

Aalborg Universitet

Statistical Mechanical Approach to Predict the Structure Evolution in Phosphate Glasses

Bødker, Mikkel Sandfeld; Mauro, John C.; Goyal, Sushmit; Youngman, Randall E.; Smedskjær, Morten Mattrup

Publication date: 2018

Link to publication from Aalborg University

Citation for published version (APA): Bødker, M. S., Mauro, J. C., Goyal, S., Youngman, R. E., & Smedskjær, M. M. (2018). Statistical Mechanical Approach to Predict the Structure Evolution in Phosphate Glasses. Abstract from 2nd Nordic Conference on Ceramic and Glass Technology, Roskilde, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Statistical Mechanical Approach to Predict the Structure Evolution in Phosphate Glasses

Mikkel S. Bødker¹, John C. Mauro², Sushmit Goyal³, Randall E. Youngman³, Morten M. Smedskjaer¹

- 1. Department of Chemistry and Bioscience, Aalborg University, Denmark
- 2. Department of Materials Science and Engineering, Pennsylvania State University, USA
- 3. Science and Technology Division, Corning Incorporated, USA

Predicting the compositional evolution of the atomic-scale structure of oxide glasses is important for developing quantitative composition-property models. In binary phosphate glasses, addition of network modifiers generally lead to depolymerization of the networks as described by the Q-speciation, but involves a variety of different network former/modifier interactions. Here, based on ³¹P magic angle spinning nuclear magnetic resonance spectroscopy data from literature, we present a statistical description of the compositional evolution of Q-speciation in phosphate glasses with alkali, magnesium, and zinc modifiers by accounting for the relative enthalpic and entropic contributions to the bonding preferences.¹ We show that the entire glass structure evolution can be predicted based on experimental structural information for only a few glass compositions in each series. Finally, we also discuss the possibility to extend the statistical mechanical model to binary silicate and borate glasses.

¹ Bødker M. S., Mauro J. C., Goyal S., Youngman R. E., Smedskjaer M. M. Predicting Q-Speciation in Binary Phosphate Glasses using Statistical Mechanics. *J. Phys. Chem. B* **122**, 7609-7615 (2018).