-
tives: (1) Find the combination of unknown genotypes maximising
P
(
y|gk, g, θ̂g

)
P (g|gk) w.r.t. g, where the subscript in θ̂g indicates that

the estimated parameters only depended on the unknown profile g
and not the entire set U , and (2) to approximate the set of combina-
tions of unknown genotypes by the Ntop unique individuals of the
largest fitness seen throughout a run of the MEA.

The first objective is of interest, as finding the optimal unknown
profile combination could be a useful place to start searching in a DNA
database for a potential suspect in cases where the investigators had
no other leads. The second objective, will be useful in stating the LR in
cases with unknown contributors. Approximating the set of unknown
contributor combinations, will make Eq. (D.1) tractable. The MEA
described below was implemented in R and C++ through the Rcpp-
packages using the Eigen, Boost, and NLopt libraries [17–24] in the
R-package MPSMixtures [25].

3 The multiple population evolutionary algorithm

We chose an MEA for the following three reasons: (1) the populations
can be run in parallel, (2) if we initialise these populations randomly,
then they will more thoroughly explore the fitness landscape, when
compared to running a single populations algorithm, and (3) it allows
us to utilise a smaller total population size, thereby, decreasing run-
time. This implementation is a variation of the parallel evolutionary
algorithm presented by Mühlenbein et al. [5, 6].

An outline of the implemented MEA can be seen in Algorithm 2.
The MEA works by segregating the total population, P , into NP smaller
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sub-populations, Pn, each containing NI individuals. The i’th individ-
ual of sub-population n will be referred to pni, dropping subscripts if
they are unnecessary or clear from context.

A single iterations of the MEA, consists of two phases:

(1) the migration phase (Algorithm 2: Line 4).

(2) the evolution phase (Algorithm 2: Lines 6-16).

During the migration phase, the NP sub-populations exchange in-
formation according to a predefined pattern. The information ex-
changed and the migration pattern is described in Subsection 3.1 be-
low. During the second phase, an EA is run on each sub-population
independently, by in turn hill-climbing each individual in the popu-
lation creating a parent, find a partner to the parent, use crossover
to create a child of the individuals, mutate the child, and determine
whether the child should replace its parent. A more detailed descrip-
tion of the selection, representation, and operators of the independent
EAs can be found in Subsections 3.3 and 3.4 below. Note that in the
entirety of this manuscript the word individual will always be used
in the EA context, i.e. an individual can describe the genetic profile
of multiple contributors (persons), whereas as person will always be
referred to as a contributor.

The implemented MEA is said to have converged when the differ-
ence between the individuals of largest fitness of each sub-population
is smaller than some ε for more than Nε iterations.

Lastly, to keep track of the Ntop unique individuals of largest fit-
ness, we created and maintained the list Ptop throughout a run of the
MEA.

3.1 Migration

When migration occurs the highest fitness individual of the sub-popu-
lation is copied and send to its neighbours, replacing the neighbours
individual of lowest fitness. The migration operator, combined with
the fact that the sub-populations were randomly initialised, creates
the following advantage: If a sub-population gets stuck at a local max-
imum, then a migration of the highest fitness individual from another
sub-population can help drag it out of the local maximum (hopefully
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Algorithm 2 Multiple Population Evolutionary Algorithm.

Input: y, gk, ε, NP , NI , Nε, Ntop

Output: Ptop

1: P : randomly initialise NP sub-populations each with NI individ-
uals.

2: Ptop: initialised as an empty list.
3: while

(
not converged

)
do

4: P ← migrate(P)
5: for

(
n from 1 to NP

)
do

6: P̃: empty sub-population.
7: for

(
i from 1 to NI

)
do

8: p̃← hillclimb(pni)

9: q← selectpartner(p̃, Pn)

10: c← crossover(p̃, q).
11: c← mutate(c)
12: if

(
F(p̃) < F(c)

)
then

13: p̃← c
14: end if
15: Append p̃ to P̃
16: end for
17: Pn ← P̃
18: end for
19: Update Ptop

20: Update convergence criteria
21: end while
22: return Ptop
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towards the global maximum, or at the very least push it towards an-
other part of the sample space).

When designing the migration operator, we needed to balance the
sharing of high fitness individuals, while simultaneously ensuring that
the high fitness individuals did not spread too quickly, as the algo-
rithm may then fixate at a local maximum. Therefore, we used the
neighbourhood structure shown in Figure D.1 (inspired by [5] and [6]).

Using this structure and assuming that an individual of higher fit-
ness was not created during this period, the minimum number of it-
erations needed for an individual to spread to every sub-population is
exactly:

d(NP + 1)/3e, (D.2)

which follows by counting the number of ways to get to all states in
both the clockwise and anti-clockwise direction.

P1 P2 P3

P4

· · ·PNP−1

PNP

Fig. D.1: The migration neighbourhood structure used in the MEA.

3.2 Solution representation and fitness

3.2.1 The set of unknown genotype combinations

Any genotype on an autosomal marker will have exactly two alleles;
they can be different or equal, called hetero- and homozygous, respec-
tively, but there will always be exactly two alleles (disregarding ex-
tremely rare events). Therefore, any genotype on a marker m with Am

different observed alleles, denoted gm, can be represented as a vector
with elements gmi ∈ {0, 1, 2}Am , with ∑i gmi = 2.
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In order to understand the shape and size of U and the solution
representation used in the EA, we start by giving a small example.

Example 3.1 (Set of genotypes)
Assume we have a single marker with three observed alleles and a
single unknown contributor, u. The possible unknown genotypes of
u are:

U1 =


1

1
0

 ,

1
0
1

 ,

0
1
1

 ,

2
0
0

 ,

0
2
0

 ,

0
0
2

 ,

i.e. a total of six possible genotypes. Note the subscript in U1 refers
to the number of unknown contributors.

In general, assuming the total number of observations on a marker
m is Am, then the number of heterozgote and homozygote genotypes
can be written as: (

Am

2

)
and Am,

respectively. Thus, for M independent markers, the size of U1 is given
as follows:

| U1 | =
M

∏
m=1

Am(Am + 1)
2

.

Furthermore, if there are U unknown contributors, then the size of UU

is
| UU | = | U1 |U .

However, as the order in which the genotypes appear will not affect
the fitness, the size of the set can ultimately be reduced to:

| UU | =
(
| U1 |+ U − 1

U

)
.
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3.2.2 Solution representation of unknown genotypes

We have encoded the genotypes of an unknown contributor using two
elements per marker. This representation has two main advantages:
(1) it simplifies the cross-over and mutation operators, and (2) it will
always require less memory.

An individual will be encoded as pointers to the non-zero elements
of the genotype matrix. Because the markers are assumed to be inde-
pendent, encoding will be performed on a marker-by-marker basis,
taking one contributor at a time.

Example 3.2 (Encoded individual)
Continued from Example 1, but assuming we have two unknown
contributors. Furthermore, assume that the genotypes of the two
unknown contributors are given by the matrix:

g =

1 1
0 1
1 0

 , (D.3)

where the first and second columns correspond to the first and sec-
ond unknown contributor, respectively. Then, the encoded individ-
ual, p, of g is:

p =


1
3
1
2

 , (D.4)

where the first two elements correspond to the first contributor and
the last two elements to the second, respectively.

In general, when using the formulation seen in Eq. (D.4), it is go-
ing to require exactly 2 UM elements to store an individual, with
U unknown contributors and M markers. Compared to the NU el-
ements needed, if used the genotype matrix representation, seen in
Eq. (D.3), where N is the number of observations in the dataset, i.e.
M = ∑M

m=1 Am.
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3.2.3 Fitness of individuals

We are trying to find unknown genotype combination which max-
imises the probability of the evidence, i.e.

ĝ = arg max
g ∈ U

{
P
(
y|gk, g, θ̂g

)
P (g|gk)

}
,

where gk are the known genotypes of the mixture, and θ̂g is the esti-
mated parameters given g (as well as gk and y). Therefore, we defined
the fitness of an individual p, corresponding to the unknown geno-
type(s) g, as:

F(p; θ̂, y, gk) = P
(
y|gk, g, θ̂g

)
P (g|gk) , (D.5)

Because of the definition of the fitness, it follows that any time an in-
dividual is changed, we will need to re-estimate the θ parameters. For
notational convenience, we write F(p) instead of F(p; θ̂g , y, gk) from
this point forward.

3.3 Selection

Selection is split into two types: parent and survivor selection. The
implemented survivor selection is extremely elitist. In order for a child
to replace its parent, the fitness of the child has to be larger than the
fitness of the parent otherwise the parent survives to the next iteration.

Parent selection in this implementation works slightly differently
than in most EAs, as every individual gets to be a parent and a partner
is then selected for that parent. With the partner being selected pro-
portionally to its fitness. Furthermore, to avoid the population fixating
a single solution too quickly, we restricted the search of the partner to
a neighbourhood around the parent. That is, the probability of an
individual pj being selected as a partner of the parent pi is defined as:

π(s)(pj|pi) =
F(pj)

∑k∈N (pi ,L)
F(pk)

, (D.6)

for all j ∈ N (pi, L) and zero otherwise, where N (pi, L) is the neigh-
bourhood of pi defined as:

N (pi, L) =
{
(i + l) mod NI

}
l∈[−L;L]\{0}

, (D.7)
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i.e. a window of size 2L with i as its midpoint.
The size of the neighbourhood can be used to control the time to

fixation on the sub-population level; the smaller the neighbourhood
the longer the time to fixation.

3.4 Operators

3.4.1 Crossover

Because of the nature of the implemented parent and survivor se-
lection, we have chosen a crossover operator which creates a single
child. The procedure is sketched in Algorithm 3. Given two individu-
als, a parent and its partner, the child is created by copying elements
one-by-one from either the parent of the partner (the algorithm al-
ways starts with parent). After an element has been copied, we switch
from parent to partner (or vice versa) with probability of π(c), creat-
ing a single child of the two individuals. The probability of switching
will be inversely proportional with the length of the individual, i.e.
π(c) ∝ 1/(2 UM). That is, any newly created child will have experi-
enced a single crossover event on average independent of length.

Algorithm 3 Crossover

Input: p, q, π(c)

Output: c
1: s = false
2: for

(
i from 0 to (2 UM− 1)

)
do

3: u ∼ Unif(0, 1).
4: if

(
u < π(c)

)
then

5: s = ¬ s
6: end if
7: if (s) then
8: ci ← pi
9: else

10: ci ← qi
11: end if
12: end for
13: return c
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3.4.2 Mutation

The mutation operator works on an element-by-element basis choosing
to mutate element i with probability π

(m)
i .

If we choose to mutate an element ci, then the element is changed
by drawing a random number a ∈ {1, ..., Am − 1} and updating the
element, as:

ci = (ci + a) mod Am (D.8)

Note that if an element is mutated it always changes its value, as the
’0’ state is already included as (1− π

(m)
i ) > 0 for all i.

The guided nature of the mutation is controlled through the muta-
tion probabilities. The pseudo-code of the implemented GMO is seen
in Algorithm 4.

Under the probability model given g, the observed data y will have
an expected value, ŷ. A standardised residual measures the deviation
between these two vectors. Depending on the type of model there ex-
ists different types of standardised residual. In particular, the model
used is a generalised linear model and we will, therefore, choose the
so called deviance residuals, as they are approximately normally dis-
tributed. We denote the deviance residuals by rD. With this in mind,
we defined the probability of mutating in the t’th iteration of an inde-
pendent EA, as:

π
(m)
i

(
ri, π

(m)
LB , π

(m)
UB

)
= π

(m)
UB −

(
π
(m)
UB − π

(m)
LB

) f (ri)

f (0)

(D.9)

where ri are the deviance residuals, f is the density function of a stan-
dard normal distribution, and π

(m)
LB and π

(m)
UB are a lower and upper

bound on probability of mutation, respectively. The lower and up-
per bounds were introduced to ensure that the transition matrix was
(still) fully connected. That is, they were introduced to ensure that the
method still converges towards a global maximum. We have shown a
plot of the function in Fig. D.2 with π

(m)
LB = 0.05 and π

(m)
UB = 0.95.

The probability of mutation described in Eq. (D.9) is very useful in
the beginning iterations of MEA, but becomes less and less effective
as the number of iterations increases. As it will keep mutating the
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Fig. D.2: The guided mutation probability against the residual.

same elements again and again, even if the element is as good as its
ever going to get. Therefore, we introduced an iteration dependent
upper bound which will tend towards the lower bound as the number
of iterations increased. In order to ease notation, we write π

(m)
UB,t and

π
(m)
i,t instead of π

(m)
UB (t) and π

(m)
i

(
ri, π

(m)
LB , π

(m)
UB,t

)
, respectively. The be-

haviour of the resulting probability of mutation is depicted in Fig. D.3,
using π

(m)
LB = 1− π

(m)
UB,0 = 0.05. Note that

{
π
(m)
UB,t

}
t≤0

can be taken as

any non-increasing sequence, with initial value less than or equal to
one. Thus, the rate of decay, x, can be specified as any strictly positive
real number, i.e. x ∈ R+. Setting the decay rate at x = 2 implies that
after Nmax/2 iterations the guided mutation probability is at π

(m)
LB for

every element of the individual.

3.4.3 Hill-climbing

We chose to include hill-climbing of the parents in an effort to increase
the average fitness of the population even if no of the mutated child
reached a higher fitness than the parent. Furthermore, we hill-climb
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Fig. D.3: The guided mutation probability against the residual, using an upper bound
inhomogeneous in time, hitting the lower bound after 100 iterations.

the parent before choosing its partner, thereby, giving the child the
best possible outset before mutation.

The guided hill-climbing algorithm, seen in Algorithm 5, randomly
chooses an element of the individual, creates the (Am − 1) remaining
instances of that element and would ideally re-calculate the fitness for
every instance. However, this requires re-estimating the parameters, θ,
for every instance, which is by far the slowest part of the implemen-
tation. Therefore, we will take a slightly different approach using the
raw residuals. The raw residuals are defined as the difference between
the observed and expected vectors.

If the raw residuals are negative (positive), then the expected cov-
erage is larger (smaller) than the observed coverage. If they were ex-
tremely negative it could imply that the algorithm was expecting a true
allele, but is pointing to a what is most likely noise (reversed for ex-
tremely positive residuals). In this case, we would like the algorithm
to change from pointing at the potential noise, to pointing at a true
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Algorithm 4 Guided mutation operator (GMO)

Input: c, π
(m)
LB , π

(m)
UB (t)

Output: c
1: for

(
i from 0 to (2 UM− 1)

)
do

2: m←
⌊

i
2 UM

⌋
3: a← ci

4: ri ← rD
(

yma, µ̂ma,
µ̂ma

γ̂

)
5: π

(m)
i,t ←

(
1− π

(m)
UB,t

)
−
(

1− π
(m)
UB,t − π

(m)
LB

) f (ri)

f (0)
6: u ∼ Unif(0, 1).
7: if

(
u < π

(m)
i,t

)
then

8: s ∼ Unif{1, 2, ..., Am − 1}
9: ci ← (ci + s) mod Am

10: end if
11: end for
12: return c

allele, without having to re-estimate the parameters.
Our solution was to choose the new instance, j, such that ri = −rj

(or ri + rj = 0). This would ensure that the squared residuals would
not change, and, thus, the estimated parameters would not change. In
cases where we could not find such an instance, we chose j such that
the sum of residuals got as close to zero as possible, i.e.:

j = arg min
k
|ri + rk|.

For this instance only, we estimated the parameters and compared
the fitness of the new instance to that of the parent. If the fitness of
the new instance is larger than that of the parent, then it replaced the
parent.

4 Experiments and results
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Algorithm 5 Guided hill-climbing

Input: p
Output: p

1: for
(
h from 1 to NH

)
do

2: i ∼ Unif{0, 1, ..., 2 UM− 1}
3: I : Empty list of size Am − 1.
4: for

(
a from 1 to Am − 1

)
do

5: s← p
6: si ← (si + a) mod Am

7: I [a]← s
8: end for
9: k← arg min

s∈I

{∣∣rD(pi) + rD(si)
∣∣}

10: if
(

F(p) < F(k)
)

then
11: p← k
12: end if
13: end for
14: return p

4.1 The data

The analysis presented below was based on 15 controlled two per-
son mixture experiments sequenced in duplicate, resulting in 30 two-
person DNA mixture samples. DNA from two contributors, one male
and one female, were used to create the experiments in the following
mixture ratios: 1000:1, 100:1, 50:1, 25:1, 12:1, 6:1, 3:1, 1:1, 1:3, 1:6, 1:12,
1:25, 1:50, 1:100, 1:1000.

The 30 samples were sequenced using the Illumina MiSeq and the
ForenSeq Panel B kit [26]. We restricted the analysis to the autosomal
STRs, i.e. a total of 27 markers were considered in the analysis. Fur-
thermore, the true DNA profiles of both contributors were determined
in a previous study [10, 26].

The experiments were created and sequenced at the Section of
Forensic Genetics, Department of Forensic Medicine, Faculty of Health
and Medical Sciences, University of Copenhagen, Denmark.
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Table D.1: Comparing the quality of the solution and the time to convergence, as-
suming the minor profile was known, when varying the number of sub-populations
while keeping the total population size fixed at 2,000. The quality of the solutions was
quantified by: (1) the average percentage of matching alleles and markers between the
optimal unknown major profile and the true major profile, and (2) the number of sam-
ples where the fitness of the optimal unknown major profile is greater than or equal
to the fitness of the true major profile.

Number of times
Foptimal ≥ FtrueTime (iterations) Time (hours)

# Sub-populations 2 4 8 16 2 4 8 16 2 4 8 16

M
aj

or
:M

in
or

1000:1 56 37 39 44 8.19 3.41 1.82 1.10 3 3 3 3
100:1 36 37 41 45 5.77 3.84 2.11 1.19 4 4 4 4
50:1 37 39 44 44 6.55 4.15 2.28 1.15 3 3 3 4
25:1 37 37 39 44 8.18 4.85 2.42 1.51 4 4 4 4
12:1 34 38 40 48 5.88 4 2.08 1.17 4 4 4 4
6:1 34 38 39 44 5.23 3.16 1.81 1.06 4 4 3 4
3:1 36 36 39 45 5.85 3.22 1.86 1.10 4 4 4 4
1:1 37 39 46 47 6.69 3.97 2.48 1.26 2 2 2 2

Total 28 28 27 29

4.2 Sensitivity study

We examined the effectiveness of the guided operators and the number
of sub-populations used (fixing the total population size), on the de-
convolution when assuming the profile of the contributor with small-
est amount of DNA, called the minor contributor, was known. In par-
ticular, we conducted the following sensitivity experiments:

(1) Using the RMO with the number of hill-climbing iterations at 0
or 2.

(2) Using the GMO with the mutation decay rate equal to 1/2, 1, or
2 and the number of hill-climbing iterations at 0 or 2.

(3) Using 2, 4, 8, and 16 sub-populations, with the total population
size fixed at 2,000.

In all thirteen cases, we measured the time it took to converge, in
both iterations and hours, and compared the fitness of the individual
with highest fitness, Foptimal, to the fitness of the true major profile,
Ftrue, by counting the number of samples for which the Foptimal was

172



4. Experiments and results

larger than or equal to Ftrue. Furthermore, we calculated the average
percentage of matching alleles and markers between the optimal un-
known major profile and the true major profile.

Table D.1 shows the results of the sub-population sensitivity exper-
iment, Item (3) in the list above. We see that the quality of the solu-
tions were roughly equal for all four sub-population sizes. However,
we find the strength of increasing the number of sub-population is
shown in the hours to convergence. As the number of sub-populations
doubles the median hours to convergence is reduced by a factor be-
tween 1.6 and 1.8. The reason the factor was not exactly 2 was because
the number of iterations to convergence increased with the number of
sub-populations. This is a direct consequence of the sub-population
structure, as the optimal solution would take longer to propagate
through the sub-populations as the number of sub-populations in-
creased. Furthermore, we should note that the number iterations to
convergence did not increase as much as we would have expected
looking at Eq. (D.2). This is likely due to the added diversity intro-
duced by running more randomly initialised sub-populations.

The results of the sensitivity studies outlined in Items (1) and (2),
are shown in the upper and lower part of Table D.2, respectively. Start-
ing with the upper half, we see that the speed of the mutation decay
does not have an effect on the quality of the solutions. However, the
table shows that if we do not hill-climb, then the quality of the op-
timal solutions when using RMO (the ’NA’ columns in the table) is
much lower than when using GMO. We also see that the GMO added
nearly no additional computational time. Looking at the lower part,
we see that the quality of the optimal solutions is poor only when set-
ting the mutation decay rate to 2. That is, if using hill-climbing the
mutation does not need to be guided to obtain high quality solutions.
Comparing the tables, we see that either the GMO or the hill-climbing
should be used to achieve high quality optimal solution. Furthermore,
we see that using hill-climbing significantly increased the time to con-
vergence, without increasing the quality of the solutions.

Thus, we will from this point forward use the following settings:
16 sub-populations, 125 individuals per sub-populations, 10 inner it-
erations, 250 outer iterations, mutation decay rate of 1, and no hill-
climbing.
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Table D.2: Comparing the quality of the solution and the time to convergence, assum-
ing the minor profile was known, when varying the number hill-climbing iterations,
and the mutation decay rate. A mutation decay rate of 0 is used to indicate that the
mutation was not guided, but completely random.

Hill-climbing iterations = 0

Number of times
Foptimal ≥ FtrueIdentical alleles (%) Identical markers (%) Time (hours)

Mutation decay NA 1/2 1 2 NA 1/2 1 2 NA 1/2 1 2 NA 1/2 1 2

M
aj

or
:M

in
or

1000:1 0.99 0.98 0.97 0.97 0.98 0.97 0.96 0.95 0.57 0.59 0.57 0.56 1 4 4 3
100:1 0.97 0.96 1 0.99 0.96 0.93 0.99 0.98 0.59 0.58 0.66 0.64 2 4 4 4
50:1 0.96 0.97 0.96 0.98 0.95 0.96 0.94 0.97 0.65 0.61 0.64 0.64 1 4 3 3
25:1 0.96 0.96 0.98 0.95 0.93 0.94 0.96 0.93 0.62 0.82 0.86 0.80 2 4 4 4
12:1 0.96 0.97 0.96 0.99 0.93 0.95 0.93 0.98 0.90 0.59 0.64 0.60 4 3 4 4
6:1 0.98 0.99 1 0.99 0.97 0.98 0.99 0.98 0.56 0.56 0.58 0.54 4 4 4 4
3:1 0.94 0.96 0.97 0.96 0.92 0.95 0.96 0.93 0.56 0.56 0.58 0.56 4 4 4 4
1:1 0.91 0.94 0.94 0.92 0.84 0.88 0.88 0.88 0.69 0.79 0.70 0.72 2 2 2 2

Total 0.96 0.97 0.97 0.97 0.94 0.94 0.95 0.95 0.90 0.82 0.86 0.80 20 29 29 28

Hill-climbing iterations = 2

Number of times
Foptimal ≥ FtrueIdentical alleles (%) Identical markers (%) Time (hours)

Mutation decay NA 1/2 1 2 NA 1/2 1 2 NA 1/2 1 2 NA 1/2 1 2

M
aj

or
:M

in
or

1000:1 0.99 0.97 0.99 0.99 0.97 0.94 0.98 0.98 1.27 1.77 1.29 1 3 3 3 1
100:1 0.99 0.98 0.99 0.98 0.97 0.97 0.98 0.96 1.36 1.57 1.33 1.07 4 4 4 3
50:1 0.99 0.98 0.98 0.98 0.98 0.96 0.97 0.96 1.28 2.35 1.59 1.15 4 3 4 3
25:1 0.98 0.96 0.98 0.99 0.96 0.95 0.96 0.98 1.76 1.64 1.37 1.43 4 4 4 4
12:1 0.98 0.96 0.98 0.97 0.96 0.95 0.96 0.95 2.57 1.20 1.11 1.18 4 4 4 4
6:1 0.98 0.98 0.99 0.99 0.96 0.96 0.98 0.98 1.19 1.05 0.95 1.05 4 4 4 4
3:1 0.96 0.97 0.96 0.96 0.94 0.94 0.94 0.94 1.21 1.10 0.99 1.51 4 4 4 4
1:1 0.93 0.94 0.90 0.91 0.86 0.88 0.82 0.84 1.72 1.44 1.19 1.22 2 2 2 2

Total 0.97 0.97 0.97 0.97 0.95 0.94 0.95 0.95 2.57 2.35 1.59 1.51 29 28 29 25

4.3 Deconvolution

For each of the 30 samples, we conducted two deconvolution experi-
ments: (1) assuming the minor profile was known, (2) assuming the
major profile was known. In both cases, we counted the number of
alleles and the number of markers the optimal profile had in common
with the true profile. The first case should be trivial, as the major pro-
file should be clear on most marker and we expected the deconvoluted
profile to be within a marker or two of the true profile, and it is used
as a benchmark for the implemented MEA [25].

The average percentage is shown in Table D.3. We found that when
the minor is known, we could correctly identify more than 94% of the
alleles and above 88% of entire markers independently of the mixture
ratio. When assuming the major is known, we saw that the number
of correctly identified alleles and markers increased steadily as the
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mixture proportions tends to an even 1:1 mixture ratio. Furthermore,
it is worth noting that when the major is known, the fitness of the
optimal individual was always larger than the fitness assuming both
major and minor were known (with the exception of the 1:1 mixture
samples). That is, the optimal minor profile always yielded a better
fitting profile than the true minor profile (not shown here).

Table D.3: The percentage of identical alleles and markers, when comparing the true
profile of the unknown contributor with the optimal profile found by the MEA. The
MEA used 16 sub-populations with a size of 125, GMO with a decay of 1, and no
hill-climbing.

Identical alleles (%) Identical markers (%)

Known major Known minor Known major Known minor

M
aj

or
:M

in
or

1000:1 0.23 0.97 0.06 0.95
100:1 0.29 0.94 0.07 0.90
50:1 0.31 0.97 0.13 0.96
25:1 0.40 0.95 0.15 0.93
12:1 0.60 1.00 0.40 1.00
6:1 0.74 0.99 0.58 0.98
3:1 0.86 0.96 0.75 0.93
1:1 0.97 0.94 0.95 0.88

4.4 The set of unknown genotypes

We considered three approximations to the set of unknown genotypes,
U . Two of the approximations were based on the set of Ntop fittest in-
dividuals, denoted UNtop , found by the MEA. The third approximation
samples from the posterior distribution of the unknown genotypes,
using the Metropolis-Hastings (MH) algorithm.

The approximations will be compared by examining the probabil-
ity of the evidence (PoE), seen in Eq. (D.1), and comparing it to the
exact PoE. In order to make the calculation of the exact PoE manage-
able, we considered only a single unknown contributor. Furthermore,
we note that Eq. (D.1), can be written as

∏
m

∑
gm∈ Um

P
(
ym|gmk, gm, θ̂U

)
P (gm|gmk) , (D.10)
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because the markers were assumed conditionally independent, given
the parameters. This formulation of the PoE simplifies both the cal-
culation of the exact PoE and the sampling, as it can be performed
on a marker-by-marker basis. However, the estimated parameters still
depends on the entire set U .

The MEA produces entire unknown genotypes and, thus, the for-
mulation in Eq. (D.1) is more appropriate than the formulation intro-
duced in Eq. (D.10). Therefore, the first approximation using the MEA,
will directly employ the set UNtop in Eq. (D.1). The second MEA ap-
proximation takes the unique genotypes on every marker of UNtop to
approximate Um in Eq. (D.10).

As we were primarily interested in the approximation to the set
U , we will use the same parameter estimates in all four cases. We
chose to use the parameters estimated using UNtop . This eliminates
the variability introduced by re-estimating the parameters in each of
the four cases, thereby, making the comparison as fair to the MEA as
possible.

In all three cases, the approximations of the PoE, p̂(E), were com-
pared to the exact PoE, p(E), by the absolute relative difference, i.e.∣∣∣∣ p(E)− p̂(E)

p(E)

∣∣∣∣ .

The MH approximation took 10,000 steps for each marker, totalling
280,000 iterations, starting at the individual with the highest fitness,
in the list of fittest individuals returned by the MEA. Starting in the
optimal individual we eliminated the need for a burn-in, as we are
expected to start the sampling in a high-posterior region.

Figure D.4 shows the relative difference between each of the three
approximations and the exact PoE. We see that the MH method pro-
vides by the best approximation of the three approaches. This is to be
expected as the number of profiles sampled (N = 280,000) in the MH
method by far outweighs the number of profiles stored by the MEA
(N = 1,000). Regarding the two types of MEA approximation, we see
that relative difference of the second MEA approximation is always
smaller than or equal to the first MEA approximation. In particular,
we note that the relative difference of the second MEA approximation
never exceeds 0.5%, while the first approximation stays below 3% (in
most cases below 2.5%), when compared to the exact PoE.
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Fig. D.4: The relative difference for each sample. The abscissa axis is labelled accord-
ing to the mixture ratio of the two contributors (C1 and C2) to the sample (shown
as C1:C2). The relative difference is shown for all three approximation methods, and
assuming that either the minor or major contributors profile was known. MEA 1 and
2 represents the approximations using UNtop directly and using the unique genotypes
on a marker-by-marker basis, respectively. MH is the Metropolis-Hastings sampler,
sampling genotypes on a marker-by-marker basis.

Lastly, we see that if minor profile was known then there was no
difference between the MEA and MH approximations, as the optimal
profile will tend to dominate the sum.

5 Concluding remarks

The implemented MEA takes, for a single unknown contributor, ap-
proximately an hour to converge when not using any hill-climbing,
with hill-climbing this increases to approximately two hours, as seen in
Tables D.1-D.3. This increase in computational time is a consequence
of needing to re-estimate the parameters in every hill-climbing itera-
tion. Thus, when using hill-climbing the MEA needed to estimate the
parameters an additional two times for every individual in every pop-
ulation in every inner iteration of the algorithm. Because of the model,
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the parameter estimation is a slow process which takes between 100
and 180 milliseconds, dependent of the encoded individual. Thus, we
could achieve a large decrease in computational time by reducing the
time it take to estimate the parameters. Whether this is achieved by
using a different optimisation routine, or by approximating the param-
eter estimates and/or the likelihood, we have left to future research.

It should also be noted that the size of the sub-populations was
higher than strictly necessary, which is why the results were fairly con-
sistent between the methods. Decreasing the number of individuals in
every sub-populations would also greatly decrease the computational
time of the algorithm. Furthermore, we saw no real consequence in in-
creasing the number of sub-populations. It could be interesting to run
a wider range of sub-populations to see if this holds true as long as
we have enough free arithmetic cores available, or if we hit a plateau
at some point.

From our sensitivity studies it would seem that as long as we have
something guiding the evolution of the individuals, then the algorithm
returned high quality solution to our problem. However, using both
hill-climbing and GMO was a waste of computational resources. This
could also be a consequence of the relatively large total population
size. That is, using both hill-climbing and GMO may still be beneficial
for smaller population sizes.

Lastly, from section 4.4, it should be clear that the approximation
of the PoE should be made using the MH sampler. However, that does
not imply that the list of fittest individuals found by the MEA, denoted
the Ntop-list, is not useful, as the implemented MH sampler depends
on the parameters estimated using the Ntop-list. Thus, Ntop should still
be larger than one, even when not used to approximate the PoE. Fur-
thermore, it should be noted, that if the parameters were not estimated
and assumed known, then the MH sampling would become a lot more
complicated, as the markers can no longer be sampled independently.
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Abstract

We updated the Poisson-gamma coverage model, presented in Vilsen et al. [1],
to better analyse DNA mixture samples quantified by Massively Parallel Se-
quencing (MPS). The updated model accounts for an arbitrary level of stut-
tering, sample adaptable estimates of the marker imbalances, and a slight
change to the variance of the model. The updated model was used to anal-
yse both between and within sample normalisation, an approximation of the
Poisson-gamma distribution, and the estimated mixture proportions of the
major contributor to a series of two person mixture samples quantified using
the ForenSeqTM DNA Signature Prep Kit.

The relationship between the major and minor contributor was main-
tained, i.e. we observed no within sample normalisation. Furthermore, we
found that the between sample normalisation used did not force the number
reads of each sample to be equal, contrary to Vilsen et al. [2]. Instead an
upper limit to the allowed amount of template DNA is set. This implied that
the coverage of the samples would be proportional to the amount of template
DNA used, as long as the amount of template DNA did not raise above the
upper limit. We approximated the updated Poisson-gamma coverage model
using a gamma distribution with equivalent mean and variance. We found
the gamma distribution to be a good approximation as long as the amount of
template DNA was larger than 62.5 pg (an average coverage of approximately
of 25). In samples with less than 62.5 pg template DNA, we start observing
allele drop-outs. These are naturally handled by the Poisson-gamma model,
but not the gamma model. Lastly, we saw that the average relative difference
between the estimated and true mixture proportion of the major contributor
was less than 2%.
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1 Introduction

When DNA is found at a crime scene it may be in low quantity, de-
graded, contain DNA from more than one contributor, or some com-
bination thereof. If the sample contain DNA from more than a single
contributor it is referred to as a DNA mixture. The prevailing tech-
nique for quantifying short tandem repeat (STR) regions is capillary
electrophoresis (CE) [3, 4]. The CE quantification yields information
about the amount of DNA fragments of a given length found in the
sample. However, with the introduction of Massively Parallel Sequenc-
ing (MPS) to forensic genetics casework [5–12], we can now obtain the
base composition of the STR regions of the DNA sample. That is, MPS
offers a higher resolution of the alleles than CE. This added resolution
will be useful in determining the contributors to a mixture as well as
their relative mixture proportions [12]. Thus, we want to model DNA
mixtures quantified by MPS.

It is not possible to directly translate the methods utilised for DNA
mixture samples quantified by CE to the MPS setting. However, as
both the CE and the MPS processes are based on polymerase chain
reaction (PCR) amplification, some of the lessons learned from CE
models were useful in the development of the MPS coverage model
[1, 13]. The MPS coverage model took the mean structure of the
’gamma model’ [14–16] and extended it to account for the MPS pro-
cess’s marker imbalances and added resolution. The MPS coverage
model modified the gamma model to: (1) account for the between
marker variation (also called marker imbalances), (2) use a predictor
of the rate of stuttering utilising the added resolution of the MPS pro-
cess, and (3) change the choice of distribution.

A step in any MPS workflow is sample normalisation [2]. Sample
normalisation is necessary, because more than one sample can be anal-
ysed on a chip in parallel. We do not want a small number of samples
to completely dominate the chip/plate used for quantification. We dis-
tinguished between two types of sample normalisation: (1) ensuring
that every sample quantified on the chip contained the same number
of reads and (2) enforcing an upper bound on the number of reads
for each sample on the chip. Of the two types, the latter is preferred
as it may maintain the relationship between samples (if the amount
of input DNA is smaller than the upper bound), which the former
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does not. Lastly, if the reads are chosen at random, then we have also
maintained the relationship between the contributors within a sample,
independently of the type of sample normalisation used. This needs
to be investigated.

Thus, the aims of this manuscript are to: (1) update the MPS cov-
erage model of Vilsen et al. [1], (2) investigate the use of a discrete
compared to continuous distribution, as the amount of input DNA de-
creases, (3) investigate the effect of sample normalisation on the rela-
tionship between the major and minor contributor in two person DNA
mixture samples, and (4) investigate the relative difference between
the estimated and true mixture proportions in two person mixtures, as
the true mixture relationship changed from 1000:1 to 1:1 between the
major and minor contributors.

2 Material and Methods

2.1 Experimental data

DNA libraries were build using the ForenSeqTM DNA Signature Prep
Kit (Illumina R©) Primer Mix A and B. Primer Mix A amplifies markers
for human identification (HID), while Primer Mix B amplifies the same
HID markers plus ancestry informative markers (AIMs) and markers
associated with eye and hair colour. DNA sequencing was performed
with the MiSeq FGx (Illumina R©) as previously described [17, 18].

DNA was extracted from blood samples and buccal swabs collected
on FTA cards from 363 individuals. The samples were amplified and
sequenced in duplicate. The data consists of two parts:

• Dilution series of DNA were created from four contributors. The
DNA was amplified and sequenced in triplicate using Primer
Mix A. The amounts of DNA in each series were 1 ng, 500 pg, 250
pg, 125 pg, 62.5 pg, 31.25 pg, 15.63 pg, and 7.86 pg. A consensus
DNA profile from each individual was generated based on all
experiments with 1 ng input.

• Fifteen two person DNA mixture samples (in proportions: 1:1,000,
1:100, 1:50, 1:25, 1:12, 1:6, 1:3, 1:1, 3:1, 6:1, 12:1, 25:1, 50:1, 100:1,
and 1,000:1) were made with a male and a female contributor.
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The total amount of DNA was 1 ng in all cases. The DNA mix-
tures were amplified and sequenced in duplicate using Primer
Mix B. The profiles of the two contributors were known.

Sequences were identified using STRait Razor v3.0 [19] and anal-
ysed through the statistical software R [20] using the package STRMPS
found on cran. STRait Razor was only used to identify the STR re-
gions by the flanking region sequences [5] and aggregate the unique
sequences. STRMPS was used to reduce the number of unique strings,
by applying the quality reduction method seen in Appendix A, and to
analyse the reduced samples.

2.2 The MPS coverage model

The MPS coverage model includes three major modifications of its CE
counterparts: (1) accounting for marker imbalances due to the imma-
turity of the MPS process, (2) prediction of stutter rates due to the
added resolution of the MPS process, and (3) a change in distribution
due to the inherent nature of the MPS process.

2.2.1 Marker imbalances

Fig. E.1 shows the coverages of all autosomal markers in the ForenSeqTM

DNA Signature Prep Kit for both Primer Mix A and B of 366 samples
of 1 ng sequenced in duplicate (not shown here) [18]. The ordinate axis
of the figure is shown on a log10 scale and, thus, we clearly observe
large difference in coverage between markers. Furthermore, the figure
shows that the variation between Primer Mix A and B was consistent
across markers (with the exception of markers D22S1045, D5S818, and
D9S1122).

We account for the marker imbalances, in accordance with Vilsen
et at. [1], by introducing a parameter β = (β1, β2, ..., βM)T, where M
is the number of markers. Furthermore, Vilsen et al. [1] concluded
that it would be most beneficial to estimate the marker imbalance, on
a workflow database, a database of samples sequenced with the same
technology, primer mix, and settings (e.g. the same number of PCR
cycles, preparation, and so on), as the sample to be analysed. We
denote the maximum likelihood estimate of the marker imbalance pa-
rameters found by using a workflow database by β̂, where we require
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Fig. E.1: The observed coverage for all autosomal markers in both Primer Mix A and
B.

∑M
m=1 β̂m = M to avoid over-specification of the model.

2.2.2 Stuttering

Due to the added resolution of the MPS process it is now possible to
identify multiple stutter sequences of an allele and multiple parental
alleles of a stutter sequence. We account for this effect, by introducing
a more refined predictor of the stutter ratio, called the Block Length
of the Missing Motif (BLMM) [13]. We align a sequence to a poten-
tial parent sequence identifying the region (down to a block) and the
missing motif. The length of the block, which is missing a motif is the
BLMM.

To illustrate the concept, assume we have observed a parental allele
sequence:

[AATG]10[ACTT]4,

and a stutter sequence:

[AATG]10[ACTT]3.

Aligning the stutter to the parent left-to-right, we identify a missing
ACTT motif from the [ACTT]4 block. Yielding a BLMM of 4. Thus, the
BLMM is an extension of the Longest Uninterrupted Stretch (LUS)
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concept. However, instead of using the length of the longest stretch,
we use the length of the stretch missing a motif, where the LUS in the
example above would be 10.

The relationship between the stutter ratio and the BLMM can be
shown to be linear through the point (1, 0). The slope parameters of
this linear model can be estimated using a workflow database.

A simple consequence of the increased resolution is that we need
to account for every stuttering from every potential parent. That is,
the coverage received from stuttering is given as:

s(1)mac = ∑
A∈P(a)

ξm(a, A)gmAc, (E.1)

where ξm(a, A) is the predicted stutter ratio for sequence a and po-
tential parent sequence A on marker m, P(a) is the set of potential
parents of a, and gmAc is the number of allele A that contributor c has
on marker m, i.e. gmAc ∈ {0, 1, 2}.

2.2.3 Change in distribution

The coverage of a sequence is synonymous with the count of the se-
quence. Thus, it is natural to model the coverage as count data. In the
past, we have modelled the coverage using a Poisson-gamma distribu-
tion of order 2, PG2. The following sections highlight the differences
between our previous and present work.

2.2.4 The original coverage model

In summary: The model, presented in Vilsen et al. [1], assumed the
following: The coverage of allele a of marker m, denoted yma, followed
a PG2 distribution with mean µma and over-dispersion η, where the
mean is given as:

µma = νβ̂m

C

∑
c=1

[
gmac + s(1)mac

]
ϕc,

where ν can be interpreted as the average coverage of heterozygotes in
the sample if the sample contains a single contributor and no artifact
(e.g. no stutter sequences, no drop-ins, etc.), ϕc is the relative contri-
bution to the DNA mixture of contributor c, and s(1)(a, c) is given by
Eq. (E.1).
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2.3 Updating the coverage model

During preliminary analyses and related work, we have found some
features of the MPS coverage model lacking in each of the three items
recapped above. Therefore, we re-evaluated each of the three items in
turn, updating the MPS coverage model.

2.3.1 Marker imbalances

Even though the marker imbalances estimated on a workflow database
worked well when comparing the observed and expected Brier scores
[1], a closer examination of the marker imbalances exhibited in the
DNA mixture samples showed a large deviation from the marker im-
balances estimated on a workflow database.

Therefore, we chose to estimate the marker imbalances using the
following method-of-moments (MoM) estimate that is only dependent
on the sample itself:

βMoM
m =

∑
a

yma

1
M

∑
m,a

yma
.

Furthermore, to utilise the information of the database, we created
a convex combination of β̂ and βMoM:

β̃λ = λβ̂ + (1− λ)βMoM, where λ ∈ [0; 1] (E.2)

and λ represents the weight/belief we assign the workflow database.
The closer λ gets to 1, the more weight we put on the workflow
database based estimates, β̂. Whereas the closer it gets to 0, the more
emphasis we put on the moment based estimates, βMoM. In this paper,
the λ parameter is set to 0.2. This choice was heuristic, as estimation
should always lead to λ = 0.

2.3.2 Stuttering

Because of the very skewed mixture relationships analysed in this
manuscript, it can be helpful to not only account for stutters but also
double stutters. Using the notation in Eq.(E.1), we account for double
stutters as:

s(2)mac = ∑
A∈P(a)

ξm(a, A)
(

gmAc + s(1)mAc

)
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= ∑
A∈P(a)

ξm(a, A)

(
gmAc + ∑

B∈P(A)

ξm(A, B)gmBc

)
,

where it is assumed that the distance between a and A, and A and B,
are exactly one motif apart.

Note that this recursion can be extended to any level of stuttering.
Assuming that s(0) = 0, i.e. implying that the allele itself was not also
its own stutter, we can account for i > 0 levels of stuttering as:

s(i)mac = ∑
A∈P(a)

ξm(a, A)
(

gmAc + s(i−1)
mAc

)
.

For most practical applications i ≤ 3, as any contributions from the
fourth level would be minuscule. To see how small, assume that we
have two sequences four motifs apart, each with a coverage of 1,000
and that we have a stutter ratio of 0.15 in all four levels of stuttering
(which is a high stutter ratio), then coverage received from this fourth
level sequence would be close to 0.5, compared to a coverage of 1,000.

2.3.3 Change in distribution

Preliminary analyses have shown that using the PG2 distribution will
make deconvolution of the profiles in a DNA mixture difficult. Using
the PG2 distribution, we saw poorer performance when aggressively
optimising with respect to the minor profile at the cost of major. This
is due to the very large variance of the PG2 distribution, primarily
affecting the major component by reducing its influence on the opti-
misation. Therefore, we will change from the PG2 distribution to the
Poisson-gamma distribution of order 1, PG1. This made the variance
of the updated MPS coverage model equivalent to the CE based mix-
ture models.

2.3.4 The updated coverage model

In summary, we assumed that the coverage of allele a of marker m,
denoted yma, followed a PG1 distribution with mean µma and over-
dispersion γ, where the mean was changed to account for the chal-
lenges outlined in Sections 2.3.1 and 2.3.2, yielding:

µma = νβ̃λ,m

C

∑
c=1

[
gmac + s(2)mac

]
ϕc, (E.3)
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where the parameters of the updated coverage model should be inter-
preted described above.

3 Results

3.1 Between sample normalisation

Vilsen et al. (2017) [2] showed that the coverage of the samples quanti-
fied by the Ion PGM HID STR 10-plex were normalised between sam-
ples based on the IonExpress Barcode Adaptors. That is, it utilised the
first type of sample normalisation discussed in the introduction. This
was not the case for the ForenSeqTM DNA Signature Prep Kit.

Fig. E.2 shows the total coverage of each sample in the dilution se-
ries experiments. The figure shows that the total coverage decreased
as the amount of template DNA decreased. Futhermore, the figure
also shows that as the amount of template DNA increases the total
coverage tends towards an upper limit. That is, the samples quantified
using the ForenSeq kits utilised the second type of sample normalisa-
tion. In this case, the sequenced samples were limited to a maximum
of 1 ng of template DNA, per the Illumina Forenseq Prep-kit recom-
mendation [21].
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Fig. E.2: The total coverage against the amount of template DNA for all samples in
the dilution series experiments.
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3.2 Within sample normalisation

We examined the within sample normalisation by comparing the cov-
erage of the alleles of the minor and major contributors, which they did
not share and were not in stutter positions. The coverage was scaled by
the number of alleles of the contributor and scaled by a marker imbal-
ance parameter, making the observations comparable across markers
whether or not the contributor is a hetero- or homozygote.

We compared the scaled coverage with the relative amount of input
DNA for each of the contributors to the mixture (Fig. E.3). The figure
shows that the relationship between the major and minor is main-
tained. Thus, we did not see any coverage normalisation between the
alleles within the DNA mixture samples.
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Fig. E.3: The scaled coverage against the relative amount of template DNA.

3.3 Comparing choice of distribution

We wanted to examine the effect of using the gamma distribution as an
approximation to the Poisson-gamma distribution. Therefore, we esti-
mated the parameters of the model with the mean described in Section
2.3.4 assuming the coverage followed a gamma and PG1 distribution,
respectively. We then constructed and visually inspected P-P plots.

In general, if the amount of template DNA was larger than 31.25
pg, then the two methods were almost identical. This is to be expected
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4. Summary

as with large enough coverage the gamma distribution is a good ap-
proximation of the PG1 distribution. Fig. E.4 shows examples of P-P
plots of the two models. The amount of template DNA was 62.5 pg
and 31.25 pg as shown in the top and bottom rows of the figure, re-
spectively. The top row shows that the two models were almost iden-
tical (as expected). While in the bottom row we see that the P-P plot
of the gamma model is very far from the one-to-one line. This diver-
sion is caused by a dramatic increase in the number of drop-outs in
the data. This highlights one of the strengths of using the PG1 dis-
tribution, namely that drop-outs can be easily handled by setting the
coverage of a drop-out to zero.

3.4 Examining the estimated mixture proportions

We estimated the parameters under the coverage model described in
Section 2.3.4. The estimated mixture proportions shown in Fig. E.5
against the true mixture proportions of the major contributor for each
of the DNA mixture samples. We see that the coverage model tends
to underestimate the true mixture proportions with the exception of
the 1:1 mixtures. However, on average the relative difference between
the true and estimated mixture proportions was less than 2% (data not
shown here).

4 Summary

We updated the coverage model from using the PG2 distribution to
using the PG1 distribution, thereby reducing the variance of the cov-
erage model making it comparable with the CE based mixture mod-
els. Furthermore, we updated the levels of stutter recursion included
to account for double stutters and the method used for estimation of
the marker imbalance parameters making them more sample specific.
Furthermore, the updated coverage model estimated the mixture pro-
portions to be within a 2% relative difference on average.

We saw that the samples sequenced using the ForenSeq kit were
normalised by imposing an upper limit to the amount of template
DNA used for each sample. A direct consequence being that if the
samples analysed contain less template DNA than upper limit, then
the total coverage will be proportional to the amount template DNA.
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Fig. E.4: P-P plots of the fitted gamma and Poisson-gamma models of 62.5 pg and
31.25 pg DNA.

Note this was not the case for the samples quantified by the Ion PGM
[2]. Furthermore, we did not see any within sample normalisation of
the samples sequenced by the ForenSeq kit, i.e. the coverage relation-
ship between the major and minor contributors in the analysed two
person mixtures were maintained.

Lastly, we showed that if the amount of template DNA is larger
than 62.5 pg, then the gamma distribution was a good approximation
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utor the sample is denoted by a dot. While the sample was denote by a cross when C2
was the major contributor. The dashed line corresponds to a one-to-one relationship.

of the PG1 distribution yielding almost identical P-P plots. That is,
as along as the coverage is large enough it can be modelled using a
continuous distribution, in this case, a coverage larger than 25.
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Appendix

A Reducing the number of base-calling errors

Our aim was to avoid thresholding by modelling the noise separately
from the allele signals and the systematic errors (primarily stutters).
Identifying the STR regions of e.g. a ForenSeq-kits fastq file with ap-
proximately 300,000 to 400,000 reads by searching for flanking regions
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(by using STRaitRazor version 3 [19]) results in approximately 4,000 to
6,000 unique strings. Restricting ourselves to the autosomal markers
and assuming a single contributor, then approximately one hundred
of these strings would be either alleles or systematic errors (leaving ap-
proximately 3,900 to 5,900 unique strings contributed to general noise).
An important question is: can the number of remaining strings (i.e.
the noise) be reduced? That is, could we determine from which ’true’
strings the noise originated? And could we use this information to
increase the coverage of the ’true’ strings using the coverage of the
strings found among the sequencing errors?

The reduction in the number of unique strings will be based on the
base qualities provided in the fastq files by analysing the probability
of bases having been called erroneously. In the remainder of this ap-
pendix, we will for simplicity restrict the discussion to a single marker
and strings of equal length. As the aim is to distinguish isoalleles from
base calling errors.

A.1 The quality of a base

The quality of a sequenced/called base is defined as a transformation
of the probability of the base having been called erroneously. Today,
the most common definition of the quality is the Phred score. Given
the probability that base n was called erroneously, pn, the Phred score
is defined as:

qn = −10 log10(pn). (E.4)

Thus, given quality, qn, the probability, pn, is easily recovered:

pn = 10−qn/10. (E.5)

Given a string s (seen as a vector of characters i.e. bases) of length
N and the corresponding vector of probabilities p, we want to find the
probability that every base of s was called correctly. If the bases could
be considered independent, this probability would simply be:

P (s is correct) =
N

∏
n=1

(1− pn). (E.6)

However, if a base is called erroneously, it may not necessarily be
reflected in the quality of that base, but it may affect the quality of
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the surrounding bases due to a sliding window. Thus, the base qual-
ities are not independent. Therefore, we will instead of using pn di-
rectly compensate for the quality of the surrounding bases by using
πn, which is defined as:

πn = max
j∈δ̄(n,l)

{
pj

|n− j|+ 1

}
,

where δ̄(n, l) is a neighbourhood of n, including n itself, of size at
most 2l bases. That is, we weight the probabilities in a neighbour-
hood around base n by its distance to n and take the largest weighted
probability as πn.

Given two strings si and sj, we want to calculate the probability
of si actually being the string sj with some number of miscalled bases
denoted si ≡ sj:

P
(
si ≡ sj and sj is correct

)
= P

(
si ≡ sj|sj is correct

)
P
(
sj is correct

)
.

(E.7)

Assuming we know the probability of error of each base of the
string si, denoted pi, then the conditional probability in Eq. (E.7) can
be written as:

P
(
si ≡ sj|pi, sj

)
=

N

∏
n=1

(1− πin)
1−In(πin)

In , (E.8)

where In = I
[
sin 6= sjn

]
, i.e. a function indicating whether sin is equal

to the ’truth’ sjn.
The probability that the string ’is correct’ could be based entirely

on the quality, in which case it would be given by Eq. (E.6). However,
defining it in this way would entirely ignore the information found in
the coverage. Therefore, we have defined the probability of a string
being correct as:

P
(
sj is correct

)
= wjP

(
sj does not contain base errors

)
, (E.9)

where P
(
sj does not contain base errors

)
is given directly by Eq. (E.6)

and the weight, wj, of sj is given by:

wj =
yj

K

∑
k=1

yk

, (E.10)
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where yk is the coverage of string sk and K is the number of strings of
length N. This further emphasises that our approach is heuristic and
not analytic.

A.2 Reduction approach

At a given STR marker, assume we have observed a set of strings of
length N, S = (s1, s2, ..., sK) and the coverage of each string given by
y = (y1, y2, ..., yK). A matrix of joint probabilities is constructed as
given by Eq. (E.7) denoted V ∈ RK×K. Given the matrix V, we find the
index of largest probability of every column, i.e.

k(i) = arg max
j
{vji}.

As the largest probability of the i’th column is k(i), we say that
the string si is actually the string sk(i), but called with errors, and we
remove si from further consideration. In cases where the coverage is
low, it can be beneficial to retain the information of the coverage of
the string si and add the coverage of si to the coverage of sk(i). The
probability matrix V can be constructed by calculating every pairwise
combination of Eq. (E.7) for the strings in S.

However, we are generally not interested in finding new variants
when analysing mixtures. Therefore, we propose the following scheme
using a database of ’true’ (or ’trusted’) STR variants.

Assuming we have database of ’true’ STR variants (of the specified
marker and length) denoted T = (t1, t2, ..., tM). At this point, we can
take the problem in two directions dependent on whether we want to
allow for the survival of any variants. If we do not want this, we just
want to calculate the probability of every string in the set S being a
variant of a string in the set S∩ T . If we want to allow for the survival
of variant strings, we still need the first part, but in addition, we also
want the probability of the strings not in S ∩ T (i.e. S\T ) being called
correctly. Note: if S ∩ T = ∅, then we would have to calculate every
possible pairwise combination.

By the definition of T , it follows that P (si is correct) = 1 for all
si ∈ S ∩ T . Thus, calculating the joint probability in Eq. (E.7) is re-
duced to calculating the conditional probability in Eq. (E.8). That is,
we calculate P

(
si ≡ sj|pi, sj

)
for every si ∈ S and sj ∈ S ∩ T , creat-

ing a matrix, V(1), of size I × N, where I is the number of elements
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in S ∩ T (i.e. I = |S ∩ T |). Assuming, without loss of generality, that
the matrix (and the set S) is ordered such that the first I columns (el-
ements) corresponds to the strings in S ∩ T , then the matrix will have
the following structure:

V(1) =


1 0 · · · 0 P

(
sI+1 ≡ s1|pI+1, s1

)
P
(
sI+2 ≡ s1|pI+2, s1

)
· · · P

(
sN−I ≡ s1|pN−I , s1

)
0 1 · · · 0 P

(
sI+1 ≡ s2|pI+1, s2

)
P
(
sI+2 ≡ s2|pI+2, s2

)
· · · P

(
sN−I ≡ s2|pN−I , s2

)
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 P

(
sI+1 ≡ sI |pI+1, sI

)
P
(
sI+2 ≡ sI |pI+2, sI

)
· · · P

(
sN−I ≡ sI |pN−I , sI

)
 .

If we do not want to allow for any variants, then we set V = V(1)

and find the ’true’ string for every string in S as described above.
If we want to allow the variant strings (i.e. strings in S\T ) a chance

to survive, we need the probabilities of these strings having been called
correctly. Note we are not interested in the probability of the strings
in S ∩ T are called correctly, as they are assumed correct given T .
Furthermore, we were not interested in the probability of a variant
string was in fact just another variant string having miscalled bases.

Thus, for each string in S\T , we calculate the probability of the
string was called correctly, using Eq. (E.9). Assuming, as before, that
the first I columns corresponds to the strings in S ∩ T , we have de-
fined a matrix V(2) of size (K − I)× K, taking the form V(2) = [O J],
where O is a I × I matrix of zeroes and J is the diagonal matrix
{diag(P

(
sj is correct

)
) | j ∈ S\T }. The matrix V is then constructed

as:

V =

[
V(1)

V(2)

]
,

and the index of the largest probability is found as discussed above.
Using this approach, we can reduce the number of unique strings

from 4,000-6,000 to less than 500. At the same time, we keep the cov-
erage of the sample the same by adding the coverage of the strings in
S\T having been assigned a ’true’ string in S ∩ T to the ’true’ string.
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