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Abstract—Mechanical resonance is a common problem 

in drive systems with elastic coupling. On-line adaptive 
notch filter is widely used to make system stable and the 
key of this method is to identify natural torsional frequency 
from speed feedback signal. However, because of common 
adoption of digital control and expansion of system 
bandwidth, oscillation frequency of the system is more 
likely to deviate from natural torsional frequency to a 
higher one. When oscillation frequency is shifted, the 
enabled notch filter with erroneous notch frequency 
causes an oscillation with a lower frequency and even 
makes resonance severer. In order to explain this 
phenomenon, the classical two-mass model based 
classification of resonances is checked at first. Then, by 
taking digital control, current loop delay and saturation 
nonlinearity into consideration, an improved digital 
mechanical resonance model is proposed and a criterion 
for oscillation frequency deviation is finally obtained. 
Furthermore, a more widely applicable and robust notch 
filter tuning strategy with no oscillation rebound is 
presented. In the end, the validity of aforementioned 
analysis and strategy is verified by experimental results. 

 
Index Terms—Two-mass system, mechanical resonance, 

digital control, notch filter. 

I. INTRODUCTION 

LASTIC joint like shaft, gear, ball-screw, timing-belt and 

coupling, is an essential part in industrial applications such 

as factory automation, computer numerical control machine 

tools, and industrial manipulators. Although elastic joint is 

cost-effective and flexible, it causes mechanical resonance and 

even leads to equipment damage [1]-[3]. Due to the market 

competition, companies prefer the controller with high gains 

parameters to improve production efficiency. However, with 

higher gains controllers are more likely to cause system 

instability and excite resonance, especially in flexible 

transmission system. Hence, guaranteeing the stability of the 

system is the precondition for improving the performance. 
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Hardware solutions such as increasing the stiffness 

coefficient of elastic joint, adding passive damping into system 

and choosing actuator with suitable inertia are most direct 

methods, but not economical. Thus, companies tend to modify 

controller and algorithm to make up for mechanical 

deficiencies and optimize the performance of in-use 

equipments. Suppression methods for mechanical resonance 

can be mainly divided into four groups:  

1) Filter strategies: adding a low-pass or notch filter to 

conventional speed control structure to damp 

resonance-frequency component and compensate for the 

phase lag. Then, modified frequency-domain 

characteristics make system stable [1],[4]-[8]. 

2) Input shaping methods: correcting input reference and 

using iterative learning control in industrial assembly line 

with repeated tasks, which can suppress terminal vibration 

and make trajectory smooth [1],[9]. 

3) State variable measurement and estimation: using sensors 

or observers to achieve additional feedback or feedforward 

from one or more selected state variables to improve 

system characteristics and performances [10]-[13]. 

4) Modern control theories: utilizing predictive, adaptive, 

fuzzy, neural, and other modern control theories in 

two-mass system to cover the shortage of classical control 

strategies and enhance robustness of systems [14]-[22]. 

Among those methods, the filter strategies are more 

convenient for operation and easier to be achieved in digital 

controller, and notch filter based resonance damping is one of 

the most widely used methods. In conventional on-line adaptive 

notch filter (OANF), Fast Fourier Transformation is used to 

identify the resonance frequency ωNTF (Natural Torsional 

Frequency) of the system from speed error signal in order to set 

the notch frequency. This method can complete the tuning of 

parameters and make system return to stability in a short time 

[4]-[7]. However, OANF still has some limitations in some 

cases that can be shown in Fig. 1. When speed feedback of the 

system is close to reference ωr, an oscillation (frequency is ω2, 
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Fig. 1.  Phenomenon of mechanical oscillation frequency deviation. 
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ω2>ωNTF) appears. After adding a notch filter with notch 

frequency as ω2, the resonance frequency shifts to ω3 

(ωNTF<ω3<ω2) and the resonance amplitude may become even 

larger, which does not satisfy the expectation. Although 

iterative tuning of notch frequency may possibly stabilize the 

system, this process is slow and not smooth enough. Hence, a 

more widely applicable and effective robust notch filter 

strategy with no oscillation rebound is needed.  

In this paper, motivated by the above observations, a 

classification, based on traditional model, of mechanical 

resonances in transient and steady state has been done at first. 

Due to the limitation of traditional model, the self-sustained 

oscillation cannot be described clearly. Thus, an improved 

digital drive mechanical resonance model is built up to explain 

this type of oscillation. In the modeling process, some theories 

in LCL filter resonance are adopted [23]-[25]. Based on this 

improved model, a criterion for oscillation frequency deviation 

is obtained and a conclusion is drawn that choosing ωNTF as 

notch frequency is more effective. In order to expand the 

applicable range of notch filter, a robust on-line adaptive notch 

filter (ROANF) is proposed. Adjustments of sampling period 

and output limit of speed loop are used to guarantee robust and 

smooth resonance suppression performance of ROANF. The 

effectiveness of the proposed model and strategy is verified on 

a 750W PMSM drive platform with elastic couplings. 

II. CLASSICAL MECHANICAL RESONANCE MODEL AND 

RESONANCE FREQUENCY CLASSIFICATION 

A. Two-Mass Model 

Fig. 2 is a classical schematic for two-mass model. An elastic 

coupling is used to connect the motor and the actuator, whose 

stiffness is Ks and damping is Cw. Jm and Jl represent the inertia 

of motor and load respectively. Speed of motor ωm is dependent 

on electromagnetic torque Te and shaft torque Ts. Load torque Tl 

and Ts act together on the actuator, deciding its speed ωl. Due to 

the fact that ωm may be inconsistent with ωl, there is an angle 

difference θs between motor angle θm and load angle θl. This 

deformation θs of the shaft is the cause of Ts.  

Kinematics equations of the system are illustrated as follows 
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 The torque generated by the SPMSM is given by 

  1.5 1.5e f q d q d q f q t qT p i L L i i p i K i      
    (2) 

in which p is the pole pair number, Ψf is the flux produced by 

the rotor magnet, Ld,q and id,q are the equivalent inductances and 

currents in the direction of the magnet flux and the quadrature 

direction, and Kt is the torque coefficient. Considering iq is 

easier to detect than Te in experiment and there is a proportional 

relationship between these two values, iq is chosen as a 

representation of torque in the follow-up analysis. The nominal 

current iqN corresponds to the nominal torque TeN of the motor. 

Then, the control diagram of two-mass system can be 

obtained as Fig. 3. Because Cw is small in most industrial 

systems, it is neglected in the following analysis. Hence, the 

transfer function of ωm and Te can be deduced as  
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 (3) 

Furthermore, natural torsional frequency ωNTF and 

anti-resonance frequency ωARF of system are defined as  

  NTF ARF( )      m l s m l s lJ J K J J K J     (4) 

B. Classification of Mechanical Resonance Frequency 

In order to analyze the frequency of mechanical resonance, 

the model of the controller is also necessary besides the 

kinematics equation (3). Considering the bandwidth of current 

loop is much higher than that of speed loop, the torque 

coefficient Kt is preferably used to represent the current loop 

GACR(s) in classical mechanical resonance model. On the other 

hand, influence of the integral term in speed loop controller 

GASR(s) on the system concentrates on low frequency band far 

below ωNTF in industrial applications. Considering this paper 

focuses on phase characteristics near ωNTF, hence, only the 

proportional gain Kp is used to replace GASR(s) and the integral 

part is ignored. To sum up, the control diagram of classical 

two-mass drive system can be shown as Fig. 4 in which iqref is 

the output of the speed loop controller. Next, the following 

discusses the mechanical resonance frequency under transient 

and steady state of the classical mechanical resonance model.  

1) Transient State 
From Fig. 3, transfer function from Tl to ωm can be given as 

  
 

2 3

m s

l m l m l s

K
G s

T J J s J J K s

 
 

 
 (5) 

Drive Load

s

m m mJ   l l lJ  

Ks

Cw

TlTe

 
Fig. 2.  Model of two-mass system. 
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Fig. 3.  Control diagram of two-mass system. 
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Fig. 4.  Control diagram of classical two-mass drive system. 
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By combining (3) and (5), the unit step response of ωm in the 

s-domain can be expressed as  
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  (6) 

Using inverse Laplace transform to rewrite (6), the unit step 

response expression of ωm in the time domain can be written as 

    NTF
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 sine l l e m l
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 (7) 

According to (7), in transient state when tracking the step 

reference, the ramp response of the drive system with elastic 

coupling contains a resonance component whose frequency is 

ωNTF. The magnitude of this resonance component is inversely 

proportional related to frequency and independent with Tl. 

2) Steady State 
In dual closed loop drive system, once the speed feedback 

reaches the vicinity of the reference, speed loop recovers from 

saturation and continues to function. According to Fig. 4, the 

closed loop transfer function Gc(s) can be expressed as 
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(8) 

The characteristic equation of (8) can be given as 

  3 2 2 2 2 2

NTF ARF 2 0
t p t p

x x x x

m m

K K K K
s s s s s s K

J J
              (9) 

in which ζx and ωx represent the damping and frequency 

coefficients of oscillating element respectively and the Kx is a 

coefficient that depends on the parameters of the system. 
According to (3), the phase lag of the system in classical 

model is less than π/4. Thus, the drive system is bound to be 

stable if it is a minimum phase system. Based on (9), when ζx>0 

and Kx>0, the frequency of damped oscillation ωe after speed 

loop returning to work can be given as 

 1e x x     (10) 

In summary, the mechanical resonance analyzed in classical 

model can be shown in Fig. 5. Because the oscillation in steady 

state decays gradually, the steady state oscillation is relatively 

small. Hence, the speed signal is given in the form of error in 

Fig.5. In transient state, speed error is the difference between 

the ramp component in (7) and speed feedback. 

Besides the phenomena in Fig. 5, there is another type of 

mechanical resonance in modern digital drive system, which 

can be shown in Fig. 6. In the process of speed regulation, when 

speed reference is a step signal, speed loop saturates rapidly and 

current loop is able to track the constant reference from speed 

loop quickly in transient state. Thus, the influence of the digital 

control and current loop delay can both be ignored. The 

conventional model can still apply in transient state of Fig. 6. 

However, in steady state, the resonance in high gain system is a 

severe self-sustained oscillation with frequency is ωOSC and 

sometimes ωOSC is larger than ωNTF. This phenomenon is 

different from the analysis of the conventional model. Hence, a 

more comprehensive model is needed.  

III. PROPOSED IMPROVED MECHANICAL RESONANCE 

MODEL IN ELASTIC COUPLING DIGITAL DRIVE SYSTEM 

In mechanical resonance model for digital drive system, 

more factors need to be taken into account. In order to refine the 

conventional model, this part is focused on the modeling of 

three key factors including equivalence of current loop, impact 

of digital control and saturation nonlinearity of speed 

controller’s output.  

A. Equivalence of Current Loop 

In traditional model, the current loop is usually regarded as 

torque coefficient Kt or first-order low pass filter because of its 

higher bandwidth than that of speed loop. However, due to the 

maximum phase lag of a first-order low pass filter is π/2 and the 

torque coefficient Kt does not provide any phase lag, the total 

phase lag is no more than π and the system is always stable 

under these two kinds of approximation methods. This 

conclusion conflicts with Fig. 6. In addition, the phase function 

of low pass filter includes inverse trigonometric function, 

which is not convenient for applied calculation. 

Since the gain near ωNTF is large, the amplitude attenuation 

from current loop can be ignored. Hence, this paper chooses 

delay model to simulate the current loop. In order to use delay 

model to reflect the bandwidth of current loop, the phase of the 

cutoff frequency ωc is set as -π/4. The relationship between 

time constants, T1 in delay model and Tc (2π/ωc) in current loop, 

can be given as  

  1 π 4 8c cT T   (11) 

The transfer function of the delay-model-based current loop 

can be given as 
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Fig. 5.  Resonance in conventional mechanical model. 
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Fig. 6.  Resonance in real digital servo system with elastic coupling. 
(The main control structure and most of the parameters are in 
consistent with those in Fig. 5, except the speed controller is discrete 
controller with sampling period TASR=1e-4s and the current loop is 
equivalent to Kte-τs with τ=4e-4s instead of Kt. More introductions of this 
model can be found in Section III.) 
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Taking (12) into consideration, the simplified open loop 

transfer function can be expressed as 
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The phase of (13) can be expressed as 
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B. Impact of Digital Control 

Although digital control is flexible and widely used, it brings 

phase lag to system inevitably and affects the stability of the 

system. Hence, a ZOH with time constant TASR is added to the 

model to simulate the impact from digital control. TASR is also 

the sampling period of speed loop. The transfer function of 

ZOH Gh(s) can be given as 

  ASR( ) 1
T s

hG s e s


    (15) 

Substituting s=jω into (15) yields 

 ASR ASR

ASR

ASR

j 2sin( 2)
( j )

2
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G T e
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  (16) 

According to (16), the phase of Gh(jω) can be given as  

 ASR
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j 2
( j ) 2

T

hG e T


 


      (17) 

In order to unify those time constants, assuming TACR is the 

sampling period of current loop and p1, p2 are proportionality 

coefficients, which are related to the control strategy [26],[27]. 

In most cases, the description equations are as follows 

 1 ACR

2 ASR ACR

6

1

cp T T

p T T

 


 
 (18) 

Adding (15) and GASR(s) into (13), using (18) to unify those 

time constants as multiples of TACR and extracting the phase 

component of ZOH only. The open loop transfer function of 

digital control system T(s) can be expressed as 
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The phase of (19) can be expressed as 
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 (20) 

According to (20), there is enough phase lag in the modified 

transfer function T(s) rather than the conventional model. It 

means that if the gain of system is large and the phase margin is 

negative, the system becomes unstable and the subsequent 

oscillation inferred from the above analysis is more realistic. 

C. Saturation Nonlinearity of Speed Controller’s Output 

In linear control theory, the prerequisite for undamped 

self-sustaining oscillation is rigorous. Thus, damped or 

divergent oscillation is more common. However, there is an 

undamped self-sustaining oscillation in steady state of Fig. 6. In 

order to explain this phenomenon, the nonlinear analysis 

method is used. The describing function of saturation 

nonlinearity of speed controller’s output (output limit is ±A) 

can be given as  

 
2
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2
( ) arcsin 1

π

X A A A
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A X X X

 
 

    
  
 

 (21) 

The control diagram of improved mechanical resonance 

model can be shown in Fig. 7. In order to simplify the operation, 

this part reunifies those time constants as multiples of TASR. 

Next, assuming λ=p1/8p2 and substituting the whole ZOH into 

the system transfer function. The open loop transfer function of 

system in the z-domain G(z) can be expressed as [23],[24] 
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in which  is an integer, 0 1m  , and m  . 

According to the method of residues, (22) can be rewritten as  
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Substituting (3) into (23) yields 




mr

 1G s

Saturation

A

pK

Zero Holder

2 ACR1 p T se

s

 1 ACR

8

p T
s

tK e


 
Fig. 7.  Control diagram of two-mass discrete servo system with speed 
output saturation. 
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Fig. 8.  Nonlinear control block diagram. 
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Fig. 9.  Nyquist curve of system. 
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The w-transform z=(w+1)/(w-1) is used to transform (24) 

from z-transform to w-transform. By separating the linear part 

and nonlinear part, Fig. 7 can be reconfigured to Fig. 8. The 

negative inverse describing function curve -1/N0(X/A) and the 

linear transfer function curve G(w) are both plotted in Fig. 9 

(the crossover point is α). According to the describing function 

method [28], if the amplitude of oscillation becomes larger, the 

action point departs from the surroundings of G(w) and the 

system restores stability. Finally, the action point returns to α 

again. In contrast, if the amplitude of oscillation becomes 

smaller, the action point moves to the right of the α. Right part 

of -1/N0(X/A) is surrounded by G(w), which means the system 

becomes unstable and the oscillation amplitude becomes larger. 

Then, the action point moves back to α as well. Hence, the 

crossover point α corresponds with undamped self-sustaining 

oscillation and the frequency of α is the oscillation frequency 

ωOSC. Because -1/N0(X/A) must be a negative real number less 

than -1, if α exists, it must locate on the negative real axis. Thus, 

there is a phase relationship of ωOSC as follows  

    OSC 0j 1 πG N X A      (25) 

In order to simplify the operation, (20) is used to replace G(w) 

in (25). Then, the expression of ωOSC can be given as (because 

for the sake of work efficiency the phase lag of real system 

cannot be too large, the possibility of –π crossover point takes 

place near or before ωARF is small, so it is ignored)  

    

 
  

+

NTF NTF NTF

OSC

NTF

1 2 ACR

       j π j π

= 4π
j π                               

4

T T

T
p p T

  




 

      



  


    ,

，
 (26) 

In this paper, the frequency deviation means ωOSC>ωNTF. 

According to (20) and (26), the calculation formula of shifted 

frequency ωOSC of the system and its deviation criterion can be 

given as (transforming the frequency unit to Hertz (ω=2πf )) 

    OSC ASR ASR NTF= 2 4 4 2c cf T T T T f   ,   (27) 

According to (27), the impact of Tc and TASR on fOSC can be 

shown as Fig. 10. With the decrease of the delay from current 

and speed loop, fOSC gradually increases. In the previous 

industrial drive system, Tc and TASR is relatively large. Hence, 

almost all fOSC in system are equal to fNTF. However, high 

performance and bandwidth become the characteristics of 

modern digital control systems. The decrease of the system 

delay means ωOSC would be more likely to deviate from ωNTF.  

To sum up, the decrease of Tc and TASR are key factors for 

oscillation frequency deviation; the saturation nonlinearity 

coming from the limitation of speed loop output is the cause of 

the undamped self-sustaining oscillation of systems in steady 

state when the phase margin of the system is negative. The 

saturation avoids the occurrence of severer diverging 

oscillation and protects the systems (tuning A can constrain the 

maximum oscillation amplitude). Based on the improved 

model, the expression of ωOSC and a deviation criterion of 

oscillation frequency (27) are concluded. Because (27) is 

concise and intuitive, it can be applied in reality to identify 

whether the resonance deviation happens or not. 

IV. PROPOSED ROBUST NOTCH FILTER STRATEGY  

A. Traditional On-Line Adaptive Notch Filter Theory 

The transfer function of classical notch filter can be given as 

  
2 2

2 2

n

n

n

s
G s

s bs








 
 (28) 

where ωn is the notch frequency and b is -3dB rejection 

bandwidth factor. The phase of (28) around ωn can be given as 
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Assuming k=2/TASR, Ω is the rejection bandwidth and the 

magnitude of notch filter at ωn±Ω/2 is –x. Applying Tustin 

transformation to discretize the notch filter (28) and DFIIt 

structure [8],[23] to modify the notch factor yields 
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in which a1 and a2 can be express as 
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One of the conventional OANF parameter tuning methods 

can be shown in Fig. 11. A predetermined error boundary is set 

to get the rejection bandwidth Ω, and the on-line FFT result of 

speed feedback error signal is used to find the notch frequency 

ωn in this method [6]. After parameter determination, according 

to (24) and (30), the open loop transfer function of the system 

with notch filter G*(z) can be given as  

Frequency  (Hz)

TASR        ωOSC
Tc        ωOSC
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Fig. 10.  Deviation of oscillation frequency 
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Fig. 11.  Parameters determination of classical notch filter. 
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      *

nG z G z G z  (32)  

By substituting z=(w+1)/(w-1) into (32), when ωOSC=ωNTF, 

the bode diagram of G*(w) can be shown in Fig. 12. According 

to Fig. 12 and (29), OANF can not only decrease the gain 

around ωNTF but also reduce the phase lag after ωNTF at the cost 

of increase the phase lag before ωNTF. The improvement from 

both magnitude and phase characteristics make system restore 

stability effectively. However, in Fig. 13, different with Fig. 12, 

the criterion in (27) is valid and ωOSC is larger than ωNTF. The 

phase delay coming from OANF causes the new ωOSC to move 

closer to ωNTF and even result in a server oscillation. Thus, 

OANF is not suitable in the condition of ωOSC>ωNTF.  

B. Process of Robust On-line Adaptive Notch Filter 

Also based on Fig. 13, if ωNTF is set as ωn, the notch filter can 

still make up for the phase lag around the ωOSC to guarantee the 

stability of system. Hence, no matter whether the criterion in 

(27) is valid or not, ωn=ωNTF is an effective choice. Considering 

the time of transient-state oscillation with frequency is ωNTF is 

relatively short and the FFT analysis is not reliable, thus, the 

steady state on-line identification of ωNTF is the focus of 

proposed ROANF strategy.  

According to (27) and Fig. 10, TASR and Tc are influencing 

factors for ωOSC in drive system. An appropriate increase for 

TASR or Tc can make criterion in (27) invalid again and ωOSC 

return to ωNTF. Because the parameters of the current loop 

controller need to be conservative enough to ensure the security 

of system, the adjustment of TASR is finally adapted in ROANF 

to extract ωNTF of system. In addition, because larger TASR 

means larger oscillation amplitude, the output limit of speed 

loop A is reduced moderately before ROANF parameters 

identification is finished. Overall, the control diagram and 

schematic diagram (TASR0 is the initial sampling period of speed 

loop and it is assumed to be no longer than 2ms) of ROANF can 

be shown as Fig. 14 and Fig. 15 respectively, and the detailed 

process of ROANF is listed as follows 

1) Motor start-up stage: Because common audible resonance 

frequency in the servo system ranges from 100 to 300Hz 

[1], TASR can be increased to around 2ms. To simplify the 

operation, the sampling period of FFT Tf is a constant 

(equal to TASR0). In addition, output limit of the speed 

controller A can be decreased by 50~80 percent. Then, let 

the system track the speed reference normally and the 

whole stage takes around 2 seconds to store enough speed 

feedback data for the FFT analysis. 

2) Parameters identification stage: In this stage, FFT is used 

to extract ωNTF of system from the data acquired in stage I. 

In order to suppress amplitude gain around ωOSC, notch 

filter rejection bandwidth Ω can be calculated as  

   OSC NTF2max ,25π      (33) 

where ωOSC can be computed from (27). Considering 

ωOSC=ωNTF in some cases, 50π is set as the lower bound of 

Ω. Notch depth coefficient x is depended on the oscillation 

amplitude. Normal range of x is 3~10dB. 

3) Normal operation stage: Enable the notch filter and recover 

the TASR and A of controller.  

V. EXPERIMENTAL RESULTS  

The experiment setup is shown in Fig. 16, consisting of a 

Zynq-based driver and a DSP-based driver, two SPMSMs and 

two elastic couplings. Two SPMSMs are both equipped with 

2500 impulses/revolution incremental optical encoders. The 





ωmωr

FFT

TASR

Tf

GACR(s)G1(s)PIZOH Gn(z)

±A

 

Fig. 14.  Diagram of ROANF. 
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E(N)=FFT(e(n),n), find the ωE with the 

largest magnitude among E(N)

Set x=3, ωn=ωE, ωOSC =4π/(Tc+4TASR)

Ω=2max{(ωOSC-ωn),25π}
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Fig. 15.  Schematic diagram of ROANF. 

-270
-180

-90
0

P
h
as

e(
d
eg

)

Frequency  (rad/s)

0
M

ag
n
it

u
d
e(

d
B

)

Without Filter
With Filter

ωn = ωOSC = ωNTF

 

Fig. 12.  Bode diagram of classical notch filter effect when ωOSC=ωNTF. 
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Fig. 13.  Mechanical resonance suppression effect of different notch 
frequencies when ωOSC>ωNTF. 
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period of current control loop is 0.1ms. The focus of the 

ROANF is to identify the ωNTF on-line under the assumption 

that the parameter of the elastic coupling is unknown or 

inaccurate. Thus, the tuning of the speed PI controller in this 

paper is based on the classical strategy of solid coupling drive 

system. In brief, the proportional constant Kp can be roughly 

considered to be proportional to the bandwidth of speed loop. In 

the experiment, Kp(=40) and Ki(=2.5) of speed loop  controller 

are set as high-gain constants before discretization in the 

experiments. The specifications are presented in Table I. The 

unit of oscillation frequency in this part is chosen as Herz. 

ROANF is built in the Zynq-based driver, and the DSP-based 

driver is used to provide a nominal torque as disturbance. About 

the Zynq-based motor driver, the control chip is Xilinx Zynq 

series SoC, which integrates ARM (two Cortex-A9s but only 

one is used) and FPGA into one chip. The communication 

between ARM and FPGA is realized by AXI bus inside SoC. In 

addition, the RAM of Zynq is extended to 1GB by adding 

external memory chip to record experiment data. FPGA is 

responsible for the current loop control (a classical PI controller 

is used) and the FFT analysis. The speed loop control and 

ROANF is finished in ARM. When each time current loop 

control is finished in FPGA, an external interrupt is sent to 

ARM and a register is used to record the times of interrupts to 

judge the frequency (corresponding to sampling period) of 

speed loop control. Hence, TASR can be adjusted easily. In 

addition, a series of predetermined PI parameters of current 

loop controller are adapted to change Tc of the system. In order 

to describe the influence of delays in current control loop 

directly and the selection criteria for cutoff time constant Tc. 

One kind of sweep signals ̶  ̶ Chirp Signal (the frequency of 

which increases with time) is used as iqref. Then, FFT analyzes 

the relationship between iqref and iq feedback to identify the 

frequency domain characteristics of the current loop and get the 

value of Tc. The analysis results of current loop with different 

parameters are shown in Fig. 17.  

Apart from the modification of current limitation and speed 

loop sampling period, only the parameters of speed controller’s 

output filter are changeable. Especially, in order to reflect the 

importance of the choice for notch frequency ωn and to enhance 

the contrast effects with the performance of OANF, both Ω and 

x of OANF and ROANF are set as 100π and 3 instead of 

self-tuning. Thus, only ωn is the changeable in OANF and 

ROANF settings for the follow-up experiments.  

A. Oscillation Frequency Deviation Phenomenon 

At first, off-line two-mass mechanical systems identification 

[29],[30] is used to determine the standard value fNTF of the 

systems that are coupled by elastic coupling 1 (fNTF =159Hz) 

and elastic coupling 2 (fNTF =203Hz). Considering the results of 

these two kinds of couplings are similar, only the data of 

coupling 1 is given out. In order to verify the validity of the 

proposed model, oscillation frequencies fOSC of the platform 

with different TASR (from 1ms to 2.5ms) and Tc (from 2.25ms to 

3.60ms) are recorded in Fig. 18. 

According to Fig. 18, when TASR≥2ms, fOSC is close to fNTF 

(159Hz). However, when TASR<2ms, fOSC shifts from fNTF to a 

higher frequency. fOSC tends to increase with the decrease of 

TASR and Tc. Submitting the groups of data TASR<2ms from Fig. 

18 into (27) indicates error remains several tens of Hertz from 

expected fOSC. Thus, assuming Gm(s)=e-sTm as the modification 

factor to reflect the delay coming from damping, signal filtering 

and transmission. Combining Gm(s) with (27), the fixed 

expression and criterion can be given as 

   OSC ASR ASR NTF2 4 +8  , 4 8 2c m c mf T T T T T T f      (34) 

Zynq-Based Motor Driver DSP-Based Motor Driver

Bus Inductor

Elastic 

Coupling 2

Drive Motor Load Motor

Elastic

Coupling 1

 
Fig. 16.  Experiment setup. 

TABLE I 
MAIN PARAMETERS OF PMSM DRIVE SYSTEM 

Parameter nominal value 

Motor Power PN 750 W 

Nominal Torque TeN 2.39 N∙m 

 Nominal Speed ωN 3000 r/min 

Nominal Current iqN 3 A 

Inertia of drive motor Jm 1.82e-4 kg∙m2 

Inertia of load motor Jl 1.82e-4 kg∙m2 

Stiffness of elastic coupling 1 Ks1 91 N∙m/rad 

Stiffness of elastic coupling 2 Ks2 149 N∙m/rad 
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Fig. 17.  Analysis results of current loop with different parameters. 
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Fig. 18.  Oscillation frequency of systems with different TASR and Tc. 
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in which Tm can be calculated by taking data from Fig. 18 to (34) 

and calculating the arithmetic mean.  

By setting Tm as 0.4531ms, estimation error has been 

narrowed down to several Hertz, which is within acceptable 

range. In addition, the parameter conservation from (27) does 

not cause the failure of ROANF because the determined Ω is 

larger than the required minimum rejection bandwidth.  

New oscillation frequency fOSC and oscillation amplitude 

variation of the system after OANF is enabled are shown in Fig. 

19 (a) and Fig. 19 (b) respectively. In case of fOSC≈fNTF, OANF 

can suppress resonance successfully. However, when fOSC>fNTF, 

OANF causes a lower frequency oscillation with an amplitude 

even hundreds rpm larger (in the case of TASR=1ms), which is 

consistent with previous derivations.  

B. Resonance Damping Test without Load Torque 

For verifying the effectiveness of ROANF, two sets of 

comparative experiments in the case of fOSC>fNTF and fOSC=fNTF 

are carried out and the results are shown in Fig. 20.  The Fig. 20 

(a) and (c) are the speed and current responses with OANF and 

ROANF. In addition, the Fig. 20 (b) and (d) are FFT results of 

speed error signal during 5~6s (before notch filter is enabled) 

and 7~8s (after notch filter is enabled) respectively for Fig. 20 

(a) and (c). A of OANF and ROANF is both set as 3A. However, 

TASR and A of ROANF are adjusted to 2ms and 0.9A at motor 

start-up stage. In the experiment, there is an oscillation 

frequency identifying process about 2s in OANF and ROANF.  

In Fig. 20 (a) and (b), when fOSC>fNTF, because oscillation 

frequency has deviated, the enable of OANF lowers the 

frequency (159.5Hz) and makes its amplitude larger (+178rpm). 

In contrast, TASR adjustment of ROANF make fOSC return to fNTF 

effectively. Then, the correct notch frequency identification 

achieved a good resonance damping performance.  

Besides, in Fig. 20 (c) and (d), when fOSC=fNTF, TASR is 2ms at 

first and no more adjustment of TASR is needed for ROANF. 

Although both OANF and ROANF make system stable, the 

adjustment of ROANF’s speed output limit decreases the 

oscillation amplitude and ensures the safety of the equipment.  
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(a) The case of fOSC>fNTF, TASR=1ms, Tc=3.6ms 
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(b) FFT results of speed error signal during 5~6s and 7~8s, in the case of 

fOSC>fNTF, TASR=1ms, Tc=3.6ms 
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(c) The case of fOSC=fNTF, TASR=2ms, Tc=3.6ms 
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(d) FFT results of speed error signal during 5~6s and 7~8s, in the case of 

fOSC=fNTF, TASR=2ms, Tc=3.6ms 

Fig. 20.  Speed and current responses with OANF and ROANF. 
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(a) New fOSC after OANF is enabled (the white ‘x’ means system restores 

stable) 
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(b) Oscillation amplitude variation of the systems after OANF is enabled (the 

white ‘x’ means system restores stable) 

Fig. 19.  Effect of OANF. 
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C. Resonance Damping Test with Different Control 
Strategies and Parameters under Nominal Torque Load 

To test the system’s ability of resisting disturbances under 

nominal torque load, the results with different control strategies 

and different speed controller parameters are shown in Fig. 21 

and Fig. 22 respectively. 

In Fig. 21, ωn identification of OANF and ROANF are 

assumed to be finished. In addition, considering the load torque 

is a nominal torque 2.39N·m (corresponds to nominal current 

3A of q-axis ) and taking those friction and damping torque into 

account, the output limitation of speed controller A is expanded 

to 4.5A. A nominal load is injected at the 1st s and removed at 

the 3rd s. The results prove the effectiveness of the ROANF 

under switching of the load during steady state. 

In Fig. 22(K
* 

p =40), there are three groups of loading 

experiments including Kp=0.5K
* 

p , Kp=0.6K
* 

p  and Kp=1.0K
* 

p

(when Kp=1.0K
* 

p  ROANF is added into control loop. In other 

cases, only a PI controller is used). Based on the experiment 

results, the system becomes unstable when the gain of 

controller is increased to 0.6K
* 

p . However, after ROANF is 

added to system, the system is still stable when the gain of 
controller is even increased to 1.0K

* 

p  and with the minimum 

speed drop (120.1rpm). In addition, it is worth mentioning that 
when a suitable smaller Kp (<0.5K

* 

p ) is chosen, the jitter at the 

time of system entering steady state can also be damped slightly. 

However, a smaller Kp also means a worse anti disturbance 

ability (according to Fig. 22). Hence, dislike ROANF, although 

decreasing the gain of controller is a simpler solution, it cannot 

guarantee both disturbance rejection and stability. 

In conclusion, experiment results verify the effectiveness of 

oscillation frequency deviation criterion and the robustness and 

disturbances rejection ability of ROANF.  

VI. CONCLUSION 

This paper has classified several kinds of mechanical 

resonance in elastic coupling drive system. In order to identify 

the severe self-sustained oscillation in steady state of 

high-performance digital drive system, an improved digital 

drive mechanical resonance model has been built up by taking 

delay of current loop, influence of digital control and saturation 

nonlinearity in speed loop into consideration. Based on this 

model, the phenomenon that system’s oscillation frequency 

deviated from the natural torsional frequency is discussed and 

an oscillation frequency deviation criterion is obtained. Finally, 

a robust on-line adaptive notch filter is proposed. Appropriate 

adjustments of sampling period and output limit of speed loop 

are used to identify the correct notch frequency and achieve 

robust and effective resonance damping in different systems. 

Both the oscillation frequency deviation analysis and the 

performance of robust on-line adaptive notch filter are verified 

on an elastic coupling PMSM platform. The future work will 

focus on analyzing the influence of damping in mechanical 

resonance frequency and testing other types of suppression 

methods in systems with oscillation frequency deviation. 
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Fig. 21.  Experimental results under nominal torque load with different 
control strategies. 
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Fig. 22.  Experimental results under nominal torque load with different 
speed controller parameters. 
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