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Mechanical response of double-network gels with dynamic bonds

under multi-cycle deformation

A.D. Drozdov∗ and J. deClaville Christiansen

Department of Materials and Production

Aalborg University

Fibigerstraede 16, Aalborg 9220, Denmark

Abstract

Mechanical behavior of double-network (DN) gels with covalent and non-covalent bonds un-

der multi-cycle loading depends strongly on time, strain rate and deformation program. A model

is developed for the viscoelastic and viscoplastic responses of a polymer network with permanent

and temporary junctions. Viscoelasticity is modeled as breakage and reformation of temporary

bonds driven by thermal fluctuations. Viscoplasticity is treated as sliding of permanent junc-

tions with respect to their initial positions in the network. Slippage occurs when a junction

becomes unbalanced due to transition of a chain linked by this junction from its active state

into the dangling state. Analysis of observations in tensile tests with various strain rates, relax-

ation tests, loading-unloading tests, and multi-cycle tests with various deformation programs on

a series of DN gels shows that the experimental stress–strain diagrams are described correctly by

the governing equations, material parameters evolve consistently with experimental conditions,

and predictions of the model are in quantitative (where sufficient data are provided) and quali-

tative agreement with experimental data. In particular, numerical simulation demonstrates the

ability of the model to describe the Mullins effect in DN gels.

Key-words: Double-network gel; Cyclic deformation; Mullins effect; Modeling

1 Introduction

Hydrogels are three-dimensional networks of cross-linked hydrophilic chains that swell noticeably

being immersed into water. Physical properties of gels resemble those of the native extracellular

∗E–mail: aleksey@mp.aau.dk
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matrix, which leads to a wide range of their applications in regenerative medicine, tissue engineering,

targeted drug delivery, implantable devices, biosensors and soft actificial muscles [1, 2, 3, 4]. Among

other applications of pristine and nanocomposite hydrogels, it is worth mentioning their use in

energy storage and conversion devices [5]: fuel cells [6, 7, 8], batteries [9], and supercapacitors [10].

Conventional gels with polymer chains bridged by covalent cross-links are relatively weak and

brittle [11], which restricts the area of their applications. This shortcoming is explained by the

inhomogeneity of a polymer network with randomly distributed chain lengths between cross-links,

weak interactions between chains, and the lack of an efficient mechanism for energy dissipation [12].

Strength and toughness of gels can be enhanced significantly by formation of a double-network

(DN) structure that involves two inter-penetrating networks of chains [12]. The most promising

strategy to prepare polymer networks with superior mechanical properties consists in introduction

of sacrificial (dynamic) bonds between chains governed by reversible interactions [13]. Design of DN

gels (with chains in a permanent network bridged by chemical cross-links and chains in a transient

network bonded by non-covalent junctions) with high stiffness, strength, toughness, and fatigue

resistance has recently become a focus of attention [14, 15]. Several mechanisms have been proposed

for the development of dynamic bonds in a polymer network [16, 17, 18]: (i) electrostatic interaction

(formation of polyion complexes), (ii) metal-ligand coordination, (iii) hydrophobic association, (iv)

hydrogen bonding, (v) host-guest recognition, and (vi) reinforcement with nanoparticles.

The mechanical behavior of a covalently cross-linked gel is merely elastic [19]. When temporary

bonds are introduced, the response of a gel becomes time- and rate-dependent [20, 21, 22]. The

viscoelastic behavior of DN gels can be described [23] within the conventional concept of transient

polymer networks where chains with sticky ends detach from and attach to temporary junctions

being driven by thermal fluctuations [24, 25]. A constitutive framework for the analysis of the

viscoelastic behavior of gels with permanent and temporary junctions has been developed in [26,

27, 28, 29, 30, 31, 32, 33].

Experimental data in multi-cycle tensile (compressive) tests on gels with dynamic bonds reveal

two characteristic features:

• Under cyclic deformation with a fixed maximum elongation ratio kmax, the hysteresis energy

along the first cycle (n = 1) exceeds strongly (by an order of magnitude) that measured along

subsequent cycles (n > 1). For all n ≥ 2, this energy decreases weakly with number of cycles

and becomes practically independent of n after a few cycles of loading–retraction [34, 35, 36].

• (ii) When cyclic deformation is conducted with monotonically increasing elongation ratios,
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the stress–strain diagram under reloading along the (n + 1)th cycle coincides with that un-

der uniaxial tension, provided that the elongation ratio k exceeds sufficiently the maximum

elongation ratio at the nth cycle (the Mullins effect) [37, 38, 39].

Constitutive equations for the viscoelastic and viscoplastic behavior of DN gels under cyclic

loading have recently been developed in [30, 40, 41, 42, 43]. Although these models capture the

mechanical response of gels with covalent and non-covalent junctions, discrepancies can be observed

between experimental data and results of simulation. This is not surprising as the above models

treat some phenomena (viscoelasticity, viscoplasticity, damage accumulation, etc.) in a simplified

manner.

The objective of the present study is threefold: (i) to develop a model for the mechanical

behavior of DN gels under cyclic deformation that accounts adequately for their time- and rate-

dependent responses, (ii) to determine adjustable parameters by fitting observations in tensile tests

with various strain rates, relaxation tests, and cyclic tests, and (iii) to demonstrate the ability

of the model to predict observations in multi-cycle tests with various deformation programs and

arbitrary strains, at which the strain rate changes its sign.

This work focuses on the response of DN gels in tests with a reasonably small number of

cycles (low-cycle fatigue) being driven by possible applications of these materials in shock-absorbing

medical devices [44, 45].

An equivalent polymer network in a DN gel is treated as a combination of permanent and

transient networks. Dissipation of energy is induced by two processes: (i) breakage and reformation

of temporary bonds between chains driven by thermal fluctuations (viscoelasticity), and (ii) slippage

of permanent cross-links with respect to their reference positions (viscoplasticity).

The former mechanism for energy dissipation is conventional for transient networks, where a

dangling chain adopts the actual state of a gel at the instant of its reattachment as the reference

(stress-free) state. The describe observations in relaxation tests (which requires the entire spectrum

of relaxation times [21, 46] to be accounted for), we adopt the approach of [47, 48] and presume

the equivalent network to be heterogeneous and composed of meso-domains with various activation

energies for rearrangement of chains.

The latter mechanism for dissipation was recently suggested in [49]. According to it, a junction

between chains becomes unbalanced when one of the chains connected by this junction is trans-

formed from the active state into the dangling state (which means that stress in this chain vanishes

suddenly). As a result, the junction begins to slide with respect to the network (plastic flow) until
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it reaches a new equilibrium state.

The novelty of our approach consists in (i) the description of both phenomena (viscoelasticity

and viscoplasticity) within a unified constitutive model grounded on the free energy imbalance

inequality and (ii) the account for two (dissipative and non-dissipative) mechanisms for plastic flow

of permanent junctions.

The ability of the model to describe observations is confirmed by matching experimental data on

(i) poly(vinyl alcohol) gel, where chains are chemically cross-linked with glutaraldehyde and phys-

ically cross-linked with borate ions [27, 29, 50], (ii) poly(N,N -dimethylacrylamide) gel reinforced

with silica nanoparticles [51], (iii) poly(acrylamide–co-2-acrylamido-2-methyl propane sulfonic acid)

gel loaded with zirconium hydroxide nanoparticles [52], (iv) poly(N,N -dimethylacrylamide) [53]

and poly(N -isopropylacrylamide) [54] gels reinforced with nanoclay, (v) poly(acrylamide–acrylic

acid) gel cross-linked with hydrophobic aggregates and Fe3+ ions [55, 56], (vi) poly(acrylamide–n-

dodecyl glyceryl itaconate) (AAm-DGI) gel, where DGI bilayers are connected with a covalently

cross-linked AAm matrix by hydrogen bonds [57, 58], and (vii) poly(acrylamide-alginate) (AAm-

Alg) gel with covalently cross-linked AAm chains and ionically cross-linked Alg chains [59].

2 Model

A gel is treated as a two-phase medium composed of an equivalent polymer network and water

molecules. The solid and fluid phases are modeled as immiscible interpenetrating continua. De-

formation of the network and concentration of water molecules are connected by the molecular

incompressibility condition.

The polymer network is thought of as a superposition of two networks: permanent and transient.

Chains in the former network are bonded by permanent junctions, while chains in the latter network

are bridged by temporary junctions that rearrange (break and reform) being driven by thermal

fluctuations. According to the affinity hypothesis, deformations of the permanent and transient

networks coincide with macro-deformation of the gel.

The reference (stress-free) state of the permanent network before application of external loads

coincides with the as-prepared state of the gel. According to the multiplicative decomposition

formula, the deformation gradient F for transition from the initial (undeformed dry) state into the

actual (deformed swollen) state is given by

F = Fe · Fp, (1)
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where Fe and Fp are the deformation gradients for elastic and plastic deformations, and the dot

stands for inner product. Under the conventional hypothesis that the plastic spin vanishes, the

rate-of-strain tensors for plastic deformation (dp in the unloaded state and Dp is the actual state)

read

dp = Ḟp · F−1p , Dp =
1

2

(
Fe · dp · F−1e + F−>e · dp · F>e

)
, (2)

where the superscript dot stands for the derivative with respect to time, and > denotes transpose.

Following [60], two mechanisms of plastic deformation (sliding of junctions between chains with

respect to their initial positions) are introduced: (i) induced by macro-deformation (with the rate-

of-strain tensor dm) and (ii) driven by inter-chain interaction (with the rate-of-strain tensor di).

The rate-of-strain tensor for plastic deformation is determined by

dp = dm + di. (3)

The rate-of-strain tensor Dm (an analog of dm in the actual state) is proportional to the rate-of-

strain tensor for macro-deformation

Dm = φD. (4)

The non-negative coefficient φ in Eq. (4) vanishes in the initial state (sliding of junctions is negligible

at infinitesimal strains), increases under tension (which accelerates the sliding process) and tends

to its ultimate value φ = 1 at large elongation ratios. Evolution of the function φ with time is

governed by the equation

φ̇ = ±A(1− φ)2, φ(0) = 0. (5)

The signs “+” in Eq. (5) corresponds to loading, the sign “−” corresponds to unloading, and the

right-hand side of Eq. (5) vanishes when the strain rate for macro-deformation equals zero. The

coefficient A reads

A =
a

(I1 − 2)
3
2

, (6)

where a is a positive adjustable parameter, and I1 is the first principal invariant of the Cauchy–

Green tensor for macro-deformation. Under uniaxial tension with elongation ratio k, the presence

of I1 = k2 + 2/k in the denominator in Eq. (6) ensures that φ̇ remains small at large elongation

ratios. Eqs. (5) and (6) differ from the kinetic equations introduced in [61, 62].

To describe the response of a transient network, we denote by τ an instant when an active chain

(both ends are connected to the network) is bridged with the network by a temporary junction,

and distinguish chains that joined the network under polymerization of a pre-gel solution (τ = 0)

5



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

and those attaching the network under deformation (τ > 0). The reference (stress-free) state of a

chain with τ = 0 coincides with the as-prepared state of the gel. The reference state of a chain

with τ > 0 coincides with the actual state of the gel at instant τ (stresses in chains totally relax

under rearrangement).

With reference to [22], the transient network is presumed to be inhomogeneous and composited

of meso-domains with various activation energies U for breakage of temporary bonds. The non-

homogeneity is described by the distribution function f(u) of meso-domains with dimensionless

activation energies u = U/(kBT ), where kB is the Boltzmann constant, and T stands for the

absolute temperature. The quasi-Gaussian expression is adopted for this function

f(u) = f0 exp
(
− u2

2Σ2

)
(u ≥ 0), (7)

where Σ > 0 is a material constant, and the coefficient f0 is determined from the normalization

condition
∫∞
0 f(u)du = 0. Rearrangement of the inhomogeneous network is entirely determined by

the rate of detachment of active chains from temporary junctions

Γ = γ exp(−u), (8)

where γ > 0 stands for the attempt rate.

Constitutive equations for the mechanical response of a DN gel under an arbitrary deformation

with finite strains are developed in Supporting Information. These relations are derived by means

of the free energy imbalance inequality for an arbitrary specific mechanical energy of the permanent

network

We(Ie1, Ie2, Ie3) +Wi(Ii1, Ii2)

and an arbitrary strain energy of chain in the transient network

w(Iτ1, Iτ2, Iτ3).

The specific energy We stored in chains of the permanent network depends on the principal in-

variants Iem (m = 1, 2, 3) of the Cauchy–Green tensor for elastic deformation Be = Fe · F>e . The

specific energy of inter-chain interaction Wi is treated as a function of the principal invariants Iim

(m = 1, 2) of the Cauchy–Green tensor for plastic deformation Bi = Fi · F>i . The energy w stored

in an active chain of the transient network is presumed to depend on the principal invariants Iτm

(m = 1, 2, 3) of the Cauchy–Green tensor bτ = fτ ·f>τ , where fτ (t) = F(t)·F−1(τ) is the deformation

gradient for transition from the actual state at time τ to the actual state at time t.

6
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In the analysis of observations, we focus on uniaxial tensile cyclic deformation of a gel with the

strain energy density of the permanent network

We = −1

2
Ge

[
K ln

(
1− Ie1 − 3

K

)
+ ln Ie3

]
, (9)

the energy of inter-chain interactions

Wi =
1

2
Gi(Ii1 − 3), (10)

and the energy of active chains in the transient network

w =
1

2
g
[
(Iτ1 − 3)− ln Iτ3

]
, (11)

where Ge, Gi, g and K are constants.

The Gent equation (9) is adopted for the function We to account for strain-hardening of DN

gels at large elongation ratios [63]. The energy of inter-chain interaction Wi is accepted in the

neo-Hookean form (10), which serves as the first term in the formal expansion of the function Wi

into the Taylor series with respect to its arguments. Eq. (11) was developed in [64] within the

concept of entropic elasticity.

Governing equations for a DN gel equilibrated before loading and subjected to uniaxial tensile

cyclic deformation with a constant strain rate ε̇ involve

(i) the formula for engineering tensile stress

σ = G
[
(1− κ)(1− φ)V

k3e − 1

kke
+ κ
(
S1k −

S2
k2

)]
, (12)

where the coefficient

V =
[
1− 1

K

(
k2e +

2

ke
− 3
)]−1

accounts for stress-hardening,

(ii) the kinematic equation for elongation ratio k under macro-deformation

k̇ = ±ε̇, k(0) = 1, (13)

(iii) the kinematic equation for elongation ratio ke for elastic deformation

k̇e
ke

= (1− φ)
k̇

k
− k̇i
ki
, ke(0) = 1, (14)

(iv) the kinetic equation for elongation ratio ki under plastic deformation

k̇i
ki

= P
(
V
k3e − 1

ke
−Rk

3
i − 1

ki

)
, ki(0) = 1, (15)

7
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(v) the integral relations for the functions S1 and S2

S1 =

∫ ∞
0

f(u)s1(t, u)du, S2 =

∫ ∞
0

f(u)s2(t, u)du, (16)

(vi) the kinetic equations for the functions s1 and s2

∂s1
∂t

= Γ
( 1

k2
− s1

)
,

∂s2
∂t

= Γ(k − s2), s1(0, u) = s2(0, u) = 1. (17)

Eqs. (12)–(17) together with Eqs. (5)–(9) contain five material constants: G stands for the

elastic modulus of a gel, K−1 is the Gent constant [65], κ denotes the ratio of elastic moduli of

transient and permanent networks, a characterizes plastic flow of junctions induced by macro-

deformation, and Σ is a measure of inhomogeneity of the transient network.

The governing equations involve three adjustable functions: γ, P and R.

Parameter γ denotes the attempt rate for separation of chains from temporary junctions. To

describe the nonlinear viscoelastic behavior of DN gels, we presume this quantity to be affected by

dissipative plastic flow. The following relation is adopted for this dependence:

γ = γ∗ exp
[
−α(Ii2 − 3)

]
, (18)

where γ∗ is the attempt rate at infinitesimal strains, the constant α describes changes in the rate

of rearrangement, and Ii2 is the second principal invariant of the Cauchy–Green tensor Bi.

Coefficient P determines the rate of sliding of junctions driven by inter-chain interaction, and

parameter R stands for the ratio of moduli Gi and Ge that characterize mechanical energies dissi-

pated by and stored in the permanent network.

In the analysis of multi-cycle deformation, three regimes are distinguished: (i) stretching of a

virgin sample (k̇ > 0), (ii) retraction (k̇ < 0), and (iii) reloading (k̇ > 0). Parameter P is presumed

to vanish under stretching and stress relaxation (k̇ = 0), and to accept different values, P1 and P2,

under retraction and reloading:

P = 0 (stretching), P = P1 (retraction), P = P2 (reloading). (19)

The rate of plastic flow under retraction is determined by the formula

P1 = P1∗ exp
[
β1(σ∗ − σ)

]
. (20)

Here P1∗ is the rate of sliding of junctions at the instant when unloading starts and tensile stress

equals its maximum value σ∗, and the constant β1 accounts for slowing down of the sliding process

driven by the decay in tensile stress.
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The rate of plastic flow under reloading is given by the equation

P2 = P2∗ exp
[
β2(σ − σ∗)

]
, (21)

where P2∗ is the rate of sliding of junctions at the instant when retraction starts and tensile stress

equals its minimum value σ∗, and the constant β2 accounts for stress-induced acceleration of the

sliding process.

By analogy with Eq. (19), the coefficient R is presumed to accept different values under

retraction and reloading

R = R1 (retraction), R = R2 (reloading). (22)

Coefficients P1∗, P2∗, R1, R2, β1, β2 remain constant along each retraction and reloading path,

but they may be affected by elongation ratios kmax and kmin, at which unloading and reloading

occur. Evolution of these quantities with kmax and kmin reflects damage accumulation (changes in

the micro-structure of DN gels) under multi-cycle deformation.

To reduce the number of phenomenological relations in the model, we postulate that β1 and

R2 are material constants independent of kmax and kmin, respectively. Changes in the remaining

parameters P1∗, R1, P2∗, β2 are described by the equations

logP1∗ = P 0
1∗ + P 1

1∗(Ie2 − 3), logR1 = R0
1 +R1

1(Ie2 − 3), (23)

logP2∗ = P 0
2∗ + P 1

2∗(Ii2 − 3), log β2 = β02 + β12(Ii2 − 3), (24)

where log = log10, the principal invariants of the Cauchy–Green tensors for elastic Ie2 = 2ke + k−2e

and plastic Ii2 = 2ki+k−2i deformations are calculated at the points where the strain rate ε̇ changes

its sign, and the coefficients are determined by the least-squares method.

An advantage of the constitutive model is its ability to describe correctly experimental stress–

strain diagrams of DN gels under multi-cycle deformations with arbitrary programs (elongation

ratios kmax and kmin at which the strain rate changes its sign). To reach this goal, mutual depen-

dencies are introduced between stresses and plastic flow (Eqs. (20), (21)) and between viscoelastic

and viscoplastic responses (Eq. (18)). As a result, the number of material constants increases.

Although this number is not small, it remains lower than the number of adjustable parameters in

other models for the viscoelastic and viscoplastic response of DN gels under cyclic deformation.
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3 Fitting of observations

In this section, the ability of the constitutive model is verified to describe experimental stress–strain

diagrams on DN gels under various deformation programs.

3.1 Time- and rate-dependent behavior

First, we demonstrate that the governing equations with a fixed set of material parameters de-

scribe correctly observations in tensile tests with various strain rates, relaxation tests and loading–

unloading tests.

We begin with the analysis of observations on PVA gel synthesized by means of a two-stage

procedure [27]. At the first stage, PVA chains in an aqueous solution (12 wt.%, molecular weight 89

to 98 kg/mol) were covalently cross-linked with glutaraldehyde (molar fraction 5.5 mM) under acidic

condition (pH=1.7) at 100 ◦C . After washing in deionized water, the swollen gel was immersed

into an aqueous solution of sodium tetraborate decahydrate (1 mM) and sodium chloride (90 mM)

for 3 days. The first network is formed by polymer chains bridged by chemical cross-links. In the

other network, chains are linked by physical bonds between hydroxyl groups of PVA and borate

ions (due to di-diol complexation [66] and formation of ionic and hydrogen bonds [67]).

Mechanical tests were conducted on as-prepared specimens with degree of swelling Q0 = 8.3.

The experimental program involves: (i) a tensile relaxation test with elongation ratio kmax = 1.1

and strain rate under stretching ε̇ = 0.2 s−1, (ii) a series of tensile tests with maximum elongation

ratio kmax = 2 and various strain rates ε̇ ranging from 0.003 to 0.1 s−1, (iii) two series of cyclic

(loading–unloading) tests with maximum elongation ratio kmax = 1.3, strain rates under stretching

ε̇1 = 0.01 and 0.3 s−1 and strain rates under retraction ε̇2 = 0.001, 0.01 and 0.1 s−1, and (iv) a

cyclic test with maximum elongation ratio kmax = 2 and strain rate ε̇ = 0.03 s−1. Observations in

these tests are chosen because the amount of experimental data is sufficient to determine material

constants and to examine accuracy of the model predictions.

To determine adjustable parameters, we start with matching observations in the relaxation test

with kmax = 1.1 (Fig. 1A). As the strain kmax − 1 is small, the data are fitted by means of Eq. (S-

92) (Supporting Information), where parameters κ, γ∗ and Σ are found by the method of nonlinear

regression. Then the stress–strain diagram is matched under tension with strain rate ε̇ = 0.01 s−1

(Fig. 1B). We set K = ∞ (the influence of the Gent constant is negligible at elongation ratios

k < 2), and determine coefficients G and a from the best-fit condition. The values of material
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constants are listed in Tab. S1. In particular, we set P1∗ = 0, which means that the dissipative

mechanism of plasticity is disregarded.

To demonstrate validity of the constitutive equations, predictions of the model are compared

with experimental data. First, the response of PVA gel in relaxation test is studied (with account for

the finite strain rate ε̇ under tension). Results are depicted in Fig. S1, which shows the stress–strain

diagram under stretching and the decay in stress with time under relaxation. Secondly, numerical

analysis is conducted of the response of PVA gel in tensile tests with various strain rates ε̇. Its

results are reported in Fig. 1B. Finally, simulation is performed of the rate-dependent behavior in

cyclic (loading–unloading) tests with various strain rates and maximum elongation ratios. Results

of numerical analysis are presented in Figs. 2 and S2.

We proceed with fitting observations on poly(N,N -dimethylacrylamide) (DMA) gel reinforced

with silica nanoparticles (NP) [51]. The gel was prepared by free-radical polymerization (12 h at

25 ◦C) of DMA monomers (1.485 g) in a suspension of silica NP (0.74 g, average radius 17 nm)

in water (10.44 g) by using potassium persulfate (KPS, 0.041 g) as an initiator and N,N,N ′, N ′-

tetramethylethylenediamine (TEMED, 0.017 g) as a catalyst. The first network in the DN gel is

formed due to self-crosslinking of polymer chains driven by chemical reaction between KPS and

methyl groups of DMA [51]. The other network is formed by physical bonds between polymer

chains and nanoparticles.

Mechanical tests were conducted on as-prepared specimens with degree of swelling Q0 = 8.4.

The experimental program involves: (i) a tensile relaxation test at elongation ratio kmax = 1.5 and

strain rate under stretching ε̇ = 0.06 s−1, and (ii) a cyclic test with maximum elongation ratio

kmax = 6 and strain rate ε̇ = 0.06 s−1 under tension and retraction. Observations are depicted in

Fig. 3 together with results of numerical simulation with the material constants collected in Tab.

S2.

To determine adjustable parameters in the governing equations, the above procedure is slightly

modified (it cannot be applied directly because tensile strain in the relaxation test is not small).

First, γ∗ and Σ are determined by matching observations in the relaxation test with the help of Eq.

(S-92). Given κ, parameters G and K are found by fitting experimental data under tension in the

cyclic test with kmax = 6 (results of simulation show that a∗ = 0). Then κ is calculated from the

best-fit condition for observations in the relaxation test. Finally, we set α = 0 and fit experimental

data under retraction to determine P1∗, R1 and β1.

We now study observations on poly(N,N -dimethylacrylamide) (DMA) gel reinforced with nan-
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oclay (NC) [53]. The gel was prepared by free radical polymerization (55 h at room temperature)

of DMA monomers (4 ml) in a suspension of Laponite XLS nanoclay (1.8 g) in water (19.5 ml)

by using an aqueous solution of KPS (2 ml) as an initiator and TEMED (30 µl) as a catalyst.

The double-network structure of DMA-NC gel involves entangled DMA chains linked with clay

particles by physical bonds (the first network) and weakly charged exfoliated clay platelets bridged

by electrostatic interaction (the other network).

Mechanical tests were conducted on as-prepared specimens with degree of swelling Q0 = 3.7.

The experimental program involves: (i) a tensile relaxation test at elongation ratio kmax = 2 and

strain rate under stretching ε̇ = 0.5 s−1, and (ii) a cyclic test with maximum elongation ratio

kmax = 6 and strain rate ε̇ = 0.06 s−1 under tension and retraction. Observations in these tests are

depicted in Fig. 4 together with results of numerical simulation. Material constants determined by

the above procedure are collected in Tab. S3.

An advantage of our model compared with the models developed in [27, 29] (where observations

on PVA gel were fitted) consists in its simplicity: the governing relations involve differential equa-

tions only, which means that no special procedures are required for numerical solution of nonlinear

integral equations. Its advantage compared with the model derived in [30] (where experimental

data in cyclic tests on DMA-NP and DMA-NC gels were analyzed) consists in the account for the

time- and rate-dependent response and higher quality of fitting observations (due to the account

for two mechanisms of plastic flow).

The following conclusions are drawn:

(I) Good agreement is demonstrated between results of simulation and observations in tensile

tests with various strain rates, relaxation tests and loading-unloading tests (Figs. 1, 3, 4 and S1A).

(II) The model predicts quantitatively experimental data in loading–retraction tests with var-

ious strain rates when its parameters are determined by matching observations in independent

experiments (Figs. 2 and S2).

3.2 Cyclic tests with various maximum elongation ratios

Our aim now is (i) to demonstrate that the response of DN gels in loading–unloading tests with

various maximum elongation ratios kmax is described adequately by Eq. (23) and (ii) to assess how

intensity of stress relaxation is affected by kmax.

We begin with fitting observations on poly(acrylamide–acrylic acid–n-octadecyl acrylate) (AAm-

AAc-ODA) gel prepared by means of a three-stage procedure [55]. At the first stage, micellar
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copolymerization was performed (12 h at 65 ◦C) of AAm monomers (12 wt.%), AAc monomers (10

wt.% of AAm) and ODA monomers (35 wt.% of AAm) in an aqueous solution of ionic surfactant

sodium dodecyl sulfate (SDS, 18 wt.%) and sodium chloride (1.5 M) by using ammonium persulfate

(APS, 1 wt.%) as an initiator. After polymerization, the gel was soaked in distilled water at room

temperature to extract SDS and residual monomers. At the other stage, the gel samples were

immersed for 24 h in an aqueous solution of iron chloride hexahydrate FeCl3 · 6H2O (50 mM). At

the final stage, the samples were rinsed in deionized water for 48 h to remove superfluous Fe3+

ions. The first network is formed by polymer chains linked by hydrophobic aggregates of ODA,

while the other network is developed due to bonding of chains by ion complexes between mobile

Fe3+ cations and fixed COO− anions.

Mechanical tests were conducted on fully swollen specimens with degree of swelling Q0 = 2.6.

Tensile cyclic tests were performed with a constant strain rate ε̇ = 0.083 s−1 and various maximum

elongation ratios kmax ranging from 2 to 6. Observations in these tests are depicted in Fig. 5

together with results of numerical simulation with the material parameters listed in Tab. S4.

Bearing in mind that observations on the time-dependent response were not provided, we deter-

mine constants γ∗, Σ and κ together with G and a by matching the loading path of the stress–strain

diagram with kmax = 6 (we set K = ∞ to reduce the number of adjustable parameters). Then

we set α = 0 and determine P1∗, R1 and β1 by fitting observations under retraction in the test

with kmax = 6. Finally, we fix β1 and approximate experimental data under unloading in cyclic

tests with other kmax by means of two parameters, P1∗ and R1. Evolution of these quantities with

maximum elongation ratio kmax is illustrated in Fig. S3, where the data are approximated by Eq.

(23).

We proceed with study of a similar DN gel whose chains are linked by hydrophobic aggregates

and ion complexes [56]. Poly(acrylamide–acrylic acid–stearyl methacrylate) (AAm-AAc-SMA) gel

was synthesized in a three-stage process. At the first stage, micellar polymerization was con-

ducted of AAm monomers (17.4 wt.%), AAc monomers (15 mol.% of AAm) and hydrophobic SMA

monomers (1 mol.% of AAm) in an aqueous solution of SDS and sodium chloride (0.8 M) by using

Irgacure-2959 (1 mol.% of monomers) as a photo-initiator. A gel with physical cross-links formed

by poly(stearyl methacrylate) blocks inside SDS micelles was prepared by photo-polymerization

of the pre-gel solution (2 h under UV light). At the other stage, this gel was immersed for 16 h

in a solution of iron chloride hexahydrate (50 mM) at room temperature to form ionic complexes

between Fe3+ cations and carboxyl groups of AAc. Finally, the samples were soaked in deionized

13



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

water for 3 days to extract SDS, residual monomers and superfluous Fe3+ ions and to reorganize

the structure of metal coordination bonds.

Tensile loading–unloading tests were performed on as-prepared specimens with an unspecified

degree of swelling with strain rate ε̇ = 0.167 s−1 and various maximum elongation ratios kmax

ranging from 1.5 to 6. Observations in these tests are depicted in Fig. 6 together with results of

numerical simulation with the material parameters collected in Tab. S4. Each retraction curve in

Fig. 6 is characterized by two parameters, P1∗ and R1. The effect of kmax on these quantities is

illustrated in Fig. S4 where the data are approximated by Eq. (23).

Tab. S3 shows that material parameters of these gels adopt similar values (the only exception

from this rule is Σ whose value for AAm-AAc-ODA gel exceeds that for AAm-AAc-SMA gel by a

factor of 3.5). Figs. S3 and S4 demonstrate that the effect of maximum elongation ratio kmax on

adjustable parameters P1∗ and R1 is weakly affected by the chemistry of hydrophobic aggregates

and preparation conditions. The coefficients P 1
1∗ coincide for the gels (they equal −0.21), while the

coefficients R1
1 are close to each other (−0.27 for AAm-AAc-ODA and −0.15 for AAm-AAc–SMA).

To evaluate the effect of Σ, which characterizes width of the relaxation spectrum f(u), on

the time-dependent behavior of AAm-AAc-ODA and AAm-AAc–SMA gels, numerical analysis is

performed of their response in relaxation tests. In simulation, a sample is stretched with a fixed

strain rate ε̇ up to the elongation ratio kmax, which remains fixed during the period of relaxation.

Results of calculations are depicted in Figs. S5 and S6, where the ratio of tensile stresses S =

σ(trel)/σ0 is plotted versus relaxation time trel (σ0 is the stress at the instant t0 when relaxation

starts, and trel = t − t0). These figures show that S decreases monotonically with trel at each

kmax and reaches its ultimate value within a few minutes. The duration of the transition period is

strongly affected by Σ: it equals about 100 s for AAm-AAc-ODA gel (large Σ) and about 40 s for

AAm-AAc–SMA gel (small Σ). Given relaxation time trel, the intensity of stress relaxation 1 − S

decreases monotonically with kmax and becomes negligible at relatively large elongation ratios. The

latter conclusion is in accord with observations reported in [68].

We now approximate experimental data in cyclic tests on poly(acrylamide–n-dodecyl glyceryl

itaconate) (AAm–DGI) gel [57]. The gel was prepared by cross-linking polymerization at room

temperature of AAm monomers (2 M) and amphiphilic DGI monomers (with two molar fractions

0.1 M and 0.13 M) in an aqueous solution of SDS (0.025 mol.% with respect to DGI) by using N,N ′-

methylenebisacrylamide (BIS, 2 mM) as a cross-linker and Irgacure (2 mM) as an initiator. In the

presence of SDS, DGI forms lamellar bilayers homogeneously distributed in the AAm network and
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connected to the matrix by hydrogen bonds. The dual-network structure is formed by AAm chains

covalently cross-linked with BIS (the first network) and DGI lamellar bilayers physically bonded

with AAm chains (the other network).

Experiments were conducted on as-prepared specimens with degree of swelling Q0 = 16.9.

Cyclic tests were performed with strain rate ε̇ = 0.005 s−1 and various maximum elongation ratios

kmax ranging from 2 to 7. Observations in these tests on AAm-DGI gel with 0.13 M of DGI in

the pre-gel solution are depicted in Fig. 7 together with results of simulation with the material

parameters collected in Tab. S5. The effect of kmax on parameters P1∗ and R1 (that characterize

plastic flow under retraction) is illustrated in Fig. S7, where the data are fitted by means of Eq.

(23).

The stress–strain curve in Fig. 7 involves an interval of stress-softening under stretching (along

which the engineering stress remains practically independent of elongation ratio) followed by a

pronounced increase in σ at large k. A similar diagram that shows a non-monotonic stress–strain

dependence under tension is presented in Fig. 8, where observations on the gel with 0.1 M of DGI

are depicted (cyclic test with strain rate ε̇ = 0.005 s−1 and maximum elongation ratio kmax = 4)

together with results of simulation. Analogous stress–strain curves were reported on poly(N,N -

dimethylacrylamide-co-methacrylic acid) gel [69], AAm-agar gels with relatively high concentra-

tions of agar in pre-gel solutions [70], and poly(3-(methacryloylamino)propyl-trimethylammonium

chloride-co-sodium p-styrenesulfonate) gel [71, 72]. In accord with [69], the model describes these

phenomena as a competition between non-dissipative plastic flow under stretching (characterized

by parameter a) and the non-Gaussian response of polymer chains (determined by the constant

K). Tab. S5 shows that stress-softening corresponds to small a and large K values, whereas the

non-monotonicity of the stress–strain curve is observed at large a and relatively small K values.

Another explanation for stress-softening of DN gels was provided in [30, 40], where it was associated

with necking instability under tension.

To examine how non-monotonicity of the stress–strain diagram on a DN gel affects its time-

dependent behavior, simulation is conducted of the responses of AAm–DGI gels with 0.1 M and 0.13

M of DGI in relaxation tests with various maximum elongation ratios kmax. Results of calculations

are reported in Fig. S8, where the dimensionless ratio S is plotted versus relaxation time trel. This

figure shows that for any trel, the intensity of stress relaxation 1− S decreases monotonically with

kmax (including the interval of kmax values, where the stress σ remains constant or decreases with

elongation ratio). Comparison of Figs. S5, S6 and S8 reveals that the characteristic time for stress
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relaxation in AAm–DGI gels exceeds pronouncedly that in AAm-AAc-ODA and AAm-AAc-SMA

gels. This reflects the fact that γ∗ of the former gels is lower than that of the latter gels by an

order of magnitude.

The following conclusions are drawn:

(I) The model describes correctly stress–strain diagrams on DN gels under cyclic loading with

various maximum elongation ratios (Figs. 5 to 8).

(II) The response under retraction is uniquely determined by two parameters, P1∗ and R1.

Evolution of these quantities with kmax is described by Eq. (23) (Figs. S3, S4 and S7).

(III) The intensity of stress relaxation increases with relaxation time trel and decreases with

elongation ratio kmax at which the test is conducted (Figs. S5, S6 and S8).

3.3 The Mullins effect

The ability of the model is now verified to describe observations in multi-cycle tensile tests with two

deformation programs: (i) oscillations between fixed maximum elongation ratio under stretching

kmax and minimum stress under retraction σmin, and (ii) oscillations with monotonically increasing

maximum elongation ratios kmaxn and a fixed stress under retraction σmin.

We begin with the analysis of observations on poly(acrylamide-alginate) (AAm-Alg) gel [59].

The gel was synthesized by cross-linking photo-polymerization (1 h under UV light) of AAm

monomers (12 wt.%) in an aqueous solution of Alg powder (2 wt.%) in the presence of calcium

sulphate CaSO4 · 2H2O slurry (13.28 wt.% of Alg) as an ionic cross-linker for Alg, BIS (0.06 wt.%

of AAm) as a covalent cross-linker for AAm, ammonium persulphate (APS) as an initiator, and

TEMED (0.25 wt.% of AAm) as an accelerator. The double-network structure is formed by cova-

lently cross-linked AAm chains (the first network) and ionically cross-linked Alg chains (the other

network).

Tensile tests were conducted on as-prepared specimens with degree of swelling Q0 = 6.1. The

experimental program involves (i) loading–unloading tests with strain rate ε̇ = 0.033 s−1 and

various maximum elongation ratios kmax ranging from 4 to 13, and (ii) a multi-cycle test, in which

a sample is stretched with strain rate ε̇ = 0.033 s−1 up to elongation ratio kmax 1 = 7, unloaded

down to the zero tensile stress, and reloaded up to elongation ratio kmax 2 = 13. Observations in

the loading–unloading tests are depicted in Fig. 9 and those in the multi-cycle test are reported in

Fig 10.

Matching experimental data in Fig. 9 is performed by means of the algorithm described in Sect.
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3.2. Calculations show that each retraction path of the stress–strain diagrams in Fig. 9 is uniquely

determined by the only parameter P1∗ (R1 remains independent of kmax). Evolution of P1∗ with

maximum elongation ratio is illustrated in Fig. S9, where the data are approximated by Eq. (23).

The best-fit material constants are collected in Tab. S6.

Keeping in mind that observations in Fig. 10 deviate slightly from those in Fig. 9, each set of

data is approximated separately. Material constants determined by fitting observations along the

first cycle of loading–retraction in Fig. 10 are listed in Tab. S6. The difference between the two

sets of data in Tab. S6 is relatively small (for example, 7% for G and 11% for a), which confirms

that the proposed algorithm for matching observations is stable.

We proceed with the analysis of observations on poly(N -isopropylacrylamide) (NIPA) gel rein-

forced with nanoclay (NC) Laponite XLG [54]. The gel was synthesized by photo-polymerization (2

h under UV light) of NIPA monomers (11 wt.%) in an aqueous dispersion of NC (5 wt.%) by using

α-ketoglutaric acid (0.22 wt.%) as a photo-initiator. The double-network structure involves entan-

gled NIPA chains connected to clay platelets by physical bonds (the first network) and exfoliated

clay platelets bridged by electrostatic interaction (the other network).

Mechanical tests were conducted on as-prepared specimens with degree of swelling Q0 = 6.2.

The experimental program involves: (i) a series of loading-unloading tests with strain rate ε̇ = 0.01

s−1 and maximum elongation ratios kmax ranging from 4 to 16, (ii) multi-cycle tests with the

same strain rate, increasing maximum elongation ratios kmax 1 = 4, kmax 2 = 8, kmax 3 = 12.5 and

minimum stress under retraction σmin = 1 kPa, and (iii) a multi-cycle test (3 cycles) with the strain

rate ε̇, maximum elongation ratio kmax = 4 and minimum stress σmin = 1 kPa.

Experimental data in the loading–unloading tests are depicted in Fig. 11, observations in the

multi-cycle tests with increasing kmaxn are reported in Fig 12, and those in the multi-cycle test

with a fixed kmax are presented in Fig. 13. As experimental data under stretching do not coincide

in these figures, each set of data is approximated separately by means of the algorithm suggested

in Sect. 3.2. Adjustable parameters found by fitting observations are collected in Tab. S7.

Analysis of experimental data under retraction demonstrates that each unloading path in Figs.

10 to 12 is uniquely determined by the only parameter P1∗ (R1 is independent of kmax). Changes

in P1∗ with kmax are illustrated in Fig. S10. The data are reported for all observations together

with approximation of the corresponding dependence in Fig. 10 by Eq. (23).

Matching observations in Figs. 11 and 12 shows that each reloading path is uniquely determined

by two parameters, P2∗ and β2 (R2 is independent of deformation history). Changes in P2∗ and
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β2 with kmin (the elongation ratio at the instant of transition from unloading to reloading) are

demonstrated in Fig. S11, where the data are depicted together with their fit by Eq. (24).

Figs. S10 and S11 show that evolution of parameter P1∗ with maximum elongation ratio per

cycle kmax and evolution of parameters P2∗ and β2 with minimum elongation ratio per cycle kmin

are practically independent of the deformation program.

To demonstrate the ability of the model to predict the response of DN gels under multi-cycle

deformation, simulation is conducted of the governing equations with the material constants deter-

mined by matching observations in Fig 11B. Two deformation programs are considered: (i) with

fixed maximum elongation ratio and the zero minimum stress, and (ii) with monotonically increas-

ing elongation ratios under loading and the vanishing stress under retraction. Results of numerical

analysis are reported in Figs. 14 and 15.

Stress–strain diagrams for multi-cycle (10 cycles) deformations with kmax = 4 and 6 are pre-

sented in Fig. 14. This figure reveals that (i) the maximum stress per cycle σmax decreases with

number of cycles n, (ii) the minimum elongation ratio per cycle kmin increases with n, (iii) these

parameters tend to their ultimate values with an increase in n, (iv) the rates of changes in σmax

and kmin with n grow with kmax. These conclusions are in agreement with observations reported

in [34, 35, 36].

Results of simulation for two multi-cycle programs (3 and 4 cycles) with monotonically increas-

ing kmaxn are reported in Fig. 15. This figure shows that (i) when elongation ratio k exceeds the

maximum elongation ratio kmaxn at the previous cycle of deformation, the stress–strain diagram

under reloading reaches rapidly that under tension of a virgin sample (the Mullins effect), (ii) when

the maximum elongation ratios coincide for two deformation programs, the corresponding retrac-

tion paths coincide as well (fading memory of deformation history). These results are in accord

with experimental data presented in [37, 38, 39].

An advantage of our constitutive equations compared with the model developed in [41] (where

observations on NIPA-NC gel were analyzed) consists in (i) the account for the time-dependent

behavior and (ii) the ability to predict the response in multi-cycle tests with arbitrary elongation

ratios at which the strain rate changes its sign.

The following conclusions are drawn:

(I) The model describes correctly multi-cycle deformation of DN gels (Figs. 10, 12, 13).

(II) Dissipative plastic flow under retraction and reloading is governed by Eqs. (23) and (24)

(Figs. S10 and S11).
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(III) The model provides reasonable predictions for the mechanical response in multi-cycle

tests with one deformation program when its parameters are determined by fitting observations in

experiments with another program (Figs. 14 and 15).

3.4 Damage accumulation under cyclic loading

In majority of experimental studies on DN gels subjected to multi-cycle tensile deformation, unload-

ing of samples is conducted down to the zero strain (not zero stress). As a result, the stress–strain

diagrams contain intervals with negative (compressive) stresses. Under compression, the samples

are buckled [27], which leads to damage accumulation in the gels. Our purpose is to assess appli-

cability of the model to the analysis of stress–strain curves on the damaged samples.

We study the mechanical response of poly(acrylamide–co-2-acrylamido-2-methyl propane sul-

fonic acid) (AAm–AMPS) gel reinforced with zirconium hydroxide Zr(OH)4 nanoparticles (NP)

[52]. The gel was prepared by free radical copolymerization (72 h at room temperature) of AAm

and AMPS monomers (molar fraction of monomers 2 M, molar ratio 7:3) in colloidal solution (6

wt.%) of NP (average diameter 10 nm) by using KPS as an initiator (0.45 wt.% of monomers)

and TEMED (3.6 µL per gram of monomers) as a catalyst. According to [52], the double-network

structure is formed by entanglements between polymer chains (the first network) and hydrogen

bonds between sulfonyl hydroxide groups of AMPS chains and hydroxyl groups on the surfaces on

NP (the other network).

Mechanical tests were performed on fully swollen specimens with a non-specified degree of

swelling. The experimental program involves: (i) a series of loading-unloading tests with strain

rate ε̇ = 0.005 s−1 and maximum elongation ratios kmax ranging from 2 to 4, and (ii) a multi-cycle

test (5 cycles) with the same strain rate, maximum elongation ratio kmax = 4 and unloading down

to the zero strain.

Experimental data in the loading–unloading tests are depicted in Fig. 16, and those in the multi-

cycle test are reported in Fig 17. Keeping in mind that the data along the first cycle of loading–

retraction do not coincide, each set of observations is approximated separately. The adjustable

parameter are listed in Tab. S8, which shows that discrepancies between their values are rather

small.

Each unloading path in Fig. 16 is uniquely determined by two parameters, P1∗ and R1. Evolu-

tion of these quantities with kmax is illustrated in Fig. S12, where the data are reported together

with their approximations by Eq. (23). Fitting of observations in Fig. 17 shows that parameters
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P1∗ and R1 (that characterize each retraction path in this figure) remain independent of n. Their

values are reported in Tab. S8.

Each set of observations along reloading paths in Fig. 17 is approximated separately. In the

fitting procedure, we suppose that unloading occurs down to the stress σmin = −0.03 MPa (this

value is chosen from the best-fit condition) and disregard buckling of samples under compression.

The quantities P2∗ and R2 are found by matching the first reloading path (n = 2). After fixing their

values, the other paths are approximated with the help of the only parameter β2. The dependence

of this quantity on number of cycles n is illustrated in Fig. S13. The data are approximated by

the equation

log β2 = β02 − β12n, (25)

where the coefficients are determined by the least-squares method.

It is worth noting that the values of P2∗, R2 and β2 under reloading have the same order of

magnitude for all materials under consideration: P2∗ = 2.3 · 10−8 for AAm-Alg gel, 7.0 · 10−8 for

AAm–AMPS–NP gel, and from 9.0 · 10−8 to 2.3 · 10−7 s−1 for NIPA-NC gel; R2 = 1.2 · 103 for

AAm–AMPS–NP gel, from 2.9 · 103 to 4.5 · 103 for NIPA-NC gel, and 1.2 · 104 for AAm-Alg gel;

β2 = 19 for AAm–AMPS–NP gel, 52 for AAm-Alg gel, and from 59 to 119 MPa−1 for NIPA-NC

gel.

To demonstrate the ability of the model to predict observations, numerical analysis is performed

of the mechanical behavior of AAm–AMPS–NP gel under multi-cycle (20 cycles) deformation with

kmax = 4 and σmin = 0. Results of simulation are depicted in Fig. 18. Fig. 18A shows the entire

stress–strain diagram, and Fig. 18B demonstrates the decay in maximum stress per cycle σmax

with number of cycles n. The latter dependence is in accord with observations reported in [73, 74].

The following conclusions are drawn:

(I) The model can be applied to the analysis of observations on DN gels subjected to multi-cycle

deformation accompanied by buckling-induced damage (Fig. 17).

(II) Eq. (25) provides a simple way to account for damage accumulation induced by buckling

of samples under compression (Fig. S13).

(III) The approach grounded on Eq. (25) leads to reasonable predictions of the response in

multi-cycle tests (Fig. 18).

Approximation of observations in mechanical tests implies that κ < 1 for all DN gels under

consideration (Tabs. S1 to S8). This means that some junctions between chains are treated as

permanent even when the gels are synthesized without covalent cross-links. This is not surprising
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for two reasons: (i) the rate of reptation of chains is strongly reduced due to the presence of

temporary bonds, which implies that some entanglements remain ineradicable, and (ii) to avoid

evaporation of water from hydrogels, the duration of mechanical tests does not exceed a few minutes,

which means that physical junctions whose characteristic time for rearrangement exceed this time

should be considered as permanent.

4 Concluding remarks

A constitutive model is developed for the viscoelastic and viscoplastic behavior of DN gels with

covalent and non-covalent bonds. The equivalent polymer network in a gel is treated as a combi-

nation of two networks: chains in the first network are linked by permanent junctions, while chains

in the other network are bridged by temporary bonds.

The viscoelastic response of a gel reflects breakage and reformation of temporary junctions

in the transient network (transition of chains connected by physical bonds from their active to

dangling state and vice versa). To describe observations in relaxation tests and tensile tests with

various strain rates, the transient network is presumed to be inhomogeneous and composed of

meso-regions with different rates for rearrangement of junctions. This approach allows the entire

relaxation spectrum to be accounted for in terms of a distribution function for meso-regions with

various activation energies for breakage of temporary bonds.

The viscoplastic behavior of a gel reflects slippage of junctions in the permanent network with

respect to their reference positions. Motion of a junction starts when the junction becomes unbal-

anced due to transformation of one of the chains connected by this junction from its active state

into the dangling state (which means that stress in this chain vanishes suddenly). The junction

proceeds to slide with respect to the network (plastic flow) until it reaches a new equilibrium state.

The characteristic feature of the model is the presence of two mechanisms for plastic defor-

mation: (i) non-dissipative, when junctions slide with respect to their initial positions with the

rate proportional to the strain rate, and (ii) dissipative with the rate of sliding determined by the

energy of inter-chain interaction. The kinetics of dissipative plastic flow under cyclic deformation is

governed by differential equations with coefficients adopting different values under the first loading,

retraction and reloading.

The model is applied to approximate experimental data in tensile tests with various strain rates,

relaxation tests, loading-unloading tests, and multi-cycle tests with two deformation programs on
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a series of DN gels with covalent and non-covalent bonds. Numerical simulation demonstrates

that (i) experimental stress–strain diagrams are described adequately by the governing equations,

(ii) material parameters evolve consistently with experimental conditions (maximum elongation

ratio under stretching and minimum elongation ratio under retraction), and (iii) predictions of

the model are in quantitative (where sufficient data are provided) and qualitative agreement with

observations.

Although the model can be employed for the analysis of the mechanical behavior of DN gels

under arbitrary three-dimensional deformations, this paper focuses on observations in tensile tests

with strain-controlled programs and relatively small number of cycles. We believe that after an

appropriate modifications, the model can be applied for the analysis (i) of the viscoelastic and

viscoplastic responses of these gels under multiaxial deformation, (ii) the kinetics of their self-

healing and self-recovery [75], as well as (iii) for the assessment of their life-time under fatigue

conditions [76].
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Figure 1: A: Tensile stress σ versus relaxation time trel. Circles: experimental data [27] in

relaxation test with kmax = 1.1 and strain rate under loading ε̇ = 0.2 s−1. Solid line: results

of simulation. B: Tensile stress σ versus elongation ratio k. Symbols: experimental data [27]

in tensile tests with various strain rates ε̇ s−1. Solid lines: results of simulation.

Figure 2: Tensile stress σ versus elongation ratio k. Symbols: experimental data [27] in cyclic

tests with kmax = 1.3, strain rates under loading ε̇1 = 0.01 s−1 (A) and ε̇1 = 0.3 s−1 (B), and

various strain rates under retraction ε̇2 s−1. Solid lines: Predictions of the model.

Figure 3: A: Tensile stress σ versus elongation ratio k. Circles: experimental data [51] on DMA-

NP gel in cyclic test with strain rate ε̇ = 0.06 s−1 and maximum elongation ratio kmax = 6.

Solid line: results of simulation. B: Ratio of tensile stresses S = σ(trel)/σ(0) versus relaxation

time trel. Circles: experimental data [51] on DMA-NP gel in relaxation test with kmax = 1.5

and strain rate under stretching ε̇ = 0.06 s−1. Solid line: results of simulation.

Figure 4: A: Tensile stress σ versus elongation ratio k. Circles: experimental data [53] on

DMA-NC gel in cyclic test with strain rate ε̇ = 0.005 s−1 and maximum elongation ratio

kmax = 6. Solid line: results of simulation. B: Tensile stress σ versus relaxation time trel.

Circles: experimental data [53] on DMA-NC gel in relaxation test with kmax = 2 and strain

rate under stretching ε̇ = 0.5 s−1. Solid line: results of simulation.

Figure 5: Tensile stress σ versus elongation ratio k. Symbols: experimental data [55] on AAm–

AAc–ODA gel in cyclic tests with strain rate ε̇ = 0.083 s−1 and various maximum elongation

ratios kmax. Solid lines: results of simulation.

Figure 6: Tensile stress σ versus elongation ratio k. Symbols: experimental data [56] in cyclic

tests on AAm–AAc–SMA gel with strain rate ε̇ = 0.167 s−1 and various maximum elongation

ratios kmax. Solid lines: results of simulation.

Figure 7: Tensile stress σ versus elongation ratio k. Symbols: experimental data [57] in cyclic

tests on AAm–DGI gel (0.13 M of DGI) with strain rate ε̇ = 0.005 s−1 and various maximum

elongation ratios kmax. Solid lines: results of simulation.

Figure 8: Tensile stress σ versus elongation ratio k. Circles: experimental data [57] in cyclic test

on AAm–DGI gel (0.1 M of DGI) with strain rate ε̇ = 0.005 s−1 and maximum elongation
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ratio kmax = 5. Solid line: results of simulation.

Figure 9: Tensile stress σ versus elongation ratio k. Symbols: experimental data [59] on AAm-

alginate gel in cyclic tests with strain rate ε̇ = 0.033 s−1 and various maximum elongation

ratios kmax. Solid lines: results of simulation.

Figure 10: Tensile stress σ versus elongation ratio k. Symbols: experimental data [59] on AAm-

alginate gel in multi-cycle test with strain rate ε̇ = 0.033 s−1 and maximum elongation ratios

kmax 1 = 7, kmax 2 = 13. Dotted line: results of simulation for tensile test. Solid line: results

of simulation for multi-cycle test.

Figure 11: Tensile stress σ versus elongation ratio k. Symbols: experimental data [54] in cyclic

tests on NIPA-NC gel with strain rate ε̇ = 0.01 s−1 and various maximum elongation ratios

kmax. Solid lines: results of simulation.

Figure 12: Tensile stress σ versus elongation ratio k. A: Symbols: experimental data [54] in cyclic

test on NIPA-NC gel with ε̇ = 0.01 s−1, kmax 1 = 4, kmax 2 = 8 and σmin = 1.4 kPa. Dotted

line: results of simulation for tensile test. Solid line: results of simulation for the multi-cycle

test. B: Symbols: experimental data [54] in cyclic with ε̇ = 0.01 s−1, kmax 1 = 4.2, kmax 2 = 8.2,

kmax 3 = 12.5. Dotted line: results of simulation for one-cycle test with kmax = 12.5. Solid

line: results of simulation for the multi-cycle test.

Figure 13: Tensile stress σ versus elongation ratio k. Symbols: experimental data [54] on NIPA-

NC gel in multi-cycle test with n = 3, ε̇ = 0.01 s−1, kmax = 4 and σmin = 1.0 kPa. Solid line:

results of simulation.

Figure 14: Tensile stress σ versus elongation ratio k. Solid lines: results of numerical simulation

for multi-cycle tests on NIPA-NC gel with n = 10, ε̇ = 0.01 s−1 and σmin = 0. A: kmax = 4.

B: kmax = 6.

Figure 15: Tensile stress σ versus elongation ratio k. Solid lines: results of numerical simulation

for multi-cycle tests on NIPA-NC gel with ε̇ = 0.01 s−1 and σmin = 0. A: n = 3, kmax 1 = 5,

kmax 2 = 9, kmax 3 = 13. B: n = 4, kmax 1 = 4, kmax 2 = 7, kmax 3 = 10, kmax 4 = 13.

Figure 16: Tensile stress σ versus elongation ratio k. Symbols: experimental data [52] in cyclic

tests on AAm–AMPS–NP gel with strain rate ε̇ = 0.005 s−1 and various maximum elongation

ratios kmax. Solid lines: results of simulation.
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Figure 17: Tensile stress σ versus elongation ratio k. Symbols: experimental data [52] on AAm–

AMPS–NP gel in multi-cycle test with n = 5, ε̇ = 0.005 s−1, σmin = −0.03 MPa and kmax = 4.

Solid lines: results of simulation.

Figure 18: A: Tensile stress σ versus elongation ratio k. B: Maximum stress per cycle σmax

versus number of cycles n. Solid line and circles: results of simulation for multi-cycle test on

AAm–AMPS–NP gel with n = 20, ε̇ = 0.005 s−1, σmin = 0 and kmax = 4.
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Mechanical response of double-network gels with dynamic bonds under

multi-cycle deformation

A.D. Drozdov, J. deC. Christiansen

• A model is derived for the behavior of DN gels under multi-cycle deformation.

• Good agreement is revealed between observations and results of numerical analysis.

• The ability of the model to predict the Mullins effect is confirmed by simulation.


