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Abstract—This paper proposes a unity power factor (PF) 

bridgeless buck-boost power factor correction (PFC) converter to 

minimize conduction losses caused by the diode bridge. 

Moreover, compared to the conventional buck-boost PFC 

converter, the proposed converter has lower voltage stresses 

across switches, which further improves total efficiency of the 

proposed converter, especially when converter operates in the 

light load conditions. Operation modes with inductors working in 

the discontinuous conduction mode (DCM) is given in detail, and 

comparative analysis are conducted to show the proposed 

converter performances regarding the PF, component stresses, 

and output ripple. The proposed and conventional converter 

prototypes with load range of 20~100 W are built and tested both 

in simulation and experiment. The obtained results verify the 

feasibility of proposed converter and theoretical analysis. 

Keywords—PFC, bridgeless, buck-boost, DCM, low voltage 

stresses, unity power factor 

I.  INTRODUCTION  

Power factor correction (PFC) converters are widely used 
in AC-DC converters for its ability to reduce the input line 
current harmonics and improve the power factor (PF) [1], [2]. 
For the concerns of energy-saving and environmental impacts 
[2], Bridgeless topologies have gained interest due to reduced 
number of the semiconductor components in the line current 
path which may reduce conduction loss. [2], [3]. Hence, many 
different bridgeless topologies of boost, buck, Cuk, SEPIC, 
and buck-boost converters have been proposed [2]-[7].  

In single-phase low power applications, e.g., adjustable 
DC link motor drives and some light emitting diode (LED) 
applications, boost, buck, and buck-boost PFC converters are 
usually the preferable candidates for their simplicity in 
topologies and easily implemented control in the 
discontinuous conduction mode (DCM) [8]-[11]. However, 
boost PFC converter is only able to operate in the boost mode, 
and thus its output voltage will usually be set as 380~400 Vdc 
to maintain a high PF in the universal input voltage range. The 
drawbacks are limited DC link voltage range and the 
requirement of high voltage-rating devices in rear-end  
converters [8]-[10]. On the other hand, buck PFC converter is 
only able to work in the buck mode, a poor PF and distorted 
input line current will be unavoidable unless certain 

topological modifications or new control strategies applied 
[4]. For buck-boost PFC converter, it can work in the boost 
and buck modes without compromising the PF. Hence, buck-
boost PFC converter can set a low output voltage for LED 
applications and electrolytic capacitor can be eliminated by 
using additional ripple absorption circuits potentially [10]. 
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Fig. 1.  Conventional (Conv.) buck-boost PFC converter. 
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Fig. 2.  Dual buck-boost bridgeless (DBBL) PFC converter [9]. 
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Fig. 3.  Proposed (Prop.) bridgeless buck-boost PFC converter. 

TABLE I 
KEY FEATURE COMPARISON BETWEEN CONVERTERS 

Features Conv.  DBBL Prop. 

No. of 
devices in 
topology 

Switch 1 2 2 

Diode 5 4 4 

Inductor 1 2 2 

Capacitor 1 1 2 

Total 8 9 10 

Max. No. of conducting devices 
in one half line cycle 

4 3 3 

Reverse voltage across switch  vin+Vo vin+Vo vin+½Vo 

Reversed output voltage Yes Yes Yes 

 



Meanwhile, buck-boost PFC converter can also be designed 
with a variable DC link voltage in motor drives to lower 
switching losses in rear-end inverter [8], which improves the 
entire system efficiency.   

However, conventional buck-boost PFC converter (see 
Fig. 1) suffers from several drawbacks, e.g., high voltage 
stresses across switch and the grounding issue for input and 
output sources [10]. Driven by reducing the component count 
and conduction losses, bridgeless buck-boost PFC converters 
with single tapped inductors were proposed in [7], where it 
requires snubber capacitors to handle the induced voltage 
spikes from the tapped inductor leakage inductance, and thus, 
degrading the efficiency. Ref. [9] has proposed a dual buck-
boost bridgeless (DBBL) PFC converter, given in Fig. 2, 
which has minimized the conduction losses by cancelling the 
diode bridge, but it still suffers from high voltage stresses 
across switches.  

This paper proposes a novel bridgeless buck-boost PFC 
converter with reduced voltage stresses across components, as 
shown in Fig. 3. Table I gives the feature comparisons 
between the conventional, the DBBL and the proposed 
converters. Compared to the conventional and DBBL 
converters, the total component count is increased in the 
proposed converter. Nevertheless, the voltage stresses are 
reduced by the DC-split output configuration in the proposed 
converter, which alleviate switching losses. Besides, the 
proposed converter has reduced the conducting device number 
to minimize conduction losses. Hence, compared to the 
conventional converter, the proposed converter will have 
higher efficiency, especially in light load conditions.  

The rest of paper are organized as follows. In Section II, 
the operational principle of the proposed converter with 
inductors working in the DCM is introduced. Then, the PF, 
voltage stresses across devices, and the output ripple are 
analyzed. In Section III, specific parameters of converters with 

brief design criterion are given. Meanwhile, control strategy is 
introduced, which is applied to the two built prototypes. The 
obtained results from both simulation and experiment verify 
the feasibility of the proposed converter and theoretical 
analysis. Finally, Section IV gives the conclusion of this 
study.  

II. ANALYSIS OF THE PROPOSED CONVERTER 

A. Topology 

Fig. 3 shows the proposed buck-boost PFC converter 
topology, which consists of two equal inductors L1, L2, two 
equal capacitors C1, C2, two rectifier diodes DR1, DR2, two 
output diodes D1, D2, and two power switches S1, S2.  

For simplicity, the assumptions are as following. (i) All 
components in the topology are ideal. (ii) The switching 
frequency fSW is much higher than the line frequency fL, so the 
switching cycle TS is much small than line cycle TL. (iii) The 
ac input voltage vin is considered as a constant during one 
switching cycle. (iv) Assume that charge duty cycle of 
inductor L1 and L2 are dL1_1 and dL2_1, and discharge duty 
cycle of inductor L1 and L2 are dL1_2 and dL2_2, respectively. 
(v) When the inductors L1 and L2 operate in the DCM, 
dL1_1+dL1_2<1, and dL2_1+dL2_2<1 hold.  

B. Operational modes 

Fig. 4 illustrates the operational modes of the proposed 
converter. In a positive half line cycle, Operational mode are 
shown in (a), (b), (c); in a negative half line cycle, operational 
modes are shown in (d), (e), (f), respectively.  

In a positive line cycle, the switch S2 is kept in off-state, 
and the DCM operational modes are as following. 

Mode I: In Fig. 4(a), when the switch S1 is turned on, the 
inductor L1 will be charged by the input line voltage vin 
through S1 and rectifier diode DR1. The inductor current iL1 
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(d)                                                                       (e)                                                                      (f) 
Fig. 4.  Operational modes of the proposed topology: (a), (b), (c) in a positive half line cycle, (d), (e), (f) in a negative half line cycle. 



will increase linearly during this turning-on duty cycle dL1_1. 
The capacitors C1 and C2 will both support the load. 

Mode II: In Fig. 4(b), when the switch S1 is turned off, the 
iL1 will go through diode D1 to charge capacitor C1 and feed 
the load. The capacitor C2 will continue to discharge. The 
inductor current iL1 will decrease linearly until to zero during 
this turning-off duty cycle dL1_2. 

Mode III: In Fig. 4(c), switch S1 stays in off-state. The 
inductor current iL1 keeps in zero until the beginning of the 
next switching cycle, and the capacitors C1 and C2 continue to 
support the load. 

In a negative line cycle, as illustrated in Fig. 4(d), (e), and 
(f), the switch S1 keeps turned off, and operational modes are 
similar to that in a positive line cycle. Switch S2, inductor L2, 
rectifier diode DR2 and diode D2 will operate correspondingly 
to achieve PFC and output voltage regulation. Hence, this 
paper will focus only on positive half line cycle. Meanwhile, 
based on the operational modes analysis, it is obvious that the 
control signals for both switches can be the same, as even 
although the switches are on, the existing rectifier diodes DR1 
and DR2 will block the reverse current and to make the 
operation modes as illustrated above.   

Fig. 5 gives the waveforms of inductor current iL1, output 
diode current iD1, and switching current iS1 in the proposed 
converter, along with the waveforms of iL, iD, and iS in the 
conventional converter. As can be seen from Fig.5, iS1 and iS 
are same, but iD1 and iD are not, neither are iL1 and iL. In buck-
boost PFC converter, the input average current is the switch 
current, so the same waveform between iS1 and iS indicates the 
same PF of the proposed converter and the conventional 
converter. In contrary, the differences between iD1 and iD 
actually imply the larger rms value of iD1 than that of iD, and 
larger rms value of iL1 than that of iL. This feature will increase 
conduction losses in L1 and D1 of proposed converter, which is 
the penalty of reduced voltage stresses across devices. 

C. Unity Power Factor 

Knowing that the peak value of input line voltage is VM, 
the RMS value of line voltage is Vin_rms and the line angle 
frequency is ω. Then vin can be given as: 

in M in_rms( ) sin( ) 2 sin( ).v t V t V t                   (1) 

following (1), the inductor peak current is:   

M L1_1

L1_pk

1 SW

sin( )
( )

V t d
I t

L f


                       (2) 

where the absolute value of sin(ωt) indicate that it is in 

positive half line cycle. 
The average switch current iS1_ave can be expressed as the 

input current:  
2

M L1_1

in S1_ave

1 SW

sin( )
( ) ( ) .

2

V t d
i t i t

L f


                (3) 

Based on (1) and (3), the input power is expressed as:  
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From (4), the duty cycle dL1_1 can be expressed as: 

1 SW in

L1_1

M

2
.

L f P
d

V
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Equation (5) indicates that in steady state, the turning-on 
duty cycle is theoretically fixed and it only relates to L1, fSW, 
Pin, and VM. Assume the rms value of the input current is 
Iin_rms. Then, theoretically, using (3) and (4), it can obtain the 
PF of the proposed converter as: 

2

L1_1 M 1 Sin

/2
in_rms in_rms 2M

in
0

( ) / 4
PF 1.

1
[ ( )] ( )

/ 22

LT

L

d V L fP

V I V
i t d t

T

  



     (6) 

Equation (6) indicates that ideally the proposed converter 
has the unity PF. However, Equation (6) is the theoretical 
expression of the PF without considering phase shift between 
input line voltage and current. In practice, phase shift caused 
by EMI filter network will degrade the PF [13]. 

D. Voltage stresses 

Note that the VC1 and VC2 will be equal automatically, just 
as the bridgeless buck PFC converter in [4]. According to 
Kirchhoff’s law and the operational analysis above, there is 
equation VC1=VC2=½Vo. Based on Fig. 4, the reverse voltage 
across switches S1 and S2, as well as the D1 and D2 can be 
easily derived as:  

re_X M o
X D1,D2,S1,S2

sin( ) / 2v V t V


                (7) 

where the subscript X in reverse voltage vre_X, represents S1, 
S2, D1, and D2. Similarly, for the conventional converter, the 
reverse voltage across switch S and output diode D can also be 
derived as:  

re_X X=D, S M osin( ) .v V t V                         (8) 

Obviously, the maximum reverse voltage vre_X_max across 
these devices in the proposed and the conventional converters 
are:  

re_X_max X=S1,S2,D1,D2 M o

re_X_max X=D, S M o

/ 2 Prop.

Conv.

v V V

v V V

  


 

       (9) 

Seen from (9), compared to the conventional converter, the 
relatively lower voltage stresses of components in the 
proposed converter allow employing low voltage rating 
devices, which lower entire cost of converter. Furthermore, it 
will reduce switching losses of power switches. As in light 
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Fig.  5. Waveforms of inductor current iL1, output diode current iD1, and 
switch current iS1 in the proposed converter, along with corresponding 
waveforms in conventional converter. 



load conditions, switching losses are usually the dominant 
segment in the total energy losses. Hence, the proposed 
converter will be more efficient under light load conditions. 
Notably, in order to nullify the reverse recovery losses in 
diodes, inductors are designed to operate in the DCM. Thus, 
here, switching losses only refer to losses of switches, not 
including diodes. 

E. Voltage ripple 

For an AC-DC converter, the output ripple is caused by the 
unbalanced instantaneous power between input and output. 
Therefore, capacitors are necessary in AC-DC converters to 
buffer this unbalanced power. The following equation 
illustrates the relationship between output voltage ripple vo_rip 
and output capacitance C [8], as:  

o
o_rip

sin(2 )
.

2

I t
v

C




                                (10) 

The output capacitance C in the proposed and conventional 
converter are respectively as:  

1 2
1 2

o

/ /
2 2

.

C C
C C C Prop.

C C Conv


  


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  (11) 

According to (10) and (11), the output voltage ripples of 
proposed and conventional converter are:  
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                   (12) 

Seen from (12), if the proposed converter needs to meet the 
same output ripple requirement as in the conventional 
converter, Capacitance of C1 and C2 in the proposed converter 
should be twice-larger than that of Co in the conventional 
converter. However, the voltage rating of capacitor C1 and C2 
are only half that of Co in the conventional converter. This 
means that the size and cost will not increase so significantly. 

III. SIMULATION AND EXPERIMENTAL RESULTS 

In order to validate the effectiveness of the proposed 
topology comparative simulation studies are conducted. 
Furthermore, hardware prototypes for the proposed and 
conventional buck-boost PFC are implemented and verified 
through experiments. 

A. Control and circuit parameters  

Similar to the conventional converter, the proposed 
converter can also employ simple single voltage loop control 
to achieve output regulation and the unity PF. Fig. 6 gives the 
control schematic of the proposed converter. As seen from 
Fig. 6, both switches S1 and S2 can be driven by the same 
control signal. The gain and time constant in PI controller are 
selected as 0.9 and 0.05 respectively. 
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Fig. 7.  Simulation waveforms with a 110-Vac input voltage: input line 

current of the (a) proposed and (b) conventional converters, output voltage 

ripple of the (c) proposed and the (d) conventional converters. 
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Fig. 6.  Control block diagram of the proposed converter. 

TABLE II 
KEY CIRCUIT PARAMETERS OF CONVERTERS 

Symbols 
Conventional DCM 

buck-boost PFC 
Symbols 

Proposed DCM 
buck-boost PFC 

fSW 50 kHz fSW 50 kHz 

Vin 85~135 Vac Vin 85~135 Vac 

Vo 160 Vdc Vo 160 Vdc 

Po 20~100 W Po 20~100 W 

L 110 μH L1, L2 110 μH 

Co 1500 μF/200 Vdc C1, C2 3300 μF/100 Vdc 

Cf 0.1 μF Cf 0.1 μF 

Lf 1.9 mH Lf 1.9 mH 

 



By referring to [12], the inductance of L1 and L2 are 
calculated to guarantee the DCM operations, i.e., L1 = L2 ≤ 
115.4 μH. Furthermore, to limit the peak inductor current to 
10 A, inductance of L1 and L2 are set as 110 μH. On the other 
hand, the capacitance of C1, C2, and Co are set as 3300 μF and 
1500 μF to meet the output voltage ripple requirements, 
i.e.,vo_rip ≤ 1.6 V (vo_rip/Vo ≤ 1%). Table II gives the key 
circuit parameters of the proposed and the conventional 
converters.  

B. Simulation  

Fig. 7 gives the simulation waveforms of proposed and 
conventional converters operating at 100 W in a 110-Vac 
input voltage. Seen from Fig. 7(a), (b), the proposed and 
conventional converters have the same high PF and low THDi. 
The reason why the simulation has the PF less than one is that 
the used EMI filter at input ac side will cause the phase shift, 
which will degrade PF and THDi [13].  

Seen from Fig. 7(c), (d), the voltage ripple of conventional 
and the proposed converter are 1.33 V and 1.21 V, which are 
all within the output ripple requirement (vo_rip/Vo ≤ 1%). 
Meanwhile, the voltage ripple (2.31 V) of capacitor C1 and C2 
are almost twice larger than that of capacitor Co. Furthermore, 
the voltage ripple of C1 and C2 will partly cancelled out by 
each other, but it will not fully cancel out. This is because C1 
and C2 are charged only in positive and negative half line 
cycle, separately, and they have to discharge in another 
complementary half line cycle. Therefore, their peak voltage 
and valley voltage will never appear at the same time unless 
different control strategy or topological modification applied.   

C. Experimental results 

In the experiment, the conventional and the proposed 

buck-boost PFC converters are built up for validation purpose. 

Two prototypes use the same PI control system implemented 

by digital signal processor (DSP) TMS320F28335 and the 
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same analog-to-digital conversion ship AD7656. The 

switches, diodes (output and rectifier), and inductor cores are 

realized by component IXFH22N652, STPSC12065, and 

CM571026 from Chang Sung. Capacitors are realized by 

ECOS2AA332DA (3300 µF, 100 Vdc) in the proposed 

converter and ECOS2DA152EA (1500 µF, 200 Vdc) in the 

conventional converter. Notably, in order to have a fair 

comparison STPSC12065 is also used for the diode bridge in 

conventional converter. Fig. 8 shows the experimental setup. 

Fig. 9 and 10 show the experimental waveforms of the 

proposed and the conventional converters. As it is shown in 

Fig. 9 the proposed converter can use simple voltage control 

strategy to achieve the output voltage regulation and a near 

unity PF.  

Seen from Fig. 9(a) and 10(a), compared to conventional 

converter, the proposed converter has the same sinusoidal 

input current, which indicates that the proposed converter has 

the same unity PF as that of the conventional converter. The 

measured PF of the proposed and the conventional converter 

are the same 0.999, and the corresponding THDi are 3.5% 

(Prop.) and 3.1% (Conv.), respectively.  

Besides, observed from Fig. 9(b) and 10(b), compared to 

the conventional converter (340 V and 420 V across switch 

and diodes, respectively), the proposed converter has lower 

reverse voltage across devices (250 V and 340 V across switch 

and diodes, respectively). The lower reverse voltage across 

switches actually helps to reduce the switching losses. 

Consequently, the proposed converter shows a good 

performance in efficiency aspect compared to the conventional 

converter, especially in light load conditions.  

Fig. 11 gives the measured efficiency of the proposed and 

conventional converter in output power range of 20~100 W. 

As can be seen from Fig. 11 for the entire output power range, 

the proposed converter has better efficiency than conventional 

one, especially in the light load conditions. Note that RCD 

snubber circuits are used to suppress the voltage spike across 

switches during experiments, which decrease the efficiency of 

both converters given in Fig. 11.  

IV. CONCLUSION 

This paper proposes a bridgeless buck-boost PFC 

converter to minimize the conduction losses by the removal of 

diode bridge. Furthermore, the proposed converter with a DC-

split output structure can lower the voltage stresses across 

switches, which eases the switching losses. The operation 

principles of the proposed converter are presented and 

analyzed in detail. Then, based on the operation principles, 

this paper analyzes and compare the PF, voltage stresses, and 

output voltage ripple between the proposed and the 

conventional converters. Simulation and experiment are 

verified by two built prototypes with same control system and 

same load range of 20-100 Watts. The obtained results from 

simulation and experiment indicate that compared to the 

conventional converter, the proposed converter can use same 

simple control strategy to achieve a near unity PF and output 

regulation. Meanwhile, the proposed converter has higher 

efficiency in the entire load range, even much better in light 

load conditions. The major drawback of the proposed 

converter is that output capacitors with twice-larger 

capacitance are required to satisfy the output ripple 

requirement as in the conventional converter. In summary, the 

proposed converter can be an alternative solution to the 

conventional buck-boost PFC converter in efficiency-

concerned applications, especially suitable in the light load 

conditions.  
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