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Summary 21 

Fusarium pseudograminearum is a significant pathogen of cereals in arid regions worldwide and 22 

has the ability to produce numerous bioactive secondary metabolites. The genome sequences of 23 

seven F. pseudograminearum strains have been published and in one of these strains, C5834, we 24 

identified an intact gene cluster responsible for biosynthesis of the cyclic lipopeptide fusaristatin A. 25 

The high level of sequence identity of the fusaristatin cluster remnant in strains that do not produce fusaristatin 26 

suggests that the absence of the cluster evolved once, and subsequently the resulting locus with the cluster 27 

fragments became widely dispersed among strains of F. pseudograminearum in Australia. We examined a 28 

selection of 99 Australian F. pseudograminearum isolates to determine how widespread the ability 29 

to produce fusaristatin A is in F. pseudograminearum. We identified 15 fusaristatin producing 30 

strains, all originating from Western Australia. Phylogenetic analyses could not support a division 31 

of F. pseudograminearum into fusaristatin producing and nonproducing populations, which could 32 

indicate the loss has occurred relatively recent.   33 

 34 

Keyword: Secondary metabolites; polyketides; non-ribosomal peptides; Fusarium Crown Rot; 35 

evolution  36 
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Introduction 37 

Fusarium pseudograminearum is the primary cause of Fusarium crown rot (FCR) of wheat and 38 

barley in the arid cereal growing regions of the world including Australia (Burgess et al. 2001), 39 

Southern Europe (Balmas 1994), Northern Africa (Gargouri et al. 2011), South Africa (Lamprecht 40 

et al. 2006), China (Ji et al. 2016; Li et al. 2012; Xu et al. 2017) and the United Stated of America 41 

(Smiley et al. 2005). The disease is one of the most severe in cereals in Australia with yearly 42 

economic losses of approximately 100 million Australian dollars (Murray and Brennan 2009, 2010). 43 

F. pseudograminearum is heterothallic (Aoki and O'Donnell 1999b; Summerell et al. 2001) and was 44 

initially recognized as a population within the F. graminearum species group (Group 1) based on 45 

cultivation and its inability to form homothallic perithecia (Burgess et al. 1975; Francis and Burgess 46 

1977). Later, the two species were formally segregated by molecular analyses (Aoki and O'Donnell 47 

1999a) and further sequence analyses suggested that F. pseudograminearum is a single globally 48 

occurring species (Scott and Chakraborty 2006), while F. graminearum can be divided into more 49 

than 16 phylogenetically distinct species (Aoki et al. 2012; O'Donnell et al. 2000).  F. graminearum 50 

is involved in Fusarium head blight (FHB) in cereals, a disease which F. pseudograminearum has 51 

only been observed to cause in Australia (Backhouse et al. 2004) and China (Ji et al. 2016). Both 52 

species are known producers of the trichothecene mycotoxin deoxynivalenol (and derivatives) and 53 

of the mycoestrogen zearalenone (Sydenham et al. 1991). 54 

Comparative analyses of the first genome sequenced strains of F. graminearum (NRRL 31084) and 55 

F. pseudograminearum (CS3096) revealed only minor differences in the composition of polyketide 56 

synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) (Hansen et al. 2015). The two 57 

strains differ, however, in their ability to produce polyketide lipopeptides: in their ability to produce 58 

two polyketide lipopeptides: F. graminearum NRRL 31084 produces fusaristatin A but not W493, 59 
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while F. pseudograminearum CS3096 produces W493 but not fusaristatin A (Figure 1; (Sørensen 60 

et al. 2014a)).  61 

Biosynthesis of W493 and fusaristatin A are suggested to follow similar routes starting with 62 

production of a partially reduced polyketide which serves as a substrate for a NRPS that catalyzes 63 

the condensation of the polyketide and amino acids before the compounds are released by 64 

cyclization (Sørensen et al. 2014a). The key enzymes involved in biosynthesis of W493 are PKS32, 65 

which produces a reduced polyketide (C14) chain and NRPS40, which catalyzes condensation of six 66 

amino acids (threonine, alanine, alanine, glutamine, tyrosine and valine/isoleucine (W493-A/ 67 

W493-B)). Fusaristatin biosynthesis is initiated by production of a reduced polyketide (C24) by 68 

PKS6 prior to incorporation of three amino acids (dehydroalanine, β-aminoisobutyric acid and 69 

glutamine) by NRPS7. 70 

The fusaristatin gene cluster has also been identified in the more distantly related Botrytis 71 

fuckeliana, Cochliobolus heterostrophus and Pyrenophora teres (Sieber et al. 2014). Following the 72 

first genome release of a F. pseudograminearum strain, six additional strains were published 73 

(Gardiner et al. 2017; Moolhuijzen et al. 2013). In one of these strains, CS5834, we identified the 74 

intact fusaristatin gene cluster and the aim of the current study was to determine how common this 75 

cluster is in F. pseudograminearum and whether its presence or absence arose from a gain or loss 76 

event. 77 

 78 
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Materials and methods 79 

Fungal strains 80 

Ninety-nine strains of F. pseudograminearum were obtained from the CSIRO collection in Brisbane 81 

Australia. These strains were isolated from four different Australian states; New South Wales (42 82 

strains), Queensland (18 strains), South Australia (4) and Western Australia (35). 83 

  84 

Fusaristatin gene cluster analyses 85 

The available genome sequences of seven F. pseudograminearum strains (CS3096, CS3220, 86 

CS3270, CS3427, CS3487, CS5834 and RBG5266) were screened for presence of the fusaristatin 87 

gene cluster using the published gene cluster from F. graminearum (Sørensen et al. 2014a). 88 

Remnant fragments of the fusaristatin gene cluster were identified though BlastN analyses (Altschul 89 

et al. 1990) using the fusaristatin gene cluster from F. pseudograminearum CS5834 against the 90 

whole-genome sequence (WGS) database of the six other F. pseudograminearum strains.  91 

 92 

Analyses of W493-B and fusaristatin A production 93 

For secondary metabolite analyses the 99 F. pseudograminearum strains were cultivated on solid 94 

yeast extract sucrose (YES) agar medium (Sørensen and Sondergaard 2014) and corn meal agar 95 

(CM; corn meal 60 g/L, ZnSO4 x 7 H2O 10 mg/L, CuSO4 x 5 H2O 5 mg/L, agar 20 g/L) medium for 96 

two weeks in the dark at 25 °C. The extraction of secondary metabolites were performed as 97 

previously described (Smedsgaard 1997). The resulting extracts were analyzed on a Hitachi Elite 98 

LaChrom HPLC system equipped with a 150 x 4.6 mm Ascentis Xpress 2.7 µm phenyl-hexyl 99 

column (Sigma-Aldrich, USA) and coupled to a high resolution mass spectrometer (compact qTOF, 100 

Bruker, Germany) with an electrospray source using a 3:97 flowsplitter. 40 µL extract was 101 
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separated using a flow of 1 mL/min with a linear water–acetonitrile gradient, with both eluents 102 

buffered with 0.1% formic acid. The gradient started at 10% acetonitrile and reached 100% in 20 103 

min, which was held for 5 min. 104 

 105 

Determination of presence or absence of the fusaristatin gene cluster  106 

The fungal strains were cultivated in 30 mL liquid Czapek dox (Sigma-Aldrich) medium prior to 107 

DNA extraction. The cultivated fungi were filtered through sterile MiraCloth (Calbiochem®) and 108 

ground in liquid nitrogen before genomic DNA was extracted with the DNeasy® Plant Mini Kit 109 

(Qiagen, Hilden, Germany) (Droce et al. 2013). The isolated genomic DNA served as template in a 110 

polymerase chain reaction (PCR) targeting PKS6 with primers PKS6conFw (5’-3’: CTG TTG TTG 111 

GCA TGA GTT GC) and PKS6conRv (5’-3’: TGG CCC ATG CGA GGA TAC TG), which 112 

amplify a 1751 bp product in strains with intact PKS6 and 1564 bp product in strains with PKS6 113 

remnants. The PCR reactions were performed in 50 µL volume using the Phusion Hot Start II DNA 114 

Polymerase (Thermo Fisher Scientific) according to manufactures protocol. The resulting PCR 115 

products were run on 1% agarose gels with 1 kbp plus DNA ladder (Thermo Fisher Scientific). 116 

 117 

Phylogenetic analyses of F. pseudograminearum strains 118 

For phylogenetic analyses the primers PHO1 (5’-3’: ATC TTC TGG CGT GTT ATC ATG) and 119 

PHO6 (5’-3’: GAT GTG GTT GTA AGC AAA GCC C) were used to amplify a fragment of the 120 

Phosphate permease gene (FPSE_11047 in F. pseudograminearum CS3096) (Scott and 121 

Chakraborty 2006) by PCR. The PCR products were purified with the QIAquick PCR purification 122 

kit (Qiagen, Hilden, Germany) and sequenced at Eurofins Genomics (Ebersberg, Germany) using 123 

the forward primer PHO1. The sequences were aligned with by multiple alignment using fast 124 
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fourier transform (MAFFT) at the T-REX web server (Boc et al. 2012). The alignments were 125 

analysed with CLC main workbench (CLC Bio, Qiagen, Germany) using maximum likelihood with 126 

1000 bootstraps and visualized with EvolView (http://evolgenius.info/evolview) (Zhang et al. 127 

2012). 128 

 129 

Whole-Genome Sequencing 130 

With minor modifications, genomic DNA was extracted from strains CS3894, CS3900, CS5541, 131 

CS7093, CS7108, CS7081, CS7088, CS7065 and CS7060 using the FastDNATM SPIN kit for Soil 132 

(MP Biomedicals, USA). Following clean-up with Agencourt AMPure XP beads (Beckman 133 

Coulter, USA), 2 µg DNA was used as input for the SQK-LSK8 ligation sequencing kit protocol 134 

(NBE_9006_v103_revQ_21Dec2016). The protocol was modified to allow for barcoding with the 135 

Native Barcoding Kit (EXP-NBD103, Oxford Nanopore Technologies, UK) directly following the 136 

end-prep step and for downstream compatibility with sequencing on the PromethION alfa/beta 137 

sequencer (Oxford Nanopore Technologies, UK). Briefly, 10 µL Native barcode (NB01-NB9) was 138 

mixed with 30 µL end-prepped DNA mix (2 µg DNA), 10 µL nuclease-free water, 40 µL Ultra II 139 

ligation master mix (New-England Biolabs, USA), 1 µL ligation enhancer (New-England Biolabs, 140 

USA) and incubated at room temperature for 10 minutes before being further processed according 141 

to the PromethION SQK-LSK9 protocol (GDLE_9056_v109_revE_02Feb2018). Approximately 142 

600 ng of pooled DNA was loaded onto a primed FLO-PRO001 flow-cell (Oxford Nanopore 143 

Technologies, UK) and sequenced on the PromethION alfa/beta sequencer with live base-calling 144 

enabled. Approximately 60 Gbp reads were demultiplexed and trimmed in Porechop version 0.2.3 145 

and subsequently mapped to the reference genome of F. pseudograminearum CS3096 (Gardiner et 146 

al. 2017) in CLC Genomics Workbench version 9.5.5 (CLC Bio, Qiagen, Germany). Consensus 147 

sequences from the complete genes of beta-tubulin (FPSE_03337), translation elongation factor 1-148 
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alfa (FPSE_11980), trichothecene 3-O-acetyltransferase (FPSE_11049), ammonia-ligase 149 

(FPSE_11050) and phosphate permease (FPSE_11047) were finally extracted for phylogenetic 150 

analysis (O'Donnell et al. 2000). The alignment was executed with MUSCLE (Edgar 2004). A few 151 

nucleotides (1-3 pr. sequence) resulting in non-sense mutation were excluded from the final 152 

alignments to eliminate Nanopore sequencing-biases (in some homopolymeric nucleotide-region). 153 

The alignments were fused and analysed using the same approach as for the phosphate permease 154 

gene. CANU version 1.7 was used to assemble the genome of CS3894 with default settings 155 

(genome size set at 36 gbp) (Koren et al. 2017). 156 

 157 

Results and discussion 158 

The fusaristatin cluster is conserved in F. pseudograminearum CS5834 159 

The predicted fusaristatin cluster in F. pseudograminearum CS5834 was initially compared to the 160 

published clusters in F. graminearum and F. avenaceum (Sørensen et al. 2014a; Sørensen et al. 161 

2014b). The comparison showed that the hypothetical proteins are of comparable length and 162 

identity (Table 1) suggesting that the gene cluster is also functional in F. pseudograminearum 163 

CS5834. Based on their phylogenetic relationship (Kristensen et al. 2005; O'Donnell et al. 2013) it 164 

was not surprising that a higher identity was observed to F. graminearum (94-98 %) than to F. 165 

avenaceum (73-86 %). 166 

Further analyses of the available Fusarium genome sequences revealed that the fusaristatin gene 167 

cluster is present with conserved synteny in F. pseudograminearum CS5834, F. graminearum, F. 168 

culmorum, F. meridionale, F. asiaticum, F. langsethiae, F. acuminatum and F. avenaceum (Figure 169 

2). The flanking genes were, however, different in F. avenaceum and F. acuminatum compared to 170 

the other Fusarium species, indicating that the cluster is present in a different genomic location 171 
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these two species. The identical location of the fusaristatin cluster in F. pseudograminearum 172 

CS5834 and the majority of other Fusarium species suggests that CS5834 did not acquire the 173 

cluster through horizontal gene transfer. This in turn suggests that the fusaristatin cluster was 174 

present in F. pseudograminearum after it diverged from other fusaria but was subsequently lost. To 175 

further investigate the nature of the loss, we examined the genomic region between the flanking 176 

genes of the fusaristatin gene cluster by which five conserved remnant fragments (88-95 % 177 

sequence identity) of the cluster could be found in all six F. pseudograminearum strains (Figure 178 

2A). One of the fragments (R1; 897 bp) originates from a predicted aminotransferase gene 179 

(BN849_0052070), three other fragments (R2-R4; 120, 446 and 273 bp, respectively) originate 180 

from PKS6 (BN849_0052040) while a fifth fragment (R5; 407 bp) originates from NRPS7 181 

(BN849_0052030). To illustrate that the fragments originate from PKS6 the three remnant 182 

fragments of PKS6 in F. pseudograminearum CS3096 were translated into amino acid sequences 183 

and aligned against the functional PKS6 of F. pseudograminearum CS5834 (Figure 2B). In these 184 

alignments, a high sequence identity was observed for the three fragments as R2 had 90% (60 185 

amino acids), R3 had 89% (148 amino acids) and R4 had 82% identity (91 amino acids). The 186 

presence of conserved remnant fragments suggests that the missing fusaristatin gene cluster is a 187 

result of a deletion event in a common ancestor.  188 

 189 

Fusaristatin-producing F. pseudograminearum strains are geographically co-localized 190 

The distribution of the fusaristatin-producing ability in Australian F. pseudograminearum strains 191 

was further investigated through chemical analyses of the 99 strains, which originated from five 192 

different states (New South Wales, Queensland, South Australia and Western Australia). The 193 

analyses showed that while nearly all strains (except CS3002 and CS5897) were able to produce 194 

W493-B only 15 strains produced fusaristatin when cultivated on solid YES or CM medium (Table 195 
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2). The ability to produce fusaristatin seemed to be geographically confined, because all 15 196 

fusaristatin A-producing strains were isolated from Western Australia. Although a slight decrease in 197 

W493-B levels was observed in the fusaristatin A producers, this difference was not significant 198 

(P>0.05; Supplementary Figure 1). 199 

 200 

Fusaristatin producing isolates do not form a unique lineage  201 

The phosphate permease gene was partially sequenced (807 of 1851 bp) to investigate whether 202 

fusaristatin-producing and nonproducing strains constitute phylogenetically distinct lineages of F. 203 

pseudograminearum. Assumedly, this locus is inherited independently of the fusaristatin gene 204 

cluster, as they are located on two different chromosomes. The phosphate permease gene is located 205 

near the middle of chromosome IV, while the fusaristatin gene cluster is located near and end of 206 

chromosome II. Phylogenetic analyses of the resulting sequences resulted in a tree with two major 207 

clades (Figure 3A), separated by 26 variable sites (3%). The first clade contained the majority of 208 

the strains isolated from New South Wales (40/42) and Queensland (16/18). Three nonproducers of 209 

fusaristatin A from Western Australia were also present in clade I, while the remaining thirty-two 210 

strains were located in the second clade. This second clade consisted of two different sequence 211 

types, sharing 805 of 807 nucleotides and contained both fusaristatin producers and nonproducers 212 

without any signs of segregation.  213 

In a further attempt to achieve a phylogenetic separation of fusaristatin producers and nonproducers, 214 

we performed a multiplexed genome sequencing of four producers (CS5541, CS7108, CS7081, and 215 

CS7060) and five nonproducers (CS3894, CS3900, CS7065 CS7088, CS7093). In addition to the 216 

phosphate permease gene, sequences of five genes were extracted (β-tubulin, translation elongation 217 

factor 1α, trichothecene 3-O-acetyltransferase and ammonia-ligase) and used to generate an 218 

additional phylogenetic tree. The resulting tree failed to separate fusaristatin producers and 219 
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nonproducers, although this combination of genes has previously been used to separate F. 220 

graminearum into different phylogenetic species (Figure 3C). Due to the inadequacy of this 221 

multigene approach, future studies could focus on full genome analyses in order to determine 222 

whether producers and nonproducers of fusaristatin can be separated into two groups.    223 

The lack of fusaristatin production in a strain does not necessarily mean that the strain does not 224 

have a functional fusaristatin gene cluster, because lack of production can also be caused by too low 225 

production levels or repression under the tested conditions. A PCR based strategy was used to 226 

determine the presence or absence of a functional PKS6 yielding predicted products of 1751 bp in 227 

strains with an intact PKS6 and 1564 bp in strains with PKS6 remnant fragments. Thus, the two 228 

fragments are markers for the two alternative alleles of the locus (i.e., an intact and a deleted gene 229 

cluster) based on available genome sequence data. The results showed that the PCR of the 15 230 

fusaristatin producing strains resulted in amplified fragments of the expected size for the intact and 231 

functional PKS6 (Figure 3B). The PCR fragments for all the nonproducing strains, except CS3894, 232 

were smaller, which corresponds to the presence of the PKS6 remnant region. The slightly larger 233 

PCR fragment in CS3894 was investigated further using the full genome sequence of CS3894, 234 

which showed that overall the sequence was very similar to the nonproducing CS3096 remnant 235 

region with the exception of an additional 100 bp (Supplementary Figure 2) which accounts for 236 

the intermediate size of the band observed for this isolate (Figure 3B). 237 

Together the molecular analyses suggests that the presence of the fusaristatin gene cluster is 238 

reflected to some extend in the phylogenetic analyses of genes used in the present study. However, 239 

the genes do not contain sufficient variation to segregate the strains into clades reflecting the ability 240 

to produce fusaristatin A. A phylogenetic analysis of F. pseudograminearum based on the 241 

phosphate permease, reductase, translation elongation factor-1α and β-tubulin genes concluded that 242 

F. pseudograminearum is a single monophyletic species (Scott and Chakraborty 2006). The high 243 
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sequence conservation within F. pseudograminearum is also reflected in the RNA polymerase II 244 

largest (RPB1) and second largest subunit (RPB2) genes, which have been successfully used for 245 

separating closely related Fusarium species (O'Donnell et al. 2013). In these genes CS3096 and 246 

CS5834 share high sequence identity (1604/1606 and 901/902).  247 

The loss of the fusaristatin gene cluster in F. pseudograminearum could represent an evolutionary 248 

development where the compound is not needed for spread and survival. Biosynthesis of huge 249 

proteins, like PKS6 and NRPS7, represent a significant energy cost for the fungus; thus, losing the 250 

redundant gene cluster can result in an improved fitness.  251 

One of the reasons for losing the fusaristatin gene cluster could be due to an overlapping mode of 252 

action for W493 and fusaristatin A, which is not an unlikely scenario given their similar 253 

biosynthetic background and structural similarities. The high level of identity of the sequence of the 254 

remnant fusaristatin cluster in strains CS3096, CS3220, CS3270, CS3427, CS3487 and RBG5266 255 

suggests that presence a deletion event occurred in one strain or lineage of the fungus rather than 256 

multiple times in multiple strains or lineages. However, the presence of the additional region in 257 

CS3894 suggests that some modifications has occurred locus where the fusaristatin gene cluster was 258 

lost.  Understanding when this loss event occurred may provide some indication of the evolutionary 259 

reason for the absence of the cluster in most strains. The climatic conditions (and native grass 260 

populations) in WA can be drastically different to the eastern states of Australia.  The restricted 261 

geographic location of isolates containing the fusaristatin cluster may suggest different evolutionary 262 

pressures exist in WA but the widespread (and overlapping) presence of isolates carrying the cluster 263 

loss in the same location and the absence of obvious lineages are contrary to this scenario. 264 

Although Fusarium crown rot has likely been present in WA for a long time, it has only recently 265 

emerged as a significant economic impediment to wheat production in this area (Murray and 266 

Brennan 2009). Further complicating our understanding of the evolutionary pressures that have 267 
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shaped the F. pseudograminearum genome is the likelihood that F. pseudograminearum, like 268 

F. graminearum, has not co-evolved with wheat (Lofgren et al. 2018) and can be considered an 269 

opportunistic pathogen of wheat. Thus, it will be extremely challenging to pinpoint the reason for 270 

loss of the cluster or even whether maintaining the clusters provides some advantage in the WA 271 

environment. 272 
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Figure legends 413 

Figure 1. Structures of W493-B and fusaristatin A highlighting the reduced polyketide (black) and 414 

peptide (colored) parts.   415 

 416 

Figure 2. Comparative analysis of the fusaristatin gene cluster and remnant fragments in Fusarium. 417 

A. Illustration of the intact cluster in F. pseudograminearum CS5834 (BN849_0052030 - 418 

BN849_0052070) and seven other Fusarium species. Only five remnant fragments (R1-R5) are 419 

present in F. pseudograminearum CS3096, CS3220, CS3487, CS3270, CS3427 and RBG5266. B. 420 

Predicted amino acid sequence of regions corresponding to PKS6 fragments R2 - R4 in F. 421 

pseudograminearum strains CS3096 (lacks intact cluster) and CS5834 (has intact cluster). Amino 422 

acids are represented by standard single-letter abbreviations, and two letters stacked one on top of 423 

the other indicate a difference in the sequence of the two strains. 424 

 425 

Figure 3. Molecular analyses of the F. pseudograminearum strains. A. Phylogenetic analyses of the 426 

99 F. pseudograminearum strains (orange: Western Australia; red: South Australia; blue: New 427 

South Wales; purple: Queensland) and of selected genome sequenced Fusarium strains with F. poae 428 

strain 2516 as outgroup. Numbers indicate bootstrap values from 1000 replications. B. 1% agarose 429 

gels visualizing the PCR products for determining the presence (●) and absence (●) of PKS6 of 430 

strains located in clade II. C. Multi-locus phylogeny of 16 F. pseudograminearum isolates with and 431 

without the fusaristatin gene cluster. Numbers indicate bootstrap values from 1000 replications. 432 

 433 

Supplementary figure 1. Production of W493-B by Fusarium pseudograminearum strains 434 

collected in New South Wales (NSW), Queensland (QLD) and Western Australia (WA). Strains 435 
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from WA have been divided in fusaristatin producers (+) and nonproducers (-). The box plot 436 

illustrate minimum and maximum; first and third quartile and mean peak areas. 437 

 438 

Supplementary Figure 2. Alignment of F. pseudograminearum CS3096 and CS3894 in the region 439 

where the fusaristatin gene cluster has been lost. A highlighted 100 bp region is present in CS3894, 440 

but absent in CS3096. 441 
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Table 1. Description of genes in the fusaristatin cluster in F. pseudograminearum CS5834 and comparison (% identity on amino acid level) to F. 
graminearum NRRL 31084 and F. avenaceum Fa05001. 

F. pseudograminearum Length Function F. graminearum F. avenaceum 
BN849_0052030 4355 aa Non-ribosomal peptide synthetase FGSG_08209 (94%) FAVG1_08708 (73%) 
BN849_0052040 2554 aa Polyketide synthase FGSG_08208 (98%) FAVG1_08709 (84%) 
BN849_0052050 520 aa Cytochrome P450 monooxygenase  FGSG_08207 (98%) FAVG1_08710 (86%) 
BN849_0052060 138 aa Hypothetic protein FGSG_08206 (96%) FAVG1_08711 (79%) 
BN849_0052070 511 aa Aminotransferase FGSG_08205 (96%) FAVG1_08712 (78%) 
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Table 2. Productiona of W493-B and Fusaristatin A (Fst A) by F. pseudograminearum strains collected from New South Wales (NSW), Queensland 
(QLD), South Australia (SA) and Western Australia (WA). 

Straina W493-Bb Fst Ab Location State  Strain W493-B Fst A Location State 
CS3096 ● Moree NSW CS7114 ● Bowenville QLD 
CS3164 ● Qurindi NSW CS7118 ● Marmaduaz QLD 
CS3166 ● Qurindi NSW CS7124 ● Hannaford QLD 
CS3173 ● Qurindi NSW CS7126 ● Hannaford QLD 
CS3184 ● Bladeville NSW CS7133 ● Toobeak QLD 
CS3220 ● Liverpool Plains NSW CS7139 ● Toobeak QLD 
CS3270 ● Liverpool Plains NSW CS7145 ● Wyaga QLD 
CS3293 ● Boggabri NSW CS7147 ● Wyaga QLD 
CS3319 ● Boggabri NSW CS7149 ● Warra QLD 
CS3361 ● Bellata NSW CS7153 ● Warra QLD 
CS3768 ● North Stat NSW 
CS3784 ● North Stat NSW CS3891 ● Foolunga Street SA 
CS3941 ● Cooper Creek K NSW CS3894 ● Foolunga Street SA 
CS3950 ● Cooper Creek K NSW CS3900 ● Angus Valley SA 
CS3965 ● 9 Miles Road NSW CS3907 ● Angus Valley SA 
CS3967 ● 9 Miles Road NSW 
CS3983 ● Livingstone Farm NSW CS5541 ● ● Stockdale WA 
CS3986 ● Livingstone Farm NSW CS5573 ● ● Stockdale WA 
CS7291 ● Nombi 1 NSW CS5588 ● ● Tammin WA 
CS7302 ● Spring Ridge 1 NSW CS5703 ● ● Tammin WA 
CS7305 ● Spring Ridge 1 NSW CS5834 ● ● Tammin WA 
CS7311 ● Nombi 1 NSW CS5877 ● Farm 3 WA 
CS7313 ● Nowbi 1 NSW CS5894 ● ● Jerramungub WA 
CS7319 ● Spring Ridge 2 NSW CS5897 ● Jerramungub WA 
CS7344 ● Nowbi 2 NSW CS7054 ● ● Lake Grace WA 
CS7350 ● Nowbi 2 NSW CS7055 ● Boxwood Hill WA 
CS7358 ● Tambar Springs NSW CS7056 ● ● Boxwood Hill WA 
CS7374 ● Tambar Springs NSW CS7060 ● ● Lake Grace WA 
CS7385 ● Spring Ridge 3 NSW CS7062 ● ● Lake Grace WA 
CS7391 ● Spring Ridge 3 NSW CS7065 ● Mettler WA 
CS7405 ● Spring Ridge 4 NSW CS7066 ● ● Wellstead WA 
CS7407 ● Bladeville NSW CS7069 ● Wellstead WA 
CS7420 ● Spring Ridge 5 NSW CS7078 ● Lake Grace WA 
CS7427 ● Spring Ridge 5 NSW CS7080 ● Lake Grace WA 
CS7436 ● Spring Ridge 2 NSW CS7081 ● ● Carnamagh WA 
CS7453 ● Spring Ridge 6 NSW CS7082 ● Lake King WA 
CS7460 ● Werris Creek NSW CS7084 ● Lake King WA 
CS7461 ● Werris Creek NSW CS7085 ● ● Lake King WA 
CS7463 ● Kelvin NSW CS7088 ● Lake King WA 
CS7464 ● Kelvin NSW CS7089 ● Grasspatch WA 
CS7465 ● Caroona 4 NSW CS7090 ● Grasspatch WA 
CS7467 ● Caroona 4 NSW CS7091 ● Grasspatch WA 

CS7093 ● Grasspatch WA 
CS3002 QLD CS7094 ● Grasspatch WA 
CS3427 ● Wilga Downs QLD CS7098 ● Grasspatch WA 
CS3438 ● Wilga Downs QLD CS7099 ● Salmon Gums WA 
CS3442 ● Coondiwindi QLD CS7100 ● Salmon Gums WA 
CS3744 ● Kentare QLD CS7104 ● Salmon Gums WA 
CS3752 ● Kentare QLD CS7105 ● Lake Grace WA 
CS3910 ● Westfield QLD CS7108 ● ● Lake Grace WA 
CS7113 ● Bowenville QLD 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

Ancestral Fusarium pseudograminearum strains produced fusaristatin 

Fusaristatin-producing F. pseudograminearum are confined to Western Australia 

Remnant fragments of fusaristatin cluster was found in non-producers 
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