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Abstract: Self-contained electro-hydraulic cylinders have the potential to replace both
conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency,
plug-and-play installation, and reduced maintenance. Current commercial solutions of this
technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost
efficiency and power applications below five [kW]. Therefore, there is the need of developing more
flexible systems adaptable to multiple applications. This research paper offers a contribution in this
regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding
capability, sealed tank, capable of recovering energy, and scalable up to about eighty [kW]. The system
implementation on a single-boom crane confirms its feasibility: The position tracking error remains
well within ±2 [mm], oscillations are limited, and the overall energy efficiency is about 60 [%]
during actuation. Concerning the passive load-holding devices, it is shown that both vented and
non-vented pilot-operated check valves achieve the desired functioning and can hold the actuator
position without consuming energy. Additional observations about the size and the arrangement of
the load-holding valves are also provided. In conclusion, this paper demonstrates that the proposed
self-contained cylinder can be successfully extended to several practical applications, especially to
those characterized by overrunning external loads and the need of securing the actuator position.

Keywords: Self-contained cylinders; electro-hydraulic systems; load-holding valves; modeling

1. Introduction

Linear actuators capable of delivering high forces to perform heavy-duty operations are
commonplace in many fields of industry. Lifters, earth-moving or construction machines,
manufacturing processes, and oil drilling applications are a few examples. Since energy efficiency,
plug-and-play installation, and reduced maintenance are becoming crucial characteristics in these
areas, there is an ongoing tendency to replace standard valve-controlled hydraulic cylinders with the
electro-mechanical counterparts (e.g., roller-screw actuators directly driven by electric motors [1]).
Nevertheless, these electro-mechanical solutions are unsuitable in several applications such as offshore
oil drilling [2], mainly due to the limited reliability (i.e., unexpected impact forces and overloads
damage the screw). An alternative approach makes use of self-contained electro-hydraulic cylinders
(SCCs). They are, according to the definition used in this paper, self-sufficient linear hydraulic
actuators controlled by a local hydraulic unit that is driven by a dedicated electric motor. A sealed
tank is essential and additional components such as flow balancing valves and load-holding valves
might be required. Figure 1 provides a simplified example of a SCC, even though multiple system
architectures are conceivable. More in general, this approach intends to:

• Ensure high energy efficiency (i.e., suitable hydraulic layouts are chosen),
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• Achieve compactness (i.e., the built-in components are arranged ad hoc),
• Allow plug-and-play commissioning (i.e., the system only requires a wired connection to the

electrical power source),
• Enhance flexible installation (i.e., a centralized hydraulic power supply is not required anymore,

long hydraulic transmission lines are removed, and the closed-circuit layout characterized by a
sealed reservoir can be tilted without leaking out fluid).

Countless applications will benefit from such a drive solution. A few examples are cranes, presses,
gripper arms for offshore pipe handling, marine jack plates, trailer lifts, scissors tables, positioning
systems for solar panels, and Stewart platforms.

Energies 2018, 11, x FOR PEER REVIEW  2 of 22 

 

• Allow plug-and-play commissioning (i.e., the system only requires a wired connection to the 
electrical power source), 

• Enhance flexible installation (i.e., a centralized hydraulic power supply is not required anymore, 
long hydraulic transmission lines are removed, and the closed-circuit layout characterized by a 
sealed reservoir can be tilted without leaking out fluid). 

Countless applications will benefit from such a drive solution. A few examples are cranes, 
presses, gripper arms for offshore pipe handling, marine jack plates, trailer lifts, scissors tables, 
positioning systems for solar panels, and Stewart platforms. 

 
Figure 1. Simplified illustration of a self-contained electro-hydraulic cylinder. 

In regard to what has been done so far, a limited number of commercial SCCs were introduced 
to the market, mainly using single-rod cylinders [3]; those are typically tailor-made solutions 
restricted to some niche applications because exceptional design effort is needed. It is the authors’ 
opinion that this circumscribed use of SCCs is mainly due to the lack of consistent investigations 
aimed at identifying cost-effective system architectures adaptable to multiple applications. 

Concerning the research activities connected to SCCs, emphasis is primarily on cost efficiency 
[4], thermal behavior [5], and low power applications below 5 [kW] [6,7]. Employing valve-less 
architectures to control the hydraulic actuators is commonplace since higher energy efficiency is 
achieved. Scenarios involving passive load-holding capability (i.e., maintaining the piston position 
without delivering any power) are seldom addressed, as shown in the next section. There is, 
therefore, the need of developing a SCC adaptable to the changing requirements of multiple 
applications and sustainable as a valid alternative to electro-mechanical systems. 

This research paper presents a system architecture for an electro-hydraulic self-contained single-
rod cylinder in closed-circuit configuration with passive load-holding capability, sealed tank, capable 
of recovering energy, and suitable for power levels above 5 [kW] representative of many hydraulic 
machines. Effort is dedicated to motivating the introduction of such a system, to experimentally 
confirm that the desired performance is achieved in terms of both actuator’s position tracking and 
energy efficiency, and to better understanding the load load-holding capability (insight on the design 
of the load-holding valves and on their settings is given as well as on their arrangement in the 
hydraulic layout). This work significantly extends a previous conference publication [8] where a 
numerical analysis of a SCC that meets the aforementioned requirements is proposed. Specifically, 
this paper makes the following novel contributions: An improved system architecture, the 
implementation of the SCC on a test-bed, the experimental validation of the proposed dynamic 
model, the analysis of the system performance, and noteworthy considerations about the load-
holding valves not traced in the technical literature. 

2. Literature Survey 

Due to the limited literature on SCCs, this survey also covers generic valve-less systems that 
might be converted into self-contained solutions. The main reason for focusing on valve-less layouts 
is their potential for high energy efficiency (i.e., throttle-related losses in control valves are removed 
and energy recovery can be easily implemented). In fact, conventional valve-controlled systems 

Figure 1. Simplified illustration of a self-contained electro-hydraulic cylinder.

In regard to what has been done so far, a limited number of commercial SCCs were introduced to
the market, mainly using single-rod cylinders [3]; those are typically tailor-made solutions restricted to
some niche applications because exceptional design effort is needed. It is the authors’ opinion that this
circumscribed use of SCCs is mainly due to the lack of consistent investigations aimed at identifying
cost-effective system architectures adaptable to multiple applications.

Concerning the research activities connected to SCCs, emphasis is primarily on cost efficiency [4],
thermal behavior [5], and low power applications below 5 [kW] [6,7]. Employing valve-less
architectures to control the hydraulic actuators is commonplace since higher energy efficiency is
achieved. Scenarios involving passive load-holding capability (i.e., maintaining the piston position
without delivering any power) are seldom addressed, as shown in the next section. There is, therefore,
the need of developing a SCC adaptable to the changing requirements of multiple applications and
sustainable as a valid alternative to electro-mechanical systems.

This research paper presents a system architecture for an electro-hydraulic self-contained
single-rod cylinder in closed-circuit configuration with passive load-holding capability, sealed
tank, capable of recovering energy, and suitable for power levels above 5 [kW] representative of
many hydraulic machines. Effort is dedicated to motivating the introduction of such a system, to
experimentally confirm that the desired performance is achieved in terms of both actuator’s position
tracking and energy efficiency, and to better understanding the load load-holding capability (insight
on the design of the load-holding valves and on their settings is given as well as on their arrangement
in the hydraulic layout). This work significantly extends a previous conference publication [8] where a
numerical analysis of a SCC that meets the aforementioned requirements is proposed. Specifically, this
paper makes the following novel contributions: An improved system architecture, the implementation
of the SCC on a test-bed, the experimental validation of the proposed dynamic model, the analysis of
the system performance, and noteworthy considerations about the load-holding valves not traced in
the technical literature.

2. Literature Survey

Due to the limited literature on SCCs, this survey also covers generic valve-less systems that
might be converted into self-contained solutions. The main reason for focusing on valve-less layouts is
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their potential for high energy efficiency (i.e., throttle-related losses in control valves are removed and
energy recovery can be easily implemented). In fact, conventional valve-controlled systems waste a
considerable percentage of the input energy in control valves (e.g., about 35 [%] in working cycles of
load-sensing excavators [9]). Previous investigations about throttle-less concepts showed fuel savings
up to 40 [%] in comparison to standard hydraulics [10].

Relevant valve-less systems that drive linear actuators can be classified depending on the
following closed-circuit layouts:

1. Variable-displacement hydraulic unit and fixed-speed prime mover. The actuator motion is
controlled by varying the displacement of the hydraulic pump/motor. This approach is prevalent
among multi-actuator machines (e.g., compact excavators [10]) since a unique charge pump
supplies the displacement adjustment system of each unit. The prime mover can be either a
combustion engine or an electric motor.

2. Fixed-displacement hydraulic unit and variable-speed prime mover. Regulating both the
angular speed and the direction of rotation of the prime mover’s shaft controls the actuator
motion [3,11–13]. The electric prime mover can be either a synchronous machine [11] or an
asynchronous machine [14].

3. Variable-displacement hydraulic unit and variable-speed prime mover. Both the electric prime
mover and the hydraulic unit actively control the actuator motion [15].

Narrowing the search field to case #2, this approach minimizes the number of control elements
when compared to case #3 (i.e., a much cheaper fixed-displacement hydraulic unit is selected) and
simplifies the hydraulics if related to case #1 (i.e., the pressure source dedicated to adjusting the unit
displacement is not needed).

Moreover, a competing valve-less solution that does not fall under any of these three categories is gaining
ground. It is based on multiple fixed-displacement pumps/motors driven by a common variable-speed
prime mover. Alternatives with two hydraulic units [6,16–18] or with three hydraulic units [19–21] exist.

Regarding the hydraulic actuator, double-rod cylinders are almost exclusively used in the
aerospace industry [22–26]. When compared to the single-rod design, the double-rod configuration
increases the installation space and delivers a reduced output force for a given pressure. Thus,
single-rod cylinders are the most popular solution for at least 80% of the electro-hydraulic drives [27].
Balancing the differential flow dictated by the unequal piston areas is, therefore, essential to implement
a closed-circuit architecture. Various flow compensation methods were investigated in the past,
mainly involving pilot-operated check valves [28], shuttle valves [13], or electrically-operated on/off
valves [29]. Some issues related to instability and uncontrolled pressure oscillations were mentioned
for shuttle valves [13] and for pilot-operated check valves [30], respectively. However, this is typically
the case under high dynamic excitations of the system [3] (i.e., operating conditions that might be
representative of some low-power applications). Other flow compensation alternatives were explored
such as hydraulic transformers, three-port asymmetric piston pumps, or multiple gear pumps. Table 1
provides a synthesis of these options.

Table 1. Methods for compensating the differential flow.

Methods References

Hydraulic transformers [31–33]
Pilot-operated check valves [10,28,34–38]

Inverse shuttle valve [3,39,40]
3-port asymmetric pump [41–44]
Two cylinders in parallel [45]

Multiple fixed-displacement pumps [6,16–21,46]

Additionally, limited researches addressed passive load-holding capabilities for SCCs. This feature
serves the purpose of maintaining a given actuator position without supplying any power to the system.
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A first solution is a commercialized system [47,48] where pilot-operated check valves (POCVs) are
installed between the pump and the actuator. The hydraulic connections are arranged in such a manner
that each opening pilot line of the POCVs is sensing the pressure of the opposite pump side. A similar
approach is also presented in Reference [49]. Then, an interesting method to control the opening pilot
of POCVs is discussed in References [37,38] and in Reference [50], even though this technique is not
intended for SCCs. Alternatively, passive load-holding systems grounded on counterbalance valves
were studied in Reference [12] and References [51,52], but they cannot recover energy.

Table 2 summarizes the system architectures for the SCCs addressed in this survey. Details
about the presence of the passive load-holding capability (PLH) are listed, as well as the possibility of
performing four quadrant operations (4Q) that refer to piston extension and to piston retraction with
both resistant and overrunning external loads acting on the actuator.

Table 2. Self-contained cylinders: concepts and characteristics.

Architectures 4Q PLH References

Multiple fixed-displacement pumps No No [27]
Multiple fixed-displacement pumps Yes No [11,20,21]

Inverse shuttle valves Yes No [3,5,6,13,53]
Compact system Yes 1 Yes [12,51]

Electro-hydraulic actuator No Yes [47–49]
1 No energy recovery.

In conclusion, the idea behind electro-hydraulic self-contained cylinders is to combine the
advantages of standard hydraulic actuators (i.e., reliability and high power-to-weight ratio) with
the benefits of electro-mechanical drives (i.e., energy efficiency, minimal maintenance, and simple
plug-and-play commissioning). Extra requirements such as compactness, robustness, and reduced
costs are also of interest due to their relevance in both industrial and mobile applications [3,17].

3. The System under Investigation

According to the literature review, the requirements for SCCs listed in the introduction are not
met by previously published solutions (several systems only represent a partial fit according to Table 2).
Hence, some of these features were combined accordingly to create the proposed SCC.

3.1. System Architecture

Figure 2 depicts the self-contained cylinder discussed in this investigation. The system operates
in four quadrants, includes passive load-holding devices, can recover energy, has a sealed reservoir,
and is suitable for power levels up to at least 80 [kW].
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The combination of an electric servo-motor (EM) and of a fixed-displacement hydraulic unit
(P) drives the single-rod double-acting cylinder (C) arranged in a closed-circuit configuration.
The differential flow dictated by the piston’s unequal areas is balanced by two pilot-operated check
valves (POCV1→2) and by two check valves (CV1→2). The low-pressure accumulator (AC) represents
the sealed reservoir of the SCC. The pilot-operated check valves LH1 and LH2 (i.e., the load-holding
valves) create the passive load-holding capability by isolating the actuator when the 3/2 electro-valve
(EV) is de-energized. Conversely, energizing the EV results in transferring the highest actuator pressure
into the opening pilot line of the two load-holding valves (the check valves CV3→4 select the dominant
value among the pressures in the cylinder chambers); this enables the actuator motion. As can be seen,
the EV is repositioned by the spring force in case of power failure, securing the load-holding function.
Pressure-relief valves (RV1→4) are installed on both pump ports and on both actuator ports to avoid
over-pressurizations during actuation and throughout passive load-holding. Anti-cavitation valves
(AC1→2) are also connected to the actuator chambers. A cooler (CO) and a filter (F) are comprised in
the system. The cooler can be easily removed if it is not necessary.

Figure 3 takes advantage of a simplified system representation to outline the operating condition
in each quadrant when the passive load-holding capability is deactivated (i.e., EV is energized).
Flow directions and pressure levels are emphasized: The red color denotes the high-pressure side,
the blue color designates the low-pressure side, Qp is the cylinder flow on the bore-side, Qr is the
cylinder flow on the rod-side, and Qd = Qp − Qr represents the differential flow. For a given speed of
the servo-motor, the actuator velocity is higher in the left half-plane because the pump/motor flow
is going to (or is coming from) the actuator’s rod-side chamber that has a smaller piston area than
the bore-side. More importantly, it should be noted that this system architecture fits particularly well
with applications characterized by frequent overrunning loads acting on the actuator (e.g., cranes); the
differential flow is, in fact, forced to go through both the filter and the cooler during operations in the
IV quadrant, ensuring proper fluid conditioning.
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3.2. Control Algorithm

The control algorithm designed for this SCC generates a reference speed for the electric
servo-motor in order to track the commanded position of the linear actuator. The control logic emerges
from the block diagram proposed in Figure 4. A feedforward controller (FF) estimates the required
servo-motor speed (uFF) via (1), depending on the operating condition (there are different formulations
for each quadrant). The actuator’s bore-side area (Ap), the rod-side area (Ar), the pump/motor
displacement (D), and a constant volumetric efficiency (e.g., ηv = 0.95 in motoring mode and ηv = 1 in
pumping mode) are recalled.

uFF =



.
xSet ·Ap

D·ηv
if

.
x ≥ 0 & ∆p ≥ 0 (i.e., I quadrant)

.
xSet ·Ar ·ηv

D if
.
x ≥ 0 & ∆p < 0 (i.e., II quadrant)

.
xSet ·Ar

D·ηv
if

.
x < 0 & ∆p < 0 (i.e., III quadrant)

.
xSet ·Ap ·ηv

D if
.
x < 0 & ∆p ≥ 0 (i.e., IV quadrant)

(1)

The proportional-integral controller (PI) in the position feedback loop corrects the prediction
of the feedforward term by manipulating the position error (ex). The proportional gain kP = 90
[rev/(min·mm)] and the integral gain kI = 300 [rev/(min·mm·s)] generate the corresponding feedback
command (uFB).
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Additionally, a negative pressure feedback term (uPF) adds damping to the system by canceling
out pressure oscillations. This is done by filtering the measured actuator pressures using a first-order
high-pass filter (2). Its cut-off frequency is ωPF = 3 [rad/s], whereas the small filter gain kPF = 5 × 10−5

[rev/min/Pa] is due to the input being [Pa].

GPF(s) = kPF·
s

s + ωPF
(2)

The resulting speed command for the servo-motor (uEM) is then sent through the logic switch and
finally propagated to the SCC. The logic switch sets the commanded motor speed (uSet) to zero when
actuator motion is not desired (i.e., when |

.
xSet| < 0.005 [mm/s]) otherwise it does not affect the signal.

At the same time, the logic switch generates the command (uEV) directed to the 3/2 electro-valve that
engages, or disengages, the load-holding capability. If the load-holding enabler (uLH) is active (this
means passive load-holding is wanted), then the EV is energized when

.
xSet is non-zero or de-energized

when
.
xSet is zero and the position error is smaller than two [mm]. If passive load-holding is not desired

(i.e., uLH is switched off), then the EV is energized independently of
.
xSet.
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4. Experimental Set-Up

An experimental test-bed was commissioned to drive a single-boom crane available at the
University of Agder (Figure 5). This representative application was selected since it encompasses
different operating conditions such as motion against both resistant external loads (i.e., I quadrant)
and overrunning external loads (i.e., IV quadrant). It also offers the opportunity of testing the passive
load-holding capability. Furthermore, this crane challenges the performance of the SCC because the
mechanical structure was specifically designed to enhance oscillations (originally, the crane was driven
by a valve-controlled system [54]). More details about the crane are available in Appendix A.

Regarding the SCC, the selected servo-motor is a PMSM Bosch Rexroth MSK071E-0300 with a
dedicated driver IndraDrive HCS02. The axial-piston swashplate unit A10F has a displacement of
10.6 [cm3/rev]. The cylinder PMC 25CA has piston diameter of 65 [mm], rod diameter of 35 [mm],
and stroke of 500 [mm]. The load-holding valves (Sun Hydraulics CVEVXFN) have area ratio 3:1 and
cracking pressure of seven [bar], whereas the other POCVs (Sun Hydraulics CKEBXCN) have the
same area ratio, but cracking pressure of two [bar]. The opening pilot for the load-holding valves is
selected by means of check valves Hawe Hydraulics RB2 with cracking pressure of 0.1 [bar] and of a
3/2 directional control valve Argo Hytos SD1E. The additional check valves Hawe Hydraulic RK4 still
have cracking pressure of 0.1 [bar], whereas the pressure-relief valves Sun Hydraulics RDDA have
cracking pressure of 200 [bar]. A tailor-made manifold houses these valves. A Bosch Rexroth cooler
KOL3N (cooling power up to 3 [kW]) and a filter 50LEN0100 are used to condition the oil ISO VG 46.
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Figure 5. (a) Overview of the experimental test-bed; and (b) detailed view of the single-boom crane
and of the electric cabinet dedicated to the servo-motor.

In terms of sensors, the servo-motor comes standard with an encoder. A position sensor Regal
PS6310 monitors the actuator’s piston position. Transducers Bosch Rexroth HM20 measure the
pressures p1→5. Finally, MATLAB-Simulink®is used for control and data acquisition. The software
IndraWorks translates the control algorithm into machine code that runs at a frequency of 1000 [Hz]
on the PLC IndraControl XM22.

5. System Modeling and Validation

Multiple dynamic models of the SCC were created and simulated in MATLAB-Simulink®.
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5.1. The Dynamic Modeling of the System

The electric servo-motor was modeled using a second-order transfer function (3) from commanded
to simulate shaft speed where the natural frequency and the damping ratio are ωn = 5 [Hz] and
ζ = 0.99, respectively.

GEM(s) =
ω2

n
s2 + 2·ωn·ζ·s + ω2

n
(3)

The hydraulics was simulated by means of a consolidated approach. The effective fluid’s bulk
modulus (βi) in the i-th hydraulic capacitance was modeled via Equation (4).

βi =
1

1
βO

+ εA,i·
(

1
βA,i
− 1

βO

) (4)

The different terms are the oil’s bulk modulus (βO = 7500 [bar]), the air’s bulk modulus (βA,i)
calculated as βA,i = γ·pi with γ being the adiabatic air constant and pi the pressure in the capacitance,
and the volumetric air content (εA,i), which is obtained according to Equation (5). This equation recalls
the atmospheric pressure (patm) and the volumetric air content of the oil at atmospheric pressure
(εA,0 = 0.015 [%]).

εA,i =
1

1−εA,0
εA,0
·
(

patm
pi

)− 1
γ
+ 1

(5)

The well-known pressure build-up equation was applied several times to evaluate the pressures
p1→8 labeled in Figure 2. The resulting expressions are reported in Equations (6)–(13) where the
effective bulk modulus (βi), the appropriate flow rates (Qi), and the suitable volumes of the hydraulic
capacitances (Vi) are considered accordingly.

.
p1 =

β1·(Qe,P + QPOCV,1 −QLH,1 −QRV,1)

V1,0
(6)

.
p2 =

β2·(−Qe,P −QCV,1 + QCV,2 −QLH,2 −QRV,2)

V2,0
(7)

.
p3 =

β3·
(
QLH,1 − Ap·

.
x−QRV,3 + QAC,1 −QCV,3

)
V3,0 + Ap·x

(8)

.
p4 =

β4·
(
QLH,2 + Ar·

.
x−QRV,4 + QAC,2 −QCV,4

)
V4,0 + Ar·(xMax − x)

(9)

.
p5 =

1
CH,5
·
(

4

∑
i=1

QRV,i + QEV −QPOCV,1 −QPOCV,2 −QAC,1 −QAC,2 −QCV,2

)
(10)

.
p6 =

β6·(QCV,1 + QPOCV,2)

V6,0
(11)

.
p7 =

β7·(QCV,3 + QCV,4 −QEV)

V7,0
(12)

.
p8 =

β8·QEV
V8,0

(13)

The volumes of the transmission lines (Vi,0) are assumed constant whereas the equations related
to the actuator require the piston areas, the piston position (x), and the cylinder stroke (xMax).
The capacitance CH,5 used in the pressure build-up equation associated to the hydro-pneumatic
accumulator is elucidated in Equation (14). Among other terms, it involves the effective accumulator
gas volume (VAC,0 = 9.2 [L]) and the pre-charge pressure of the accumulator (pAC,0 = 0.05 [bar]).
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CH,5 =
V5,0

β5
+

VAC,0

γ
· pAC,0

1
γ

p5
γ+1

γ

(14)

Concerning the flow rates, the contributions ascribed to the different components are clarified
in the sequel. The flow rates through the POCVs (QPOCV,i) are computed by means of the orifice
Equation (15). It comprises the pressure differential across the valve (∆pi), the discharge coefficient
(Cd), the seat diameter (di), the poppet lift (yi), and the fluid density (ρ).

QPOCV,i = Cd·π·di·yi·sign(∆pi)·
√

2
ρ
·|∆pi| (15)

If a POCV is not closed, two operating modes characterize its functioning. The “normal flow”
condition takes place when the pilot stage is detached from the poppet. Conversely, the valve is
subjected to “reverse flow” if the pilot stage and the poppet are in contact. In the case of a non-vented
valve (Figure 6 depicts alternative designs), an opening pilot pressure lower than the inlet pressure
is the prerequisite for “normal flow” (i.e., px < pIn). The poppet lift always results from the force
equilibrium that is expressed differently and is contingent on “normal flow” (16) or “reverse flow” (17).

yi =
(pIn,i − pOut,i)·AS,i − FS0,i

kS,i
(16)

yi =
(px,i − pIn,i)·Ax,i + (pIn,i − pOut,i)·AS,i − FS0,i

kS,i
(17)

The areas of the poppet seat (AS,i) and of the pilot stage (Ax,i) are introduced in the previous
equations as well as the spring stiffness (kS,i) and the spring’s pre-load force (FS0,i). The poppet
dynamics is simulated via a first-order transfer function with time constant τ = 0.05 [s].
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Vented design.

If a POCV comes in the vented version, the previous definition of the operating modes holds true,
but the criterion for “normal flow” becomes px · Ax < pD · AD + pIn · (Ax – AD). The force balance for
the “normal flow” condition is still given by Equation (16), whereas it is described in Equation (18) for
the other operating mode. The pilot stage’s area inside the drain chamber (AD,i) and the drain pressure
(pD,i) are included.

yi =
1

kS,i
·[(px,i − pIn,i)·Ax,i + (pIn,i − pOut,i)·AS,i+ (pIn,i − pD,i)·AD,i − FS0,i] (18)

The orifice equation also provides the flow rate through the electro-valve (QEV). The only
difference from the formulation given in Equation (15) is about the flow area that depends on the valve
command. Then, the flow rate of both the CVs and the RVs is computed according to Equation (19).
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The evoked parameters are the valve flow gain (kv,i), the cracking pressure (pc,i), the inlet pressure
(pIn,i), and the outlet pressure (pOut,i).

Qi =

{
0
kv,i·(pIn,i − pOut,i − pc,i)

if pIn,i < pOut,i + pc,i
if pIn,i ≥ pOut,i + pc,i

(19)

The effective magnitudes of the pump/motor are evaluated by means of flow losses (QS ≥ 0) and
torque losses (TS ≥ 0) derived from steady-state experimental data of a reference axial-piston unit with
displacement equal to DRef [55]. The same losses are assumed for all quadrants and are scaled to the
desired pump displacement (D) by using the scaling laws elucidated in Equation (20) that refer to the
quantities of the reference unit denoted by the subscript “Ref ”. The scaling factor (λ), the unit’s shaft
speed (ω), and the losses of the reference unit are involved.

λ = 3
√

D
DRe f

→


ωRe f = λ·ω

QS = λ2·QS,Re f
TS = λ3·TS,Re f

(20)

The effective flow rate of the pump/motor (Qe,P) is elucidated in Equation (21) for operations in
the I quadrant and in the IV quadrant (the sign convention accounts for the functioning in pumping or
in motoring mode). The flow losses are completely attributed to internal leakages.

Qe,P = D·ω−QS (21)

The computation of the pump/motor’s effective shaft torque (Te,P) expressed in Equation (22)
requires the pressure differential across the unit (∆p).

Te,P =


D·∆p
2·π + TS(I quadrant)

−D·∆p
2·π + TS(IV quadrant)

(22)

The pressure losses in the transmission lines and in the cooling/filtering unit are neglected mainly
due to the compact configuration of the drive. Moreover, Equation (23) describes the actuator’s
force balance where the hydraulic force (FH) and the friction force (FF) are clarified in Equations (24)
and (25), respectively.

FH = FF + G(x) + M(x)· ..x (23)

FH = p3·Ap − p4·Ar (24)

FF = fv·
.
x + tanh

( .
x·a
)
·
(

FC + FS·e
− .

x·tanh(
.
x·a)

kC

)
(25)

The different terms represent the pressure in the bore-side chamber (p3), the pressure in the
rod-side chamber (p4), the viscous friction coefficient (fv = 4 × 103 [kg/s]), the Coulomb force
(FC = 75 [N]), the static friction force (FS = 500 [N]), the static friction force’s constant (kC = 0.02 [m/s]),
the equivalent mass of the system M(x), and the gravitational load G(x) on the actuator. The friction in
the joint of the crane is lumped into the friction of the linear actuator whereas the hyperbolic tangent is
used to prevent numerical issues such as discontinuities (the dimensionless tuning parameter is set
equal to a = 250). Figure 7 depicts the variation of both G(x) and M(x) as a function of the piston position
(Appendix A); the Coriolis and the centripetal terms are neglected due to their minimal influence.

Regarding the overall system efficiency (ηSCC), the mechanical power at the load/actuator
interface (PC) and the servo-motor’s electrical power (PEM) are addressed. The latter term involves
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the armature current (iA) and the torque constant of the machine (kT = 2.05 [N·m/A]). The ratio of the
output energy over the input energy of the SCC is calculated via Equation (26).

ηSCC =


PC

PEM
= (FH−FF)·

.
x

iA ·kT ·ω if PEM ≥ 0
PEM
PP

= iA ·kT ·ω
(FH−FF)·

.
x

if PEM < 0
(26)

Diverse formulations are used if the electrical energy is supplied, or if the regenerative functioning is
taking place (i.e., PEM < 0).Energies 2018, 11, x FOR PEER REVIEW  11 of 22 
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5.2.Open-Loop Model Validation

The complete dynamic model of the SCC was validated against experimental data. The applied
open-loop command (i.e., the desired speed for the electric motor) generates typical working conditions
such as extension and retraction of the actuator. The results proposed in Figure 8 show good
agreement among measured and simulated quantities, confirming the high-fidelity nature of the
model. Consequently, it represents a meaningful tool for further analyses.
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6. Closed-Loop System Performance

A representative working cycle with both active load-holding operations (ALH) and passive
load-holding operations (PLH) serves the purpose of analyzing the system performance when the
SCC is controlled in closed-loop according to the algorithm illustrated in Figure 4. The trend of
the commanded position selected for this test implies a piston velocity equal to 150 [mm/s] during
actuation, that represents the upper limit for the experimental set-up.

The agreement between the commanded and the measured actuator position presented in Figure 9
is satisfactory since the error falls well within ±2 [mm]. In fact, the expected accuracy for hydraulic
cranes is typically worse as the maximum position error is frequently higher than 15 [mm] [56,57].
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The servo-motor speed shown in Figure 10 (i.e., the control effort of this electro-hydraulic system)
remains within the recommended limits of the machine (about ±3200 [rev/min]) and its variation is
mostly smooth.

Energies 2018, 11, x FOR PEER REVIEW  12 of 22 

 

6. Closed-Loop System Performance 

A representative working cycle with both active load-holding operations (ALH) and passive load-
holding operations (PLH) serves the purpose of analyzing the system performance when the SCC is 
controlled in closed-loop according to the algorithm illustrated in Figure 4. The trend of the 
commanded position selected for this test implies a piston velocity equal to 150 [mm/s] during 
actuation, that represents the upper limit for the experimental set-up. 

The agreement between the commanded and the measured actuator position presented in Figure 9 
is satisfactory since the error falls well within ±2 [mm]. In fact, the expected accuracy for hydraulic 
cranes is typically worse as the maximum position error is frequently higher than 15 [mm] [56,57]. 

 
Figure 9. (a) Commanded and measured piston position; (b) Position error. 

The servo-motor speed shown in Figure 10 (i.e., the control effort of this electro-hydraulic 
system) remains within the recommended limits of the machine (about ±3200 [rev/min]) and its 
variation is mostly smooth. 

 
Figure 10. (a) Commanded and measured servo-motor speed; (b) Speed error. 

The relevant system pressures are presented in Figure 11. They vary, as expected, showing stable 
behavior and smooth transitions between different operating conditions; this result is a key aspect 
because standard hydraulic cranes equipped with load-holding valves are usually characterized by 
a disturbing oscillatory behavior (this is also the case for the crane used in this investigation when 
powered by a conventional load-sensing system [54]). Regarding the pressures in the bore-side of the 
SCC, the difference between p1 and p3 during passive load-holding is due to the leakages across the 
pump/motor. 

 
Figure 11. (a) Measured pressures in the bore-side of the system; and (b) measured pressures in the 
rod-side of the system. 
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The relevant system pressures are presented in Figure 11. They vary, as expected, showing stable
behavior and smooth transitions between different operating conditions; this result is a key aspect
because standard hydraulic cranes equipped with load-holding valves are usually characterized by
a disturbing oscillatory behavior (this is also the case for the crane used in this investigation when
powered by a conventional load-sensing system [54]). Regarding the pressures in the bore-side of the
SCC, the difference between p1 and p3 during passive load-holding is due to the leakages across the
pump/motor.
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Figure 11. (a) Measured pressures in the bore-side of the system; and (b) measured pressures in the
rod-side of the system.
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Concerning the load-holding valves, Figure 12 highlights the poppet position and the command
directed to the on/off electro-valve that supervises the load-holding devices (the passive load-holding
function is activated when the signal is equal to zero).
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therefore, both their design and their arrangement is invaluable to gain deeper insight.  

7.1. Design of the Pilot-Operated Check Valves 

The experimental results were obtained by utilizing vented load-holding POCVs. This is the 
most conservative approach since the total effort required to open the poppet in a given operating 
condition is reduced, if compared to non-vented valves. Thus, this sub-section is about 
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Figure 12. (a) Simulated poppet lift of the vented load-holding valves; (b) Electro-valve command.

These POCVs do not introduce any unpleasant oscillations during motion. Most importantly,
they maintain the piston position when the servo-motor is not active (this is the case between about
23–27 seconds and 31–35 seconds).

Finally, the overall energy efficiency of the system is addressed in Figure 13. The average
value during actuation runs in the neighborhood of 60 [%], with a slightly worse performance
during regenerative functioning. This means the SCC can be considered efficient when compared to
conventional valve-controlled circuits (e.g., [9]). Furthermore, the SCC is regenerating energy during
piston retraction. This means the electric machine is outputting electrical energy that can be returned
to the grid or can be stored in a dedicated device (in the case of the test-bed, the recovered electrical
energy is dissipated by a resistor). The measured current (filtered signal) was used to calculate the
electrical power, whereas a zero efficiency was arbitrarily assigned if |PEM| < 0.25 [kW] to avoid
numerical issues.

Energies 2018, 11, x FOR PEER REVIEW  13 of 22 

 

Concerning the load-holding valves, Figure 12 highlights the poppet position and the command 
directed to the on/off electro-valve that supervises the load-holding devices (the passive load-holding 
function is activated when the signal is equal to zero). 

 
Figure 12. (a) Simulated poppet lift of the vented load-holding valves; (b) Electro-valve command. 

These POCVs do not introduce any unpleasant oscillations during motion. Most importantly, 
they maintain the piston position when the servo-motor is not active (this is the case between about 
23–27 seconds and 31–35 seconds). 

Finally, the overall energy efficiency of the system is addressed in Figure 13. The average value 
during actuation runs in the neighborhood of 60 [%], with a slightly worse performance during 
regenerative functioning. This means the SCC can be considered efficient when compared to 
conventional valve-controlled circuits (e.g., [9]). Furthermore, the SCC is regenerating energy during 
piston retraction. This means the electric machine is outputting electrical energy that can be returned 
to the grid or can be stored in a dedicated device (in the case of the test-bed, the recovered electrical 
energy is dissipated by a resistor). The measured current (filtered signal) was used to calculate the 
electrical power, whereas a zero efficiency was arbitrarily assigned if |PEM| < 0.25 [kW] to avoid 
numerical issues. 

 
Figure 13. (a) Measured input power and simulated output power of the self-contained cylinder; (b) 
and simulated overall energy efficiency of the self-contained cylinder. 

7. Discussion about the Load-Holding Valves 

It is worth recalling that the load-holding valves represent a peculiarity of this SCC. Discussing, 
therefore, both their design and their arrangement is invaluable to gain deeper insight.  

7.1. Design of the Pilot-Operated Check Valves 

The experimental results were obtained by utilizing vented load-holding POCVs. This is the 
most conservative approach since the total effort required to open the poppet in a given operating 
condition is reduced, if compared to non-vented valves. Thus, this sub-section is about 
understanding how the valve design (i.e., vented or non-vented valve configuration) affects the 
overall system response (Figure 14). 

Figure 13. (a) Measured input power and simulated output power of the self-contained cylinder; (b)
and simulated overall energy efficiency of the self-contained cylinder.

7. Discussion about the Load-Holding Valves

It is worth recalling that the load-holding valves represent a peculiarity of this SCC. Discussing,
therefore, both their design and their arrangement is invaluable to gain deeper insight.

7.1. Design of the Pilot-Operated Check Valves

The experimental results were obtained by utilizing vented load-holding POCVs. This is the most
conservative approach since the total effort required to open the poppet in a given operating condition
is reduced, if compared to non-vented valves. Thus, this sub-section is about understanding how
the valve design (i.e., vented or non-vented valve configuration) affects the overall system response
(Figure 14).

The outcomes displayed in Figure 14 were derived by simulating non-vented load-holding
POCVs where diverse values of the area ratio and of the seat diameter were considered, specifically:
the “original” settings of the experimental set-up (i.e., area ratio 3:1 and seat diameter 5 [mm]), a first
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alternative with area ratio increased to 7:1 and seat diameter 5 [mm], and another solution with area
ratio 3:1 and seat diameter raised to 9 [mm].Energies 2018, 11, x FOR PEER REVIEW  14 of 22 
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Figure 14. (a) Simulated piston position with vented and non-vented load-holding valves (area ratio
3:1 and seat diameter 5 [mm]); (b) simulated poppet lift using non-vented load-holding valves (area
ratio 3:1 and seat diameter 5 [mm]); (c) simulated pressure drop across LH1 using non-vented POCVs;
and (d) simulated poppet lift of LH1 using non-vented POCVs with modified settings.

Choosing the vented design is not strictly necessary, even though it is advisable. The piston
position is, in fact, indistinguishable if non-vented POCVs are preferred to the vented counterparts
(plot a) in Figure 14). Nevertheless, the poppet of the non-vented valve LH1, located on the bore-side
of the actuator, is not completely lifted from its seat when the hydraulic cylinder is actuated (plot b)
in Figure 14); this aspect does not affect the position tracking, but results in an increased pressure
drop across the valve that turns out in a higher energy consumption. This drawback related to energy
efficiency is mitigated if non-vented load-holding valves with enlarged nominal flow (i.e., bigger seat
diameter) and/or increased pilot ratio are introduced (plot c) in Figure 14). Using these modified
settings, the actuator’s position tracking is still equivalent to the reference scenario established by
vented POCVs and the oscillations of the poppet diminish (plot d) in Figure 14).

7.2. Arrangement of the Pilot-Operated Check Valves

The other aspect that deserves further debate is the arrangement of the load-holding valves.
The proposed SCC takes their opening pilot pressures from the actuator chambers, when the EV
is energized. This approach is in contrast with some references that mention POCVs utilized as
load-holding devices: In fact, the opening pilot pressures in these systems are taken from the
pump/motor ports according to the diagram given in Figure 15.

The dynamic model of the SCC was adapted congruently to reflect the alteration in the
configuration of the load-holding POCVs’ pilot lines and to remove the sub-system dedicated to
the selection of their pilot pressure (i.e., the EV and CV3→4). After simulating this transformed
hydraulic architecture, it is therefore relevant to stress that such an approach leads to an unwanted
system functioning when overrunning loads are acting on the actuator (Figure 16).

When the actuator load becomes overrunning between about 9.5–14 seconds and 27–31.5 seconds,
then the load-holding valves do not stay open as desired (plot d) in Figure 16). This causes an
oscillatory behavior that undermines both the position tracking (plot a) in Figure 16) and the operational
safety. Enormous pressure fluctuations (plot c) in Figure 16) arise up to the maximum admitted
value (a pressure-relief valve located on the bore-side is regulating, namely this solution is also
characterized by inefficient functioning). Then, the control input (i.e., the commanded speed of the
electric servo-motor) varies abruptly trying to match the commanded actuator position.
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Figure 16. Simulation of the system depicted in Figure 15: (a) Actuator’s position error; (b) speed of
the servo-motor; (c) Pressures in the actuator chambers; and (d) poppet lift of the load-holding valves.

A similar undesirable system behavior takes place if the pilot ratio of the load-holding valves
is increased (e.g., from 3:1 up to 7:1), meaning that this modified layout does not properly manage
overrunning loads. Additionally, vented load-holding valves were assumed, even though non-vented
components lead to equivalent results not reported for the sake of brevity.

8. Conclusions

An in-depth literature survey emphasized the need for self-contained cylinders that operate in
four quadrants, include passive load-holding devices, and can deal with power levels above 5 [kW].
Consequently, this research paper gives a contribution to bridge this gap as follows:

1. A novel system architecture (i.e., a solution not found in literature) of an electro-hydraulic
self-contained cylinder was presented and implemented on a test-bed.

2. Experimental evidence proves the expected system functioning; the maximum position error
ranges well within ±2 [mm] and the passive load-holding capability maintains the actuator
position when needed.

3. A dynamic model of the system was developed and experimentally validated; it provides a sizing
and simulation tool for future implementations.

4. Insight about key parameters was given; the overall system efficiency results highly satisfactory
being about 60 [%] during actuation.
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5. It was shown that both vented and non-vented load-holding valves achieve the desired system
functioning; however, choosing the vented design is advisable.

6. The drastic limitations caused by an alternative arrangement of the load-holding pilot-operated
check valves traced in the technical literature were highlighted.

For these reasons, the proposed self-contained system can be successfully extended to several
practical applications. Those including overrunning external loads and the need of securing the
actuator position represent the natural field of application (e.g., cranes, presses, gripper arms for
offshore pipe handling, marine jack plates, trailer lifts, scissors tables, positioning systems for solar
panels, and Stewart platforms). Future work will cover the system implementation in real-world
environments, the thermal analysis of this hydraulic architecture to minimize the cooler size, and
considerations about the life estimation of key components. In particular, emphasis will be placed on
scaling up the system to deal with higher power levels. It is expected to deliver up to about eighty
[kW] by simply replacing some components with alternative off-the-shelf parts selected from the same
catalogues used during the design of the experimental test-bed.
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Nomenclature

Abbreviations
4Q Four quadrant operations
ALH Active load-holding
AC Anti-cavitation valve
C Actuator (i.e., hydraulic cylinder)
CO Cooler
CV Check valve
EM Electric servo-motor
EV 3/2 electro-valve
F Filter
FF Feedforward controller
LH Load-holding valve
PLH Passive load-holding
POCV Pilot-operated check valve
RV Pressure-relief valve
SCC Self-contained electro-hydraulic cylinder
Symbols
a Tuning parameter for the friction force of the actuator and of the crane joint
AD Pilot stage’s area inside the drain chamber of pilot-operated check valves
Ap Cylinder area on the bore-side
Ar Cylinder area on the rod-side
AS Poppet seat’s area of pilot-operated check valves
Ax Pilot stage’s area of pilot-operated check valves
Cd Discharge coefficient
CH Hydraulic capacitance
D Pump/motor displacement
d Seat diameter of pilot-operated check valves
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DRef Displacement of the reference unit used to derive the loss model of the pump/motor
ex Position error of the hydraulic actuator
FC Coulomb force of the actuator and of the crane joint
FF Friction force of the actuator and of the crane joint
FH Hydraulic force of the actuator
FS Static friction force of the actuator and of the crane joint
FS0 Spring’s pre-load force of pilot-operated check valves
fv Viscous friction coefficient of the actuator and of the crane joint
G(x) Gravitational load acting on the actuator
iA Armature current of the servo-motor
kC Static friction force’s constant of the actuator and of the crane joint
kI Integral gain of the PI controller
kP Proportional gain of the PI controller
kPF Filter gain of the high-pass pressure filter
kS Spring stiffness of pilot-operated check valves
kT Torque constant of the servo-motor
kv Flow gain of check valves and of pressure-relief valves
M(x) Equivalent mass of the system acting on the actuator
p Pressure
p1 Pressure at the pump/motor port on the bore-side of the actuator
p2 Pressure at the pump/motor port on the rod-side of the actuator
p3 Actuator’s bore-side pressure
p4 Actuator’s rod-side pressure
p5 Accumulator pressure
pAC,0 Pre-charge pressure of the accumulator
patm Atmospheric pressure
pc Cracking pressure of check valves and of pressure-relief valves
PC Mechanical power at the load/actuator interface
pD Drain pressure in pilot-operated check valves
PEM Electrical power of the servo-motor
pIn Pressure at the inlet port of hydraulic valves
pOut Pressure at the outlet port of hydraulic valves
px Opening pilot pressure of pilot-operated check valves
Q Volume flow rate
Qd Differential actuator’s volume flow rate
Qe,P Effective flow rate of the pump/motor
QEV Volume flow rate through the electro-valve
Qp Actuator’s volume flow rate on the bore-side
QPOCV Flow rate through pilot-operated check valves
Qr Actuator’s volume flow rate on the rod-side
QS Flow losses of the pump/motor
Te,P Effective shaft torque of the pump/motor
TS Torque losses of the pump/motor
uEM Commanded servo-motor speed
uEV Command directed to the 3/2 electro-valve
uFF Commanded servo-motor speed from the feedforward term
uLH Load-holding enabler command
uPF Commanded servo-motor speed from the pressure feedback term
VAC,0 Effective accumulator gas volume
V Volume
x Piston position
xMax Actuator stroke
.
xSet Commanded piston velocity
Greek symbols
y Poppet lift of pilot-operated check valves
β Effective bulk modulus of the working fluid



Energies 2019, 12, 292 18 of 21

βA Air’s bulk modulus
βO Oil’s bulk modulus
γ Adiabatic air constant
∆p Pressure differential
εA Volumetric air content of the working fluid
εA,0 Volumetric air content of the working fluid at atmospheric pressure
ζ Damping term used in the servo-motor’s transfer function
ηSCC Overall system efficiency of the self-contained cylinder
ηv Pump/motor’s volumetric efficiency
λ Scaling factor used in the loss model of the pump/motor
ρ Oil density
τ Time constant of the poppet dynamics in pilot-operated check valves
ω Shaft speed of the pump/motor
ωn Natural frequency used in the servo-motor’s transfer function
ωPF Cut-off frequency of the high-pass pressure filter

Appendix A

This appendix presents the specifications of the single-boom crane involved in the experimental testing.
The relevant dimensions used to define the crane kinematics are highlighted in Figure A1. The boom pivots
around point A whereas the actuator is connected to point B and to point C. The distances between the points A,
B, C, and G (i.e., the center of mass) are evaluated via Equation (A1) whereas the effective length of the hydraulic
cylinder (LCyl) is expressed in (A2).

Lij =
√

L2
ijx

+ L2
ijy

(A1)

LCyl = x + LMin (A2)

The equivalent mass of the system and the gravitational load acting on the actuator are elucidated in (A3)
and (A4), respectively. These formulae give the trends presented in Figure 7.

M(x) = −
4·
(

L2
AGx
·L2

Cyl ·m + L2
AGy
·L2

Cyl ·m + L2
Cyl ·J

)
(

LAB − LCyl − LAC

)
·
(

LAB − LCyl + LAC

)
·
(

LAB + LCyl + LAC

)
·
(

LAB + LCyl − LAC

) (A3)

G(x) = − LCyl
L1
·
{

2·
√
−L1·g·m· cos[arccos(L2) + α]·LAGx

− sin[arccos(L2) + α]·LAGy

}

where :

α = arctan
( LAGy

LAGx

)
− arctan

( LABy
LABx

)
+ arctan

( LACy
LACx

)
L1 =

(
LCyl − LAB + LAC

)
·
(

LCyl − LAB − LAC

)
·
(

LCyl + LAB − LAC

)
·
(

LCyl + LAB + LAC

)
L2 = 1

2 ·
L2

AB+L2
AC−L2

Cyl
LAC ·LAB

(A4)
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Figure 17. Kinematics of the single-boom crane used for the experimental testing. 

Lastly, Table 3 collates the key parameters of the crane. These quantities are the aforementioned 
distances, the minimum length (LMin) between point B and point C, the acceleration of gravity (g), the 
payload mass (m), and the moment of inertia of the crane (J) about its center of mass. 
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Magnitude Value Unit Magnitude Value Unit 
LAG,x 3.139 [m] LAB,y 1.055 [m] 
LAG,y 0.064 [m] LMin 0.772 [m] 
LAC,x 0.550 [m] g 9.82 [m/s2] 
LAC,y 0.130 [m] m 402 [kg] 
LAB,x 0.420 [m] J 288.518 [kg·m2] 
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Figure A1. Kinematics of the single-boom crane used for the experimental testing.
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Lastly, Table A1 collates the key parameters of the crane. These quantities are the aforementioned distances,
the minimum length (LMin) between point B and point C, the acceleration of gravity (g), the payload mass (m),
and the moment of inertia of the crane (J) about its center of mass.

Table A1. Key parameters of the single-boom crane.

Magnitude Value Unit Magnitude Value Unit

LAG,x 3.139 [m] LAB,y 1.055 [m]
LAG,y 0.064 [m] LMin 0.772 [m]
LAC,x 0.550 [m] g 9.82 [m/s2]
LAC,y 0.130 [m] m 402 [kg]
LAB,x 0.420 [m] J 288.518 [kg·m2]
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