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On the Influence of Transfer Function Noise on
Sound Zone Control in a Room

Martin Bo Møller, Student Member, IEEE, Jesper Kjær Nielsen, Member, IEEE,
Efren Fernandez-Grande, and Søren Krarup Olesen,

Abstract—Sound zones are valuable in scenarios where mul-
tiple people are present in the same room but want to listen
to individual audio content without wearing headphones. The
purpose of sound zone methods is to minimize the acoustic
leakage between the zones by controlling multiple loudspeakers.
This requires knowledge of how the loudspeakers interact with
the room and radiate sound to the zones. That interaction is
characterized by the transfer functions between the loudspeakers
and microphones sampling the sound field in the zones. In this
paper, the effect on the acoustic separation due to inherent noise
in in-situ transfer function measurements is investigated. The
attainable separation is analyzed in the frequency range 20-
300 Hz by means of the eigenfunctions of a rectangular room.
The concept of observable degrees of freedom is introduced to
indicate the number of active eigenfunctions which are different
within the zones at a given frequency. Likewise, controllable
degrees of freedom indicate whether each source can excite
the active eigenfunctions independently. It is argued that high
separation can be achieved when the observable degrees of
freedom are fewer than the controllable, and the target sound
field can be described by the observable degrees of freedom.
However, to attain this high separation it is a requirement that
the details in the transfer functions associated with these degrees
of freedom can be resolved in the presence of the measure-
ment noise. For both simulated and experimental conditions
the transfer functions are estimated using Bayesian inference
and the uncertainty in the estimates is used to automatically
regularize the sound field control. This regularization is seen
to improve the performance when the measurement noise is
correlated between the microphones and have little effect when
the noise is uncorrelated.

Index Terms—Sound zones, personal audio, sound field control.

I. INTRODUCTION

IMAGINE a group of people sitting in a room, each listening
to individual audio content without disturbing each other.

The occupants of the room are not wearing headphones and
are able to freely communicate with one another. This is the
goal of sound zones systems [1], [2], where loudspeakers
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distributed throughout the room are used to control sound
reproduction to the occupants. Limiting the spatial extent
where audio is reproduced is desirable in various applications
and has been investigated in environments such as: aircraft
seats [3], automotive cabins [4]–[7], domestic rooms [8]–[11],
and open air concerts [12].

The concept behind sound zones is to divide the space into
three regions: a region where the desired sound should be
reproduced, a region where it should be suppressed, and the
remainder of the environment where the sound is not explicitly
controlled. The region where the sound is desired is referred
to as the bright zone, and the region where it should be
suppressed is referred to as the dark zone [13]. Reproducing
individual audio for two listeners (content A and B) is achieved
by superimposing two sound zones solutions, where the bright
zone with respect to audio content A is the dark zone with
respect to content B and vice versa. Perceptual studies indicate
that 25 to 29 dB loudness difference1 between the target and
interfering audio is sufficient for not being distracted by the
interfering audio [14].

In this paper, the frequency range of interest is 20-300 Hz,
where sound can be reduced in the dark zone through destruc-
tive interference [3], [13], [15]. This low frequency control
should be considered as part of a composite solution cov-
ering the audible frequency range. Higher frequencies could
for instance be reproduced using beamforming [16], [17] as
suggested in [1]. Controlling the sound field at low frequen-
cies in a room requires knowledge of the transfer functions
between loudspeakers and zones which are measured in-situ.
The question of interest is how the room response combined
with the accuracy of the measurements affect the achievable
acoustic separation. Two categories of sound zone methods are
investigated here: acoustic contrast control (ACC) and pressure
matching (PM). ACC maximizes the ratio of squared sound
pressures in the bright and dark zone [3], [13] whereas PM
minimizes the mean square error of the reproduced sound field
in the zones relative to a predefined target [15], [18].

Typically, sound zones are implemented as feed-forward
control systems based on measured transfer functions. From
the measurements, a finite impulse response (FIR) filter is
determined to prefilter the audio signal for each loudspeaker.

1Loudness levels depend on both the frequency content of the reproduced
audio signals and the frequency response of the reproduction system, which
in audio reproduction systems is a design choice. To evaluate the results
without dependence on the input audio signals and spectral emphasis of the
reproduction system, the results in this paper are reported in terms of relative
pressure levels in the zones assuming the input signal to be a sum of pure
tones with equal amplitude.
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Thus, it is assumed that a loudspeaker in a room behaves as
a linear time-invariant system. In reality, there is a number
of violations of this assumption. For one thing, the ambient
temperature might change which in turn changes the transfer
functions and degrades the sound field control as seen in
[7], where a temperature change between −2◦C and 22.8◦C
yielded a reduction in acoustic separation between two zones
from 30 dB to 10 dB. Moreover, loudspeakers become non-
linear at high excursions which reduces the separation between
the zones, as seen in [19] where the separation is reduced from
41 dB to 27 dB due to changes at high excursion levels. Lastly,
it is assumed that the measured transfer functions are accurate
representations of the physical system during reproduction.
However, as measurements are never noise-free, the control is
based on estimated transfer functions which inherently include
uncertainty.

To ensure robust performance, it is of interest to determine
the consequences to the acoustic separation when the transfer
functions deviate from the estimates. In [20], Park et al.
investigated the sensitivity of the ACC method relative to
the variance of perturbations in the transfer functions for a
line-array in free field. It was observed that the sensitivity
decreased with denser microphone grids sampling the transfer
functions in space. A common approach to decrease the
sensitivity to general changes in the transfer functions is to add
regularization when determining the filters. The relationship
between Tikhonov regularization and a change in speed of
sound of 10 m/s or a loudspeaker displacement of 10 mm was
investigated for the PM and ACC methods, using a circular
loudspeaker array under free field conditions, in [21]. The
results showed higher sensitivity to the position mismatch
than the speed of sound change, and that robustness increases
with the introduced regularization. However, increasing the
regularization also reduces the separation between the zones,
and a careful choice of the regularization parameter is required.
Elliott et al. showed in [22] that the separation achieved by a
line array with filters designed for free field transfer functions
decreases when the transfer functions are changed due to
adding reverberation from a room as a diffuse contribution. It
was seen that given knowledge of the energy contained in the
diffuse contribution the sensitivity to the contribution could be
reduced. These results were experimentally validated in [8]. In
[23]–[25], Zhu et al. investigated the robustness of sound zones
using an arced loudspeaker array, in free field and in an acous-
tically treated recording studio, with transfer functions which
are uncertain characterizations of the contribution from each
loudspeaker to the sound field in the zones. It was shown that
given the loudspeaker and microphone positions and a rough
knowledge of the deviation from the transfer functions, it is
possible to determine a regularization parameter which makes
the sound field control robust to this deviation. The underlying
premise in these investigations is that the transfer functions
are known, and that regularization is added to compensate for
the expected deviations. Furthermore, the typical environment
is either acoustically treated or free field simulations and the
loudspeaker arrangements are limited to line or arc arrays at
mid and high frequencies. Under such conditions, the sound
zone problem resembles super directive beamforming. In the

20 50 100 200

Frequency [Hz]

30

40

50

60

70

80

S
P

L
 [
d
B

]

Fig. 1. Potential background noise in domestic rooms during day time due
to the LpA,LF ≤ 25 dB recommendation in [27].

present study, only the estimated transfer functions are known
and the uncertainty in the estimates is used to regularize the
solution. The sensitivity is investigated at low frequencies
where the interaction between room and loudspeakers is poorly
modeled by the free field radiation model with a diffuse
sound contribution [26]. Instead, the sensitivity is investigated
using Green’s function in a rectangular room and experimental
measurements in a room with a reverberation time (T20) of
0.6 s in the frequency range of concern.

The application assumed in this paper is a domestic room.
As rooms are different and loudspeaker placement depends
on interior decoration, it is necessary to measure the transfer
functions in-situ. In that scenario, it is of interest to consider
the amount of background noise which might be present
during the transfer function measurements. In Denmark, the
Environmental Protection Agency recommends A-weighted
low frequency (10 - 160 Hz) noise limits of LpA,LF ≤ 25 dB
in domestic spaces during day time [27]. This A-weighting
heavily attenuates low frequency sound, thus, significant low
frequency noise can be present in a domestic setting without
exceeding this recommendation as seen in Fig. 1. Assuming
the maximal sound pressure level produced by the loudspeak-
ers is limited due to non-linear distortion, the signal to noise
ratio (SNR) of the transfer function measurements can be
significantly reduced due to this limitation on the measurement
level.

The influence of background noise during the transfer
function measurements has previously been considered in [28]
where an experimental study was presented. The purpose of
the study was to investigate the variability in sound zone
performance over repeated transfer function measurements
with and without regularization based on the sample variance.
In this paper, the challenges associated with the sound zones
problem are related to the eigenfunction expansion of sound
fields in rooms and the accuracy of the estimated transfer
functions. To quantify this accuracy, marginal probability
distributions for the estimates are determined using Bayesian
inference. It is shown how these distributions can be used
to automatically determine a regularization parameter for the
PM and ACC methods under both simulated and measured
conditions.

The rest of the paper is structured as follows: in section II
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Fig. 2. Top view sketch of the layout of loudspeakers and zones in the
room used for both simulations and measurements throughout the paper. ZB

denotes the bright zone and ZD the dark zone.

the signal model and the sound zones problem are introduced.
The properties of the pressure matching problem are analyzed
in section III, before simulation and experimental results are
introduced in sections IV and V. The results are discussed in
section VI and concluding remarks are presented in section
VII. The Bayesian inference procedure used to estimate the
transfer functions is described in the appendix.

II. FORMULATING THE PROBLEM

The scenario treated in this paper is controlling the sound
field in two zones: one bright and one dark as depicted in
Fig. 2. The first step is to define the sound pressure observed
at the mth microphone at discrete time n due to the sum of
filtered responses from L loudspeakers. This can be expressed
as

p̃m[n] =

L∑
`=1

K−1∑
k=0

I−1∑
i=0

w̃`[k]h̃m`[i]s̃[n− k − i], (1)

where ·̃ denotes variables in the time-domain, w̃` =
[w̃`[0], · · · , w̃`[K−1]]T is the FIR input filter for the `th loud-
speaker, h̃m` = [h̃m`[0], · · · , h̃m`[I−1]]T is the room impulse
response from the input of the `th loudspeaker to the output
of the mth microphone, and s̃[n] is the nth sample of the input
audio signal. To determine the filters w̃ = [w̃T

1 , · · · , w̃T
L ]T ,

estimates of the room impulse responses are required. The
typical approach in sound zone applications is to estimate the
response from each loudspeaker independently [4], [9], [10].
Hereby, the problem can be divided into two stages: first, the
room impulse response or the equivalent transfer functions are
estimated at the microphone positions, and, secondly, these
estimates are used to determine the filters w̃.

To estimate a transfer function, the sound field generated
by a loudspeaker is measured at a given microphone position.
The measurement is usually repeated to suppress noise in the
estimate. Assuming the observed pressure at microphone m
due to loudspeaker ` to be a length N periodic sequence, the
measured pressure samples for one period can be written as

p̃
(r)
m` = H̃m`s̃ + ẽ

(r)
m`, (2)

where (r) indicates the rth repetition of the measurement, H̃m`

is the room impulse response represented as a convolutional

matrix, ẽ
(r)
m` is the noise present in the measurement, and s̃

is a length N deterministic input sequence. To avoid aliasing
in the convolutional matrix, it is assumed that N is longer
than the impulse response of the room. With the assumption
of a periodic input signal, H̃m` is circulant and the pressure
samples can be written as [29]

p̃
(r)
m` = N−1FH diag(Fh̃m`)Fs̃ + ẽ

(r)
m`. (3)

In the above, F is the N -by-N discrete Fourier trans-
form (DFT) matrix as defined in [29] ([F]n,n′ =
exp(n−1)(n′−1)(−2πj/N)) and (·)H denotes the Hermitian
transpose. Recognizing diag(Fh̃m`)Fs̃ as an entry wise mul-
tiplication between the vectors Fh̃m` and Fs̃, their ordering
can be reversed to obtain

p̃
(r)
m` = N−1FH diag(Fs̃)Fh̃m` + ẽ

(r)
m`. (4)

By multiplying both sides of the equation with the DFT
matrix, the pressure samples are expressed in terms of the
DFT coefficients

Fp̃
(r)
m` = diag(Fs̃)Fh̃m` + Fẽ

(r)
m`. (5)

It is assumed that the samples in the noise sequence ẽ
(r)
m`, are

drawn from a colored Gaussian distribution

ẽ
(r)
m` ∼ N (0, C̃). (6)

Multiplication with the DFT matrix is a linear transformation,
hence, the transformed sequence is distributed as

Fẽ
(r)
m` ∼ CN (0,Λ), (7)

where CN (·, ·) denotes the complex Gaussian distribution. If
we assume N is much larger than the effective auto-correlation
time of the noise sequence, the covariance matrix Λ is asymp-
totically diagonal and related to C̃ as Λ = FHC̃F/N [30].
From the linear properties of (5), the pressure observations are
distributed as

Fp̃
(r)
m` ∼ CN (diag(Fs̃)Fh̃m`,Λ). (8)

As the individual DFT coefficients are independent under these
assumptions, a single element of (5) is expressed in the more
compact form

p
(r)
m`(fn) = s(fn)hm`(fn) + e

(r)
m`(fn), (9)

where fn = n/N is the normalized frequency associated
with each DFT coefficient. Now, assume the excitation signal
consists of Np pure-tones with frequencies on the DFT grid. If
the DFT coefficients of interest are extracted and concatenated
in a vector, we can write

p
(r)
m` = Shm` + e

(r)
m`, (10)

with

p
(r)
m` =

[
p

(r)
m`(f1) · · · p

(r)
m`(fNp

)
]T

(11)

S = diag(s), s =
[
s(f1) · · · s(fNp

)
]T

(12)

e
(r)
m` =

[
e

(r)
m`(f1) · · · e

(r)
m`(fNp

)
]T
. (13)
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The DFT coefficients of interest for a single measurement
repetition are distributed as

p
(r)
m` ∼ CN (Shm`,Σe), (14)

where Σe = diag(σ2
e) are the corresponding Np diagonal

entries of Λ.
Given R repeated measurements pm` =

[p
(1)T
m` , · · · ,p

(R)T
m` ]T , the following approach was previously

used in [28] to determine the transfer function as

ĥm`(fn) =
s∗(fn)

R|s(fn)|2
R∑
r=1

p
(r)
m`(fn), (15)

where (·)∗ denotes complex conjugation and ·̂ highlights that
ĥm`(fn) is an estimate of the noise-free hm`(fn). However,
in the presented work it is of interest to determine a proba-
bility distribution for each ĥm`(fn) to utilize the uncertainty
inherently described in the distribution for regularizing the
sound field control problem. In the appendix, it is shown
how the probability distribution g(hm`) can be determined
using variational Bayesian inference. This is used in sec. II-
B, where the estimated probability distributions are included
in the control problem to account for the uncertainty of the
estimated transfer functions.

A. Reference Sound Field Control

For the reference sound field control, it is assumed that
the estimated transfer functions are noise-free. Using estimates
like (15), the reproduced sound pressure at the microphones
is the summation of the filtered responses from the L loud-
speakers and can be expressed as

pr(fn) = Ĥ(fn)w(fn) (16)

pr(fn) =
[
pr,1(fn) · · · pr,M (fn)

]T
, (17)

Ĥ(fn) =

 ĥ11(fn) · · · ĥ1L(fn)
...

. . .
...

ĥM1(fn) · · · ĥML(fn)

 , (18)

w(fn) =
[
w1(fn) · · · wL(fn)

]T
. (19)

Sound zones can be created by optimizing cost functions con-
sisting of different metrics related to this reproduced pressure.
In the sound zones literature, two common metrics are the
acoustic contrast and the reproduction error. The reproduction
error for a given set of filters is

Jpm,r(w(fn)) = ‖pt(fn)− Ĥ(fn)w(fn)‖22, (20)

where pt(fn) = [pt,1(fn), · · · , pt,M (fn)]T denotes a target
sound field at the M microphone positions. The pressure
matching solution is attained when minimizing Jpm,r(w(fn))
[15]. The acoustic contrast as an evaluation metric is defined
as

contrast(fn) =
M−1
B

∑MB

mB=1 |pr,mB
(fn)|2

M−1
D

∑MD

mD=1 |pr,mD
(fn)|2

, (21)

where the subscripts (·)B and (·)D denote the bright and dark
zone respectively. The acoustic contrast control solution is
obtained by maximizing the cost-function

Jacc,r(w(fn)) =
‖ĤB(fn)w(fn)‖22
‖ĤD(fn)w(fn)‖22

, (22)

as described in e.g. [13]. Minimizing (20) and maximizing
(21) yields the reference PM and ACC filters [13], [15]

wpm,r(fn) =
(
Ĥ(fn)HĤ(fn)

)−1

Ĥ(fn)Hpt(fn) (23)

wacc,r(fn) = Θ
(

(ĤD(fn)HĤD(fn))−1ĤB(fn)HĤB(fn)
)

(24)

with Θ(·) denoting a function returning the eigenvector of its
argument corresponding to the maximal eigenvalue.

B. Proposed Sound Field Control
If information about the marginal distribution of the transfer

functions is available from (51), it can be incorporated in the
cost functions. Let G(fn) denote a matrix where all the entries
are independent random variables, distributed according to
(51). A common way to utilize the knowledge of the transfer
function distributions is to augment the sound field control
problems to optimize the expected objective [23]. Optimizing
the expectation of the two sound field control problems, the
cost-functions are rewritten as

Jpm,e(w(fn)) = E
{
‖pt(fn)−G(fn)w(fn)‖22

}
(25)

Jacc,e(w(fn)) = E
{
‖GB(fn)w(fn)‖22
‖GD(fn)w(fn)‖22

}
. (26)

Minimizing the expectation in (25), a closed-form solution can
be found as

wpm,e(fn) =

(
ĜHĜ +

M∑
m=1

Σm

)−1

ĜHpt(fn), (27)

with Ĝ being a matrix containing the expected value of each
random variable in the entries of G(fn), and σ2

ml being the
corresponding variance from (53) used in

Σm = diag
([
σ2
m1 · · · σ2

mL

])
. (28)

As the numerator and denominator in (26) are independent in
terms of the variance of the estimates, the expectation is taken
separately. Thereby, it can be shown that (26) is maximized
by

wacc,e(fn) =

Θ

(ĜH
DĜD +

MD∑
m=1

Σm

)−1(
ĜH
B ĜB +

MB∑
m=1

Σm

) .

(29)

The main difference between the proposed and reference
solutions is the diagonal loadings introduced by the variances
of the marginal distributions of the transfer function esti-
mates. The diagonal loadings arise from the uncertainty in the
measurements and thus automatically regularize the problems
relative to the accuracy of the transfer function estimates.
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III. ANALYSIS OF THE PRESSURE MATCHING PROBLEM

To understand the challenge associated with creating sound
zones at low frequencies in a room, we will here briefly
look into the properties of the pressure matching problem. In
this section, the sound field and transfer functions arise from
solutions to partial differential equations and are expressed
as continuous functions of space and the harmonic excitation
frequency ω. Assuming noise-free transfer functions the PM
problem is expressed from (20) as

min.
F{w̃}(ω)

‖pt(x̄M, ω)−H(x̄M, x̄L, ω)F{w̃}(ω)‖22. (30)

where x̄M denotes the M points where the sound field
is observed, x̄L denotes the L point source locations and
F{w̃}(ω) denotes the discrete-time Fourier transform of the
filters, evaluated at ω. The properties of this problem depend
on H(x̄M, x̄L, ω), which is here related to the eigenfunctions
of a room. At low frequencies, the sound field in a room due to
harmonic excitation can be described in terms of an expansion
in eigenfunctions (or room modes), each of which must satisfy
the homogeneous Helmholtz equation [31]. The pressure at
position x given a point source at x0 is

px0(x, ω) = jωρG(x|x0, ω)q(x0, ω), (31)

where j =
√
−1, q(x0) is the volume velocity emitted by

the point source, and ρ is the density of air. Green’s function,
G(x|x0, ω), relates a normalized volume velocity point source
at x0 to the complex pressure at x and can be written as an
eigenfunction expansion [31]

G(x|x0, ω) =
∞∑
v=0

µv(ω)ψv(x)ψv(x0) (32)

with
µv(ω) =

1

(κ2
v − (ω/c)2)

. (33)

Here, c is the speed of sound and ψv(x) is the vth eigenfunc-
tion of the room2 with eigenvalue κ2

v evaluated at point x in
space. The sound pressure at x is the contribution from all
point sources in the room,

p(x, ω) = jωρ

∫
Ω

G(x|x0, ω)q(x0, ω)dx0, (34)

where the integral is taken over the domain of the room Ω.
For sound field control in a room, the sound field is

generated by L point sources with individual volume velocities
modified by the filters w̃. Hence, (34) can be written as

p(x, ω) = jωρ

∫
Ω

G(x|x0, ω)
L∑
`=1

F{w̃`}(ω)δ(x0 − x`)dx0.

(35)
with δ(·) being the Dirac delta and x` the position of the
`th point source. Assuming the microphone is not co-located
with the point sources (x 6= x`), that boundaries are not
lossless, and that the amplitudes of the filters at ω are finite,
the integrand is absolute integrable for each `. Thereby, the

2Note that the eigenfunctions here are scaled to be orthonormal, rather than
the customary orthogonal with inner product equal to the volume of the room
[26], [31].

order of integration and summation can be interchanged, and
by substitution of (32) we obtain

p(x, ω) = jωρ
L∑
`=1

F{w̃`}(ω)
∞∑
v=0

µv(ω)ψv(x)ψv(x`). (36)

From (36), it is seen that µv(ω) reduce the influence of the
eigenfunctions when the difference between ω2 and c2κ2

v is
large. As such, the eigenfunctions are denoted as active when
µv(ω) is large (when the excitation frequency is close to the
characteristic frequency of the eigenfunction).

In the pressure matching problem (30), the objective is to
control the sound field in the room at M specific microphone
positions. It is assumed that these positions represent the
sound field within the zones and that it is not desired to
explicitly control the sound field outside the zones. With
the eigenfunction expansion of the sound field, the transfer
function matrix in (30) can be written

H(x̄M, x̄L, ω) = jωρΨH(x̄M) diag(µ(ω))Ψ(x̄L), (37)

where

ΨH(x̄M) =

 ψ1(x1) · · · ψ∞(x1)
...

. . .
...

ψ1(xM ) · · · ψ∞(xM )

 (38)

µ(ω) =
[
µ1(ω) · · · µ∞(ω)

]T
(39)

Ψ(x̄L) =

 ψ1(x1) · · · ψ1(xL)
...

. . .
...

ψ∞(x1) · · · ψ∞(xL)

 . (40)

It is well known that the sensitivity of least-squares prob-
lems like (30) to perturbations in the target sound field and
the transfer function matrix depends on the properties of
H(x̄M, x̄L, ω) [32]. The sensitivity is often evaluated in terms
of the condition number of HH(x̄M, x̄L, ω)H(x̄M, x̄L, ω), but
if the eigenfunctions of the room are known it is possible to
gain more insight into the problem. This is demonstrated with
the following simulation example, where transfer functions
from eight point sources are observed at 75 microphone
positions in each of the two zones in a rectangular room,
as sketched in Fig. 2. The eigenfunctions with characteristic
frequency below 400 Hz are determined using the analytic
expressions for Green’s function as found in [26]. Further
description of the simulated setup is given in section IV.
For the simulated noise-free scenario, the condition number
of HH(x̄M, x̄L, ω)H(x̄M, x̄L, ω) is plotted in Fig. 3. The
condition number is high, especially at low frequencies, when
compared against the suggested rule-of-thumb stating it should
be in the interval 1000 to 5000 [33]. This generally indicates
that the inverse problem (30) is sensitive to perturbations.

A more detailed understanding of the problem can be
attained by analyzing how the microphone and source posi-
tions sample the active eigenfunctions. In the current example
the number of microphones exceeds the number of sources,
hence, the least-squares problem is overdetermined and thus no
exact solution exists in general. However, closer examination
reveals that the problem is almost underdetermined at low
frequencies, which is the cause for the high condition number
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Fig. 3. Condition number of HH(x̄M, x̄L, ω)H(x̄M, x̄L, ω) for the simulated
setup sketched in fig. 2, having 150 microphones and 8 loudspeakers. ( ):
Condition number. ( ): Reference limit of 5000 proposed in [33].

in Fig. 3. By observing that ΨH(x̄M ) and Ψ(x̄L) are the
eigenfunctions of the room evaluated at the microphone and
source positions respectively, it is possible to analyze their
contribution to H(x̄M, x̄L, ω) independently. By truncating the
number of eigenfunctions to V and separating diag(µ(ω)) in
two diagonal matrices, (37) can be written as

H(x̄M, x̄L, ω) = jωρΨH
V (x̄M )diag

(√
µV (ω)

)
diag

(√
µV (ω)

)
ΨV (x̄L), (41)

where the subscript V indicates truncation of (38)-(40) to
order V .3 With this separation it is of interest to investigate
the degree to which the active eigenfunctions are different
when observed by the microphones in the zones, at a given
excitation frequency. Similarly, it is of interest to investigate
whether each source can excite the active eigenfunctions
differently from the other sources. The effective number of
active eigenfunctions within the zones will be referred to as
the observable degrees of freedom (DOF). In the same way,
the effective number of active eigenfunctions which can be
independently excited by the sources will be referred to as the
controllable degrees of freedom. A mathematical definition
of these DOF will follow after a brief motivation for this
interpretation. In general, the eigenfunctions which are active
at low frequencies change slowly as functions of the position
in the room. As the frequency increases other eigenfunctions
are active and these change more rapidly with the position in
the room. The observable DOF might, therefore, be lower than
the number of microphones in the room at low frequencies.
As an example, consider two microphones sufficiently close
together in the room. The pressure observed at each of the
microphones would be nearly identical. Thus, only one DOF
is observed not two.4 Here, sufficiently close depends on
both the physical distance and the active eigenfunctions. The
interest in the observable and controllable DOF stems from
the insight it provides to the properties of H(x̄M, x̄L, ω), as
will be discussed shortly.

3The truncation is justified by the negligible contribution from the eigen-
functions when ω2 is far from c2κ2v . The number of considered eigenfunctions
is chosen to be larger than both the number of microphones and sources.

4A similar interpretation could be made for two sources in the room.

The chosen method for analyzing the observable
and controllable DOF is through the singular value
decomposition (SVD) of ΨH

V (x̄M )diag(
√
µV (ω)) and

diag(
√
µV (ω))ΨV (x̄L), independently. Both matrices can be

approximated by a truncated SVD using the singular values
and vectors corresponding to the first k singular values. By
the Eckhart-Young theorem, the error of the rank-k truncated
SVD approximation to a matrix A is ‖A − Ak‖2 = sk+1,
where sk+1 denotes the (k + 1)th singular value of A
[29]. The observable DOF is defined as the lowest rank
of the truncated SVD of ΨH

V (x̄M )diag(
√

µV (ω)) required
to attain an approximation error below an application-
specific threshold, relative to the maximal singular value of
ΨH
V (x̄M )diag(

√
µV (ω)). The controllable DOF are similarly

defined for the matrix diag(
√
µV (ω))ΨV (x̄L).

The normalized singular values of ΨH
V (x̄M )diag(

√
µV (ω))

and diag(
√

µV (ω))ΨV (x̄L) are plotted in Fig. 4. If the
application-specific threshold for observable and controllable
DOF is set to a normalized approximation error of 0.1 (the
dashed line in Fig. 4), it is seen that all the normalized
singular values of diag(

√
µV (ω))ΨV (x̄L) are larger than

0.1. Thus, the controllable DOF are equal to the number of
sources. However, several of the normalized singular values of
ΨH
V (x̄M )diag(

√
µV (ω)) are below 0.1, hence, the observable

DOF are fewer than the number of microphones. Furthermore,
it is seen that in the range 30-50 Hz the observable DOF
are fewer than the controllable DOF. This is caused by few
eigenfunctions being active in this frequency range, and the
ones which are active change slowly throughout the room.
Hence, as the microphones only evaluate the eigenfunctions
in a small part of the room (see Fig. 2), it is reasonable that
there are few observable DOF. The sources on the other hand
are distributed throughout the entire room, and this spatial
diversity increases the controllable DOF. As the frequency
increases, a larger number of eigenfunctions are active (the
modal density of the room increases [31]), and the active
eigenfunctions change more rapidly across distance in the
room. The effect is that the observable and controllable DOF
increases, as observed from Fig. 4.

From this analysis, it is seen that ΨH
V (x̄M )diag(

√
µV (ω))

is nearly rank-deficient at the lowest frequencies, which ex-
plains the ill-conditioning observed in Fig. 3. As this ill-
conditioning is caused by having fewer observable DOF than
controllable DOF, it is expected that regularization methods
[32], would be effective to reduce the sensitivity caused
by the ill-conditioning while retaining the ability to repro-
duce the target sound field in the zones, which can be
described by the observable DOF. At higher frequencies,
HH(x̄M, x̄L, ω)H(x̄M, x̄L, ω) becomes well-conditioned but
not all the observable DOF can be controlled. The expected
outcome is that the sound field can be less accurately con-
trolled at higher frequencies in this noise-free scenario. In
the following sections, results are presented to show the
consequence of H(x̄M, x̄L, ω) being influenced by noise.

IV. SIMULATION RESULTS

The influence of noise in the transfer function estimates is
investigated using simulations where the noise-free transfer
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Fig. 4. Normalized singular values of ΨH
V (x̄M )diag(

√
µV (ω)) ( ) and

diag(
√

µV (ω))ΨV (x̄L) ( ). Example of threshold for determing the
observable and controllable degrees of freedom ( ).

functions are known. Here a 5.5 m by 8.65 m by 2.7 m rect-
angular room with 0.6 s reverberation time (T60) is simulated.
The simulations are made using Green’s function for a point
source in a rectangular room [26], [31]. To emulate the mea-
surement scenario, the room transfer functions are calculated
from 8 point sources to 75 microphone positions (a 5×5 planar
array in three different heights with 10 cm spacing between
microphones5) in each zone, see the sketch in Fig. 2 for the
layout. The corresponding room impulse responses (RIRs) are
determined by the inverse DFT. The measurement procedure
is emulated by convolving the RIRs with the excitation signal
and adding uncorrelated white Gaussian noise. The excitation
signal consists of multiple sinusoids with frequencies adjusted
to be periodic with the measurement length N , so they are
exactly on the analyzed DFT grid. The measurements are
repeated eight times, and the marginal distributions for each
transfer function bin is determined from (51) at convergence
of the evidence lower bound (the relative change being below
10−9).

The volume velocities of the point sources in the simulations
are scaled to produce 70 dB SPL at a distance of 1 m in
free field. A 2nd-order high-pass filter with cutoff frequency
at 35 Hz is introduced to emulate the low frequency roll-
off of a closed-box loudspeaker [34]. The noise added to
the microphones is scaled to achieve a given SNR if the
microphone had been positioned 1 m from the point source
in free field and is denoted the free field SNR. The transfer
functions of the room alter the frequency response, hence,
the SNR observed at the microphones is fluctuating with the
response of the room. The average signal to noise ratio ± 1
standard deviation across all the 150× 8 microphone to point
source pairs is plotted in Fig. 5 for a free field SNR of 0 dB.
As an example, the transfer function estimates, (51) and (15),
based on eight 0.6 s measurements are plotted in Fig. 6 along
with the noise-free transfer function. It is seen that the two
estimates are almost identical, hence, the main difference is
the uncertainty inherently described by the Bayesian estimate.

5The microphone separation of 10 cm ensures the distance is less than 1/10
wavelength in the frequency range of interest.
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Fig. 5. Average signal level at the microphones, ± 1 standard deviation,
relative to noise floor, when the source output is scaled for 0 dB free field
SNR. Average and standard deviation are calculated across all the investigated
150 × 8 microphone loudspeaker pairs.
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Fig. 6. Example of a transfer function estimated from 8 repeated measure-
ments at 0 dB free field SNR. ( ): True transfer function, ( ): Bayesian
estimate (51), ( ) regular estimate (15).

A. Monte Carlo Results

The effect of noise in the transfer function estimation is
investigated through Monte Carlo simulations. The transfer
functions are estimated from 8 measurements at a given free
field SNR. These transfer functions are then used to calculate
the sound field control filters as (23), (24), (27), and (29).
The target sound field used in (27) and (23) is silence in
the dark zone and the estimated transfer functions from the
nearest loudspeaker in the bright zone.6 The sound field
control performance is evaluated as the contrast between the
zones using the noise-free transfer functions. This procedure is
repeated 100 times with new noise realizations, and the results
are reported in terms of the average performance ± 1 standard
deviation.

In Figs. 7 and 8, the contrast performance is shown for
Monte Carlo simulations at free field SNR levels of 0 and
20 dB, respectively. Together with the average performance
summarized in Table I, it is observed that the control based on
the Bayesian estimates on average perform slightly worse than
the reference methods but exhibits lower standard deviation.

6This target is chosen to ensure the target sound field in the bright zone is in
the range of the estimated transfer function matrix (ĤB(fn), ĜB). Choosing
the target as e.g. a plane impinging wave would imply adding room response
equalization (see e.g. [35]) on top of the sound zones problem.
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(a) Pressure Matching
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(b) Acoustic Contrast Control

Fig. 7. Average contrast (solid) ± 1 standard deviation (dashed) from 100
Monte Carlo simulations in a simulated rectangular room at 0 dB free field
SNR. ( ): wpm,r (23), wacc,r (24). ( ): wpm,e (27), wacc,e (29)).

This is expected as the white noise added to the simulated mea-
surements is independent between microphones and sources.
Thereby, the noise effectively regularizes the transfer function
matrices in a similar manner as described in [22].

The contrast increases with the SNR, as expected from the
estimated transfer function matrices becoming more accurate.
It is also observed that at 0 dB free field SNR, the contrast
performance from ACC is only slightly better than PM.
However, at 20 dB free field SNR, the contrast performance
using ACC is noticeably higher.

The efficiency of the methods can be compared based on the
`2-norm of the filters required to create an average pressure
of 94 dB SPL in the bright zone. This indicates how much
energy is injected in the loudspeakers and how much sound
is introduced outside the controlled zones. In Figs. 9, 10 and
Table I, the norms are shown for free field SNRs of 0 and
20 dB. It is observed that the regularization based on the
Bayesian estimates reduces the filter norms. The norms are
also seen to increase with SNR as the regularization due to
both inherent noise in the estimates and the uncertainty-based
regularization decrease. Hence, the increased contrast at 20 dB
free field SNR is achieved at the expense of increased energy
consumption. Finally, it is seen that PM requires higher filter
norms than ACC to produce the same average pressure in the
bright zone, as expected from the literature [21].
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(b) Acoustic Contrast Control

Fig. 8. Average contrast (solid) ± 1 standard deviation (dashed) from 100
Monte Carlo simulations in a simulated rectangular room at 20 dB free field
SNR. ( ): wpm,r (23), wacc,r (24). ( ): wpm,e (27), wacc,e (29)).

TABLE I
SUMMARIZED RESULTS FROM FIG. 7-12 AVERAGED ACROSS FREQUENCY

0 dB free field SNR
Method Contrast Filter norm
wpm,r 17.4 ± 0.8 dB 1.4 × 10−1 ± 7.3 × 10−3

wpm,e 16.2 ± 0.6 dB 1.1 × 10−1 ± 4.3 × 10−3

wacc,r 21.2 ± 0.8 dB 8.6 × 10−2 ± 3.5 × 10−3

wacc,e 19.6 ± 0.5 dB 7.7 × 10−2 ± 1.5 × 10−3

20 dB free field SNR
Contrast Filter norm

wpm,r 25.3 ± 0.5 dB 2.3 × 10−1 ± 5.7 × 10−3

wpm,e 24.5 ± 0.4 dB 2.1 × 10−1 ± 3.6 × 10−3

wacc,r 34.2 ± 0.5 dB 1.4 × 10−1 ± 4.6 × 10−3

wacc,e 33.1 ± 0.4 dB 1.3 × 10−1 ± 2.2 × 10−3

Measured Results
Contrast Filter norm

wpm,r 21.2 dB 6.4 × 10−2

wpm,e 21.6 dB 3.9 × 10−2

wacc,r 27.7 dB 4.6 × 10−2

wacc,e 28.4 dB 2.7 × 10−2

V. EXPERIMENTAL RESULTS

A series of in-situ measurements were conducted to validate
the simulated results. The room was an office remodeled to
resemble a living room. The shape of the room differs from
the simulated rectangular room by having a raised ceiling,
increasing the volume to 143 m3. The layout of the 10”
closed box loudspeakers and the 1/4” electret microphones
were identical to the simulated results. The average measured
(T20) reverberation time in the frequency range of interest
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Fig. 9. Average filter norms (solid) ± 1 standard deviation (dashed) from
100 Monte Carlo simulations in a simulated rectangular room at 0 dB free
field SNR. ( ): wpm,r (23), wacc,r (24). ( ): wpm,e (27), wacc,e (29)).

was 0.6 s. RME MADIface XT and M-32 AD / DA sound
cards were used to measure the responses at 48 kHz sampling
frequency before the results were downsampled to 1.2 kHz
for further processing. The transfer functions were estimated
from measurements at two excitation signal levels: one low
for determining the sound zones filters, and one high for
evaluating the results with little noise influence. Each mea-
surement consisted of 10 repetitions of the 0.6 s periodic
measurement sequence, where the first and last repetition were
excluded from the processing. Before the measurements were
commenced, the background noise power spectra for each of
the 5 × 5 microphones in the planar array were estimated
from 60 consecutive 0.6 s recordings of the noise. The average
ratio of recorded signal power spectra to recorded background
noise spectra is plotted in Fig. 11 for the measurements at low
and high excitation signal levels. The evaluation measurements
were conducted at 20 dB higher excitation level than the mea-
surements used for calculating the filters, reaching maximum
values of 82 dB SPL.

The contrast and filter norm results are plotted in Fig. 12
and summarized in Table I. As in the simulated results, the
PM solutions provide reduced contrast at a higher filter norm.
Contrary to the simulated results the contrast results for the
expectation based cost-functions (27), (29) are slightly better
than the reference solutions (23), (24). Furthermore, it is seen
that the filter norms are significantly reduced by the explicit
regularization.
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Fig. 10. Average filter norm (solid) ± 1 standard deviation (dashed) from
100 Monte Carlo simulations in a simulated rectangular room at 20 dB free
field SNR. ( ): wpm,r (23), wacc,r (24). ( ): wpm,e (27), wacc,e(29)).
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Fig. 11. Average ratio (solid) ± 1 standard deviation (dashed) of measured
signal to measured background noise. ( ): Measurements used to determine
filters. ( ): Measurements used to evaluate the results.

VI. DISCUSSION

The slightly different relationship between proposed and
reference methods in the experimental and simulated results
suggests that the noise is different in the experimental results.
One cause could be that the noise is partly correlated be-
tween microphones which is reasonable for acoustical noise
at low frequencies. To support this argument, a Monte Carlo
simulation was made where the added noise was perfectly
correlated between the microphones. In Fig. 13 the contrast
results are plotted for simulations with a free-field SNR of
20 dB. It is seen that the proposed and reference methods are
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Fig. 12. Experimental results. Sound field control based on 8 repeated
low SNR transfer function measurements, evaluated with a single high SNR
measurement. ( ): wpm,e (27). ( ): wacc,e (29). ( ): wpm,r (23).
( ): wacc,r (24).

different below 100 Hz, especially in terms of the standard
deviation of the contrast. It is seen that the perfectly correlated
noise does not inherently regularize the problem, hence, the
particular noise sequence which is generated in each iteration
of the Monte Carlo simulations has a great impact on the
resulting contrast. Compared to the results in Fig. 7, 8, and
12, a much greater impact effect of the proposed methods is
observed in Fig. 13. The perceptual difference between the
reference and proposed methods are likely to be small for
the uncorrelated noise simulations and the given experiment,
due to the differences in contrast being mainly above 20 dB,
in small parts of the investigated frequency range. However,
for the correlated noise, the ±1 standard deviation is clearly
different between the reference and proposed methods. The
added robustness increases the stability, and the lower range
of the standard deviation are in some parts of the frequency
range improved from below 10 dB to more than 20 dB. It is
therefore argued, that the proposed methods have little negative
effect when the noise is uncorrelated but can have a large
possitive effect when the noise is correlated, even though the
noise is modeled as uncorrelated in the Bayesian inference of
the transfer functions.

Comparing the contrast performance across frequency in
Figs. 7, 8, and 12, it is seen that the measured results follow a
different trend than the simulated results. This change is due to
a difference in the SNRs across frequency in the simulations
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(b) Acoustic Contrast Control

Fig. 13. Average contrast (solid) ± 1 standard deviation (dashed) from 100
Monte Carlo simulations with coherent noise in a simulated rectangular room
at 20 dB free field SNR. ( ): wpm,r (23), wacc,r (24). ( ): wpm,e (27),
wacc,e (29)).
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Fig. 14. Average singular values of ĜHĜ over 100 Monte Carlo trials
at 0 dB free field SNR ( ). ( ): Singular values of the noise free
transfer functions (H(fn)HH(fn)). ( ): Average singular values of the
uncertainty based regularization

∑M
m=1 Σm.

and the measurements. From Fig. 5 it is seen that the average
SNR of the measurements has a slightly decreasing trend in
the simulations. However, in Fig. 11 it is seen that the average
SNR of the measured responses increases with frequency.
Hereby, the accuracy of the estimated transfer functions over
frequency is different for the simulated and measured results.

Besides the SNR, the frequency dependence of the contrast
can be related to the eigenfunctions of the room. In Fig. 14 the
singular values of the spatial correlation matrix of the Bayesian
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estimates, ĜHĜ, are plotted together with the noise-free
spatial correlation matrix, H(fn)HH(fn), and the uncertainty
based regularization for PM. It is seen that the added noise
regularizes ĜHĜ and that the uncertainty corresponds to
the added noise. At the lowest frequencies, only the first
two singular values are correctly identified. However, as seen
from Fig. 4 and 7, only few degrees of freedom (DOF) are
observable in the zones at low frequencies, hence, it is possible
to achieve more than 20 dB of contrast regardless. As the
frequency increases, so does the observable DOF, as seen from
both Fig. 4 and the diminishing ratio between largest and
smallest singular value in Fig. 14. Thus, more loudspeakers
are required to achieve a large contrast as frequency increases.
However, as seen from Fig. 14 and 7 the additional loud-
speakers are not useful if their added contribution cannot be
resolved from the transfer functions due to the measurement
noise. Thus, as the frequency increases it becomes increasingly
important to accurately estimate the transfer functions in order
to utilize all eight available loudspeakers for attaining a high
contrast.

The results presented in this paper are limited to one room
with a reverberation time of 0.6 s and a given layout of loud-
speakers and microphones. However, the analysis presented
can be interpreted for various reverberation times. Decreasing
the reverberation time of the room decreases the maximal
frequency dependent gain of each eigenfunction µv(ω) and
broadens the frequency span where it is active. This yields a
greater frequency overlap between the eigenfunctions which
increases both the observable and controllable DOF, as more
eigenfunctions are relevant at any particular excitation fre-
quency. At the same time, the decreased reverberation time
also reduces the maximal amplification by the room. Thus,
if the noise level is constant and the reverberation time
is decreased, the maximal SNR (as plotted in Fig. 5) will
decrease and the minimal SNR will increase. The result is that
the contrast becomes more stable across frequency, as both the
height of the peaks and the depth of the dips in the contrast
performance decreases. On the other hand, if the reverberation
time increases the opposite trend would be observed.

In this paper, the focus has been on introducing regulariza-
tion based on the uncertainty in the estimated transfer func-
tions. However, as can be inferred from Fig. 14, increasing the
accuracy of the transfer functions also increases the condition
number of the spatial correlation matrix. Therefore, having
accurate measurements only improves the attainable contrast if
the transfer functions do not change e.g. due to the temperature
in the room changing. As the sound zones are assumed created
with a feed-forward control system, the transfer functions are
measured once and any later deviation from those estimates
will degrade the contrast of the system. Thus, when the
transfer function estimates become increasingly accurate, the
sensitivity to other changes must be considered e.g. inspired
by the procedure suggested in [23]. At the same time, even
if the proposed method does not change the attained contrast
significantly in the case of uncorrelated noise, it is valuable to
know the uncertainty in the transfer functions as the inherent
regularization in the noise reduces the sensitivity to other
changes in the system.

VII. CONCLUSION

In this article, it was investigated how noise in in-situ
transfer function estimates affects the achievable acoustic
separation between sound zones in a room in the frequency
range 20 - 300 Hz. By analyzing the way point sources radiate
sound within a rectangular room the concepts of observable
and controllable degrees of freedom were introduced. The
conditioning of the transfer function matrix was related to the
relationship between observable and controllable degrees of
freedom. For the investigated setup, it was seen that when
the controllable degrees of freedom exceed the observable
degrees of freedom, it is possible to create more than 20 dB
of separation even when the transfer functions are degraded
by noise.

The automatic regularization based on the uncertainty of
the Bayesian inference was shown to increase the robustness
of the solution if the noise in the measurements is correlated
between the microphones. If the noise at the microphones is
uncorrelated, the influence of the regularization was shown
to be small as the uncorrelated noise inherently regularizes
the problem. Given high accuracy estimates of the transfer
functions, further regularization might be required to increase
the robustness towards e.g. time varying changes in the transfer
functions.

APPENDIX A
BAYESIAN INFERENCE OF THE TRANSFER FUNCTION

With Bayesian inference it is possible to estimate the
transfer functions and express the certainty of the estimate
given the observed data. Throughout the appendix, the signal
model from (10) - (14) is used, while the subscript (·)m`
and the frequency dependence (fn) are ommitted for the
ease of notation. The procedure for determining the marginal
distribution for the transfer function is summarized in the end
of the appendix.

It is assumed that the prior probability density function
(pdf) of the transfer functions follows a complex Gaussian
distribution with known mean and diagonal covariance matrix
known up to a scalar, γ,

f(h|γ) = CN (h;µh, γΣh). (42)

The scalar is introduced to represent a frequency independent
scaling of the covariance matrix Σh. For tractability, the scalar
is assumed to follow an inverse Gamma distribution

f(γ) = G−1(γ; aγ , bγ). (43)

As it was assumed that the DFT coefficients of the noise
sequence are independent, we can express the prior distribution
for the noise variance as

f(Σe) =

Np∏
n=1

G−1(σ2
e,n; an, bn). (44)

If the measurements are repeated R times, the data can
be combined and used for estimating the transfer functions.
The concatenation of the R observed data segments p =
[p(1)T , · · · ,p(R)T ]T is distributed as

f(p|h,Σe) = CN (1R ⊗ Sh, IR ⊗Σe), (45)
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where 1R = [1, · · · , 1]T ∈ RR, IR ∈ RR×R is the identity
matrix, and ⊗ denotes the Kronecker product. From Bayes
theorem, the posterior distribution of the latent variables is
given as

f(h, γ,Σe|p) =
f(p|h,Σe)f(h|γ)f(γ)f(Σe)

f(p)
. (46)

Because the prior of the transfer functions is independent
of the measurement noise, it is not possible to factor the
joint distribution f(p,h, γ,Σe) into independent components
of noise variance σ2

e,n and variance of the transfer function
prior σ2

h,n. Therefore, we cannot analytically determine the
marginal distribution of interest, f(h|p). This can be over-
come by enforcing a dependence through the g-prior [36],
[37] or by directly estimating the properties of the marginal
distribution through Markov chain Monte Carlo simulations
[38]. In the presented work, however, the marginal distribution
is approximated analytically through variational inference. In
this framework, a family of pdfs are used to approximate the
joint posterior distribution. Here, it is assumed that the joint
probability can be factorized as

f(h, γ,Σe|p) ≈ g(h, γ,Σe) = g1(h)g2(Σe)g3(γ). (47)

The approximation is optimized in terms of the Kullback-
Leibler divergence between g(h, γ,Σe) and f(h, γ,Σe,p). In
[38], it is shown that the optimal choices for g1(h), g2(Σe),
and g3(γ) are

ln(g1(h)) = E
i6=1
{ln(f(h, γ,Σe,p))}+ const. (48)

ln(g2(Σe)) = E
i6=2
{ln(f(h, γ,Σe,p))}+ const. (49)

ln(g3(γ)) = E
i6=3
{ln(f(h, γ,Σe,p))}+ const., (50)

where E
i6=1
{·} denotes the expectation with respect to the dis-

tributions different from g1(h), i.e. g2(Σe) and g3(γ). As the
expression for g1(h) depends on the expectation with respect
to g2(Σe) and g3(γ) and vice versa, a consensus estimate must
be determined iteratively as shown in the procedure overview
at the end of the appendix. It can be shown that

g1(h) = CN
(
h;µh|p,Σh|p

)
(51)

Σh|p = diag
([
σ2
h|p,1 · · · σ2

h|p,Np

])
(52)

σ2
h|p,n =

(
|sn|2RE

g2
{σ−2

e,n}+ E
g3
{γ−1}σ−2

h,n

)−1

(53)

µh|p = Σh|p

(
RSHE

g2
{Σ−1

e }S〈p〉+ E
g3
{γ−1}Σ−1

h µh

)
,

(54)

g2(Σe) =

Np∏
n=1

G−1(σ2
e,n;αn, βn) (55)

αn = an +R (56)

βn = bn +R

(
〈|pn|2〉+ E

g1
{|hn|2}|sn|2

−E
g1
{h∗n}s∗n〈pn〉 − 〈p∗n〉snE

g1
{hn}

)
, (57)

and

g3(γ) = G−1(γ;αγ , βγ) (58)
αγ = aγ +N (59)

βγ = bγ +

Np∑
n=1

σ−2
h,n

(
|µh,n|2 + E

g1
{|hn|2}

−E
g1
{h∗n}µh,n − µ∗h,nE

g1
{hn}

)
. (60)

The notation 〈·〉 is used to indicate the average across the R
measurements.

From the properties of the inverse gamma distribution we
have

E
g2
{σ−2

e,n} =
αn
βn

(61)

E
g3
{γ−1} =

αγ
βγ

(62)

and it can be shown that

E
g1
{|hn|2} = |µh|p,n|2 + σ2

h|p,n. (63)

Hereby, it is possible to determine the distributions g1(h),
g2(Σe), and g3(γ) by iteratively updating the estimates. The
convergence is determined from the evidence lower bound [38]

ELBO = E
g1,g2
{ln(f(p|h,Σe)}+ E

g1,g3
{ln(f(h|γ))}

+E
g3
{ln(f(γ))}+E

g2
{ln(f(Σe))}+H(g1)+H(g2)+H(g3),

(64)

with H(g1), H(g2), and H(g3) denoting the entropies of g1(h),
g2(Σe), and g3(γ), respectively. The change in evidence lower
bound can be evaluated between each cycle of updates and the
iterations are stopped when the change is below a predefined
threshold. The convergence is guaranteed because the ELBO
is convex with respect to each of the factors g1(h), g2(Σe),
and g3(γ) [38]. The components of (64) are given as

E
g1,g2
{ln(f(p|h,Σe))} = −RNp ln(π)−Rtr(E

g2
{ln(Σe)})

−R
Np∑
n=1

E
g2
{σ−2

e,n}
(
〈|pn|2〉+ E

g1
{|hn|2}|sn|2

−E
g1
{h∗n}s∗n〈pn〉 − 〈p∗n〉snE

g1
{hn}

)
(65)

E
g1
{ln(f(h|γ))} = −Np ln(π)− tr(ln(Σh))−NpE

g3
{ln(γ)}

−E
g3
{γ−1}

Np∑
n=1

E
g1
{|hn|2}+|µ2

h,n−E
g1
{h∗n}µh,n−µ∗h,nE

g1
{hn}

(66)
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TABLE II
ROOM PARAMETER RANGES FOR MONTE CARLO SIMULATIONS FOR

DETERMINING A PRIOR DISTRIBUTION FOR THE TRANSFER FUNCTIONS IN
A ROOM.

Parameter Min. value Max. value
Length 3 m 10 m
Width 3 m 10 m
Height 2.5 m 3.5 m

Temperature 20◦ 30◦

T60 0.1 s 0.7 s

E
g2
{ln(f(Σe))} =

Np∑
n=1

an ln(bn)− ln(Γ(an))− (an + 1)

E
g2
{ln(σ2

e,n)} − bnE
g2
{σ−2

e,n} (67)

E
g2
{ln(f(γ))} = aγ ln(bγ)− ln(Γ(aγ))− (aγ + 1)

E
g3
{ln(γ)} − bγE

g3
{γ−1} (68)

H(g1) =

Np∑
n=1

ln(πeσ2
h|p,n) (69)

H(g2) =

Np∑
n=1

αn + ln(βnΓ(αn))− (αn + 1)z(αn)

(70)
H(g3) = αγ + ln(βγΓ(αγ))− (αγ + 1)z(αγ).

(71)

In the above, Γ(·) and z(·) represent the gamma and digamma
functions, respectively.

A. Selection of Prior Hyperparameters

In the previous section, the hyper parameters µh, Σh, aγ ,
bγ , ae,n, and be,n were unspecified. The scalar γ and the noise
level are unknown prior to the measurements, hence aγ , bγ ,
ae,n and be,n should be chosen to reflect this with a vague prior
(e.g. aγ = bγ = ae,n = be,n = 10−6), such that the observed
data is weighted much higher than the prior knowledge.

The prior distribution for the transfer function is assumed
to be a complex Gaussian. To specify the hyperparameters of
the distribution, it is assumed that the measurement will be
made in a rectangular room, where the sound field adheres
to the structure introduced in (31) for Green’s function in
rectangular rooms [31]. In this case, a Monte Carlo simulation
is performed for rectangular rooms of various dimensions,
temperatures, source-microphone positions, and reverberation
times. For each simulation, a value is drawn uniformly from
each of the intervals listed in Table II. The prior distribution
is then determined from the sample mean and variance of a
Monte Carlo simulation of 100,000 iterations.

B. Procedure for Bayesian inference of transfer function

With the equations and the hyper parameters defined, the
procedure for estimating the marginal distribution for the
transfer function g1(h) is summarized as the following steps:

1: Measure pressure response R times to acquire p
2: Initialize hyper parameters: aγ , bγ , ae,n, be,n

3: while ∆ELBO > tolerance do
4: Update: g1(h) given g2(Σe) and g3(γ)
5: Update: g2(Σe) given g1(h) and g3(γ)
6: Update: g3(γ) given g1(h) and g2(Σe)
7: Update: ELBO given g1(h), g2(Σe), and g3(γ)
8: ∆ELBO ← ‖ELBO−ELBOprev

ELBO ‖
9: ELBOprev ← ELBO

10: end while
11: Return: µh|p,Σh|p describing g1(h).

REFERENCES

[1] W. F. Druyvesteyn and J. Garas, “Personal sound,” J. Audio. Eng. Soc.,
vol. 45, no. 9, pp. 685–701, September 1997.

[2] T. Betlehem, W. Zhang, M. A. Poletti, and T. D. Abhayapala, “Personal
sound zones: Delivering interface-free audio to multiple listeners,” IEEE
Signal Processing Magazine, vol. 32, no. 2, pp. 81–91, March 2015.

[3] M. Jones and S. J. Elliott, “Personal audio with multiple dark zones,”
J. Acoust. Soc. Am., vol. 6, no. 124, pp. 3497–3506, December 2008.

[4] J. Cheer, S. J. Elliott, and M. F. S. Gálvez, “Design and implementation
of a car cabin personal audio system,” J. Audio Eng. Soc., vol. 61, no. 6,
pp. 412–424, June 2013.

[5] J.-W. Choi, “Subband optimization for acoustic contrast control,” in
Proc. of the 22nd International Congress on Sound and Vibration
(ICSV22), Florence, Italy, 12-16 July, 2015.

[6] M. Christoph and M. Kronlachner, “Improvement of personal sound
zones by individual delay compensation,” in Audio Engineering Society
Conference: 2016 AES International Conference on Sound Field Control,
Jul 2016.

[7] M. Olsen and M. B. Møller, “Sound zones: on the effect of ambient
temperature variations in feed-forward systems,” in Audio Engineering
Society Convention 142, May 2017.

[8] M. F. Simón-Gálvez, S. J. Elliott, and J. Cheer, “The effect of reverber-
ation on personal audio devices,” J. Acoust. Soc. Am., vol. 135, no. 5,
pp. 2654–2663, 2014.

[9] F. Olivieri, M. Shin, F. M. Fazi, P. A. Nelson, and P. Otto, “Loudspeaker
array processing for multi-zone audio reproduction based on analytical
and measured electroacoustical transfer functions,” in Audio Engineer-
ing Society Conference: 52nd International Conference: Sound Field
Control - Engineering and Perception, September 2013.

[10] M. Olik, J. Francombe, P. Coleman, P. J. B. Jackson, M. Olsen,
M. Møller, R. Mason, and S. Bech, “A comparative performance
study of sound zoning methods in a reflective environment,” in Audio
Engineering Society Conference: 52nd International Conference: Sound
Field Control - Engineering and Perception, September 2013.

[11] M. B. Møller and M. Olsen, “Sound zones: on performance prediction
of contrast control methods,” in Audio Engineering Society Conference:
2016 AES International Conference on Sound Field Control, July 2016.

[12] F. M. Heuchel, D. C. Nozal, and F. T. Agerkvist, “Sound field control
for reduction of noise from outdoor concerts,” in Audio Engineering
Society Convention 145, Oct 2018.

[13] J.-W. Choi and Y.-H. Kim, “Generation of an acoustically bright zone
with an illuminated region using multiple sources,” J. Acoust. Soc. Am.,
vol. 111, no. 4, pp. 1695–1700, 2002.
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