

Aalborg Universitet

Transformation of Business Process Model and Notation models onto Petri nets and
their analysis

Mutarraf, Muhammad Umair; Barkaoui, Kamel ; Li, Zhiwu; Wu, Naiqi; Qu, Ting

Published in:
Advances in Mechanical Engineering

DOI (link to publication from Publisher):
10.1177/1687814018808170

Creative Commons License
CC BY 4.0

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Mutarraf, M. U., Barkaoui, K., Li, Z., Wu, N., & Qu, T. (2018). Transformation of Business Process Model and
Notation models onto Petri nets and their analysis. Advances in Mechanical Engineering, 10(12), 1-21.
https://doi.org/10.1177/1687814018808170

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1177/1687814018808170
https://vbn.aau.dk/en/publications/031179d7-1598-49d8-be8a-8be6dfc9354c
https://doi.org/10.1177/1687814018808170

Advanced Production Planning, Scheduling, Logistics and Control - Research Article

Advances in Mechanical Engineering
2018, Vol. 10(12) 1–21
� The Author(s) 2018
DOI: 10.1177/1687814018808170
journals.sagepub.com/home/ade

Transformation of Business Process
Model and Notation models onto Petri
nets and their analysis

Umair Mutarraf1, Kamel Barkaoui2, Zhiwu Li3,4 , Naiqi Wu3

and Ting Qu5

Abstract
Business Process Model and Notation is known as a widely used standard for business processes modeling. However, its
main drawback is that it lacks formal semantics, leading to some undesirable properties, such as livelocks and deadlocks,
such that it creates models with semantic errors. In order to formally verify them, we need to transform it onto a formal
language, for example, Petri nets. The approach proposed in this article is an extension of previous approaches stated in
the literature by adding probability to gateways and time to transitions. The first aim is to transform the Business
Process Model and Notation process diagram onto Petri nets automatically using a developed software package. The
developed software package is capable of transforming the XML file of a Business Process Model and Notation process
diagram into ‘‘m’’ files of a Petri net. The ‘‘m’’ files of the Petri net are then coupled with the General Purpose Petri Net
Simulator (GPenSIM) for analysis in MATLAB. The second aim is to manually transform the Business Process Model and
Notation process diagram using mapping figures onto Petri nets and then analyze it using Timed Petri Net Analyzer
tools. The advantage of transforming a Business Process Model and Notation diagram automatically is that we can add
time to transitions and probability to gateways. Furthermore, the simulation time can be checked using MATLAB.

Keywords
Business Process Model and Notation, transformation of Business Process Model and Notation, petri net, formal
verification

Date received: 27 February 2018; accepted: 17 September 2018

Handling Editor: Tatsushi Nishi

Introduction

The Business Process Model and Notation (BPMN) is
a modeling tool for capturing business processes.
Standard BPMN offers a power (ability) to figure out
business procedures in a graphical representation.1 It
provides companies with the potentiality of interacting
procedures in a typical mannerism and is widely used
as a tool for business process modeling. In addition,
for simplification and better understanding of colla-
borations and transactions between companies, graphi-
cal notations are used. This notation adopts elements
from a number of previously proposed notations for
business process modeling, including the XML Process

1Department of Energy Technology, Aalborg University, Aalborg,

Denmark
2Department of Informatique (EPN 5), Conservatoire National des Arts

et Métiers, Paris, France
3Institute of Systems Engineering, Macau University of Science and

Technology, Taipa, Macau
4School of Electro-Mechanical Engineering, Xidian University, Xi’an,

China
5School of Electrical and Information Engineering, Jinan University

(Zhuhai Campus), Zhuhai, China

Corresponding authors:

Zhiwu Li, School of Electro-Mechanical Engineering, Xidian University,

Xi’an 710071, China.

Email: zhwli@xidian.edu.cn

Naiqi Wu, Institute of Systems Engineering, Macau University of Science

and Technology, Taipa 999078, Macau.

Email: nqwu@must.edu.mo

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.org/10.1177/1687814018808170
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814018808170&domain=pdf&date_stamp=2018-12-04

Definition Language (XPDL)2 and the activity dia-
grams component of the Unified Modeling Language
(UML).3 A BPMN process model is composed of activ-
ity and control nodes and can be connected in a ran-
dom way.

Several organizations (BPMI, OMG, OASIS, etc.)
have explained a sequence of different standards for
designing, executing, and monitoring business pro-
cesses. These standards can be used either separately or
in combined mode conditional upon the compatibility
between them. With respect to notations, BPMN and
UML are widely used in present. BPMN offers several
advantages over other notations. For example, inte-
grated definition (IDEF),4,5 a family of modeling lan-
guages, does not have resource modeling and control
capabilities and does not cover data objects that are a
kind of resources for business process modeling. UML
emphases on software models, whereas BPMN
emphases on business processes.

However, BPMN shows even more semantic errors6

as it combines graph-oriented features with other char-
acteristics from many other resources, such as work-
flow (WF) patterns and business process execution
language (BPEL).7 These features include the message
flow between processes and execution of sub-processes
in multiple times. The wrong use of BPMN elements
such as OR/XOR-join, AND-join, or an event that
does not permit more than one outflowing arc, and so
on, results in syntactical errors. The correctness of
models, for instance, invalid flow or constructs can be
found syntactically in lesser time using tools such as
Intalio2 and BizAgi1. On the other hand, structural
errors are usually found at the runtime as compared to
syntactical errors that are found while designing using
modeling tools. The structural errors such as wrong use
of split and joins or incorrect combination of elements
are hard to be identified at the runtime due to the
absence of formal semantics of BPMN models. The
ability to statically analyze a BPMN model has become
a desirable feature for tools supporting process model-
ing in BPMN. It is found that semantic errors in a
BPMN model that is occasionally built by a user can
be detected using well-known verification techniques.

The efforts made to semantically analyze a BPMN
model are hindered by uncertainties in it because of lan-
guage complexity and specification of the standard. In
order to formally verify a BPMN model, it is necessary
to use a formal language, such as Petri nets. For exam-
ple, Petri nets have found extensive applications to
industrial systems such as deadlock analysis and solu-
tion,8–10 supervisory control,11–14 implementation15 and
scheduling,16–19 and fault analysis.20–23 As an important
mathematical tool of discrete event systems,24,25 Petri
nets are found to be the most suitable language to do
such analyses due to the availability of many existing
analysis tools. However, a mapping between BPMN

and Petri nets can be defined for semantic analysis in
order to check the correctness of a BPMNmodel.

Moreover, the addition of firing times to the transi-
tions and probability appended to the exclusive, inclu-
sive gateway, and event-based gateway will introduce
an additional feature for modeling business processes.
Firing delay is the amount of elapse time between the
enabling and firing of a transition. Adding firing time
to a BPMN diagram can be done by adding annota-
tions as they do not have any effect on the model.
Upon transformation, annotations are discarded and
time will be added to the transitions. Hence, the associ-
ated transitions are timed transitions. In BPMN, prob-
ability can be added to the sequence flows of gateways
and upon transformation into Petri nets, the probabil-
ities are added for all the outcoming paths. Moreover,
the statistical information is required for adding the
probability. This statistical information can be useful
for gateways, such that the probability of all the out-
coming paths can be determined. For example, in
online shopping website, availability of statistical infor-
mation will help determine the client opening a typical
product to be prompted for one of the related products.

Contribution of this work

BPMN is a widely used standard for modeling business
processes. The current version BPMN 2.0 is quite com-
prehensive. However, a major drawback of BPMN is
the lack of verification techniques. In this article, we aim
at solving the problems found in the existing works26–33

by transforming BPMN onto Petri nets. Our approach
integrates the ideas in previous works30–44 to present a
novel method of transforming BPMN elements (i.e.
events, gateways, activities, pools, connecting objects,
and lanes) onto equivalent Petri net elements. The major
contributions of this article can be stated as follows:

� We propose a method for mapping a large num-
ber of subset elements in BPMN onto Petri nets.

� We present two methods for mapping: an auto-
matic method and a manual method. For the
automatic method, we develop a software pack-
age that can transform an XML file of BPMN
models onto ‘‘m’’ files of Petri nets.

� We propose an addition of probability to the
inclusive, exclusive, and event-based gateway.
Moreover, time delays are added to the
transitions.

� Experimental examples show that the proposed
method can transform a large BPMN model
onto an equivalent Petri net model for analysis.

In transforming a large number of subsets of BPMN
elements onto Petri nets, the following subsets are
included: events, activities, gateways, artifacts, swim

2 Advances in Mechanical Engineering

lanes, and connecting objects. Furthermore, the map-
ping can be done either manually or automatically. In
the manual method, each element of a BPMN model is
transformed into an equivalent Petri net element
according to the mapping figures. The transformed
Petri net is then analyzed in Timed Petri Net Analyzer
(TINA). The automatic method fetches the XML file
of a BPMN model and transforms it into an ‘‘m’’ file of
Petri nets. The m file of Petri nets is fed into GPenSIM
in MATLAB for analysis. In the transformation of the
XML file of a BPMN model into an ‘‘m’’ file of Petri
nets, time and probability are considered in this
method. Finally, comparison of the number of elements
in both the BPMN and its equivalent Petri net is pro-
vided. The time taken for simulating the obtained ‘‘m’’
file of the Petri net model in the GPenSIM tool is
recorded to be low.

Article organization

The remaining of this article is organized as follows.
Section ‘‘Literature review’’ introduces the background
of both BPMN and Petri nets. The mapping of activi-
ties, events, gateways, and swim lanes onto Petri nets is
discussed in section ‘‘Preliminary background.’’ Section
‘‘Mapping BPMN elements onto Petri nets’’ describes
the development of the BPMN framework and its basic
modules and introduces tools used for analysis. The
experimental studies are done using two examples to
demonstrate the proposed method in section
‘‘Development of BPMN framework for analysis.’’
Finally, related work is briefly discussed in section
‘‘Experimental studies’’ and section ‘‘Conclusion and
future work’’ concludes this study and provides future
research.

Literature review

In this section, we briefly review the languages other
than BPMN which are transformed into Petri nets and
the techniques used for analysis of business process
models.

The execution and effective design of business pro-
cesses are becoming progressively significant to present
business organizations. The basic organization need is
to constantly redesign its business processes on daily
basis such that its operation practices are aligned with
the change in business requirements, which has been
acknowledged for decades.45 It is vital that changes in
business processes are understood well and then repre-
sented systematically such that their influences are
clearly defined. In order to understand well, there is an
utmost need to create business process models.46 These
models basically illustrate present or future organiza-
tional behavior in order to achieve several purposes,
for instance, the monitoring and control of process

execution. The fast-growing use of business process
modeling necessitates that the activities should be car-
ried out systematically in order to increase productiv-
ity, efficiency, and consistency.47 During past decades,
it was recommended to develop more systematic and
flexible approaches to design business processes.48,49

Levitt was the first who pointed out the significance of
business processes in 1960s, and later on, researchers
such as Harrington,50 Davernport,51 and Hammer52

promoted its new perspective. The rapid increase in
popularity of business processes has brought forth a
promptly growing number of modeling techniques,
methodologies, and tools for its support.53 Hence, the
selection of precise technique has become quite com-
plex due to availability of large range of approaches.
The first step before constructing any model is to iden-
tify its use and the purpose to select the right
technique.

Kettinger et al.54 present an overview of methods,
tools, and modeling techniques utilized in Business
Process Reengineering (BPR). Although the authors
neither provide detailed description of tools nor the
techniques, it has been the starting point of research.
Phalp and Martin55 differentiate between two benefits
of business process models: one for restructuring busi-
ness processes and the other for software development.
In the work by Phalp,56 the former purpose is described
by arguing that pragmatic approaches are typically
concerned with understanding and capturing business
processes, whereas rigorous paradigms are mostly uti-
lized for analysis of the process. Furthermore, for the
analysis of business processes, it is mandatory to have
proper sophisticated mechanism that includes both
functional and dynamic aspects than qualitative analy-
sis of static models. The user requires a model that can
provide more interaction such as simulation to analyze
business processes. Hence, approaches that are easily
understandable and have diagrammatic notation such
as BPMN, EPC, BPEL, and YAWL are selected in
order to represent business processes.57 The languages
which are used other than BPMN for transformation
onto Petri nets are EPC, BPEL, and YAWL. The first
modeling technique besides BPMN is Event-driven
Process Chains (EPCs). The main constraints in it are
functions, events, and logical connectors.58 Events are
transformed onto Petri nets as places, whereas func-
tions are modeled by transitions. In this setup, the main
drawback is that the set of connectors are limited.

An XML-based language, that is, BPEL, is used to
define business processes within web services. The fore-
most objective of BPEL is the standardization of for-
mat, such that companies can work and communicate
with each other using web services. It includes activi-
ties, partner links, and variables. The formal semantics
for BPEL has been proposed by several groups, among
them the existing approaches are relied on finite state

Mutarraf et al. 3

machine,59,60 abstract state machine,61,62 and process
algebras.63 Most of the approaches do not provide pro-
vision to BPEL’s most important features such as com-
pensation, fault, and event handling. However, Petri
nets provide much wider aspect especially for
computer-aided verification purposes. In the work by
Hinz et al.,64 the authors considered Petri nets seman-
tics for BPEL and established that the semantics is well
suitable for computer-aided verification purposes. The
study by Van Der Aalst and Ter Hofstede65 developed
a Yet Another Workflow Language (YAWL) based on
WF patterns, where objects and tasks are used to
model control flow aspects. The main advantage of
YAWL is that it supports the following features: OR
operations, AND operations, split and joint operations.
For semantic analysis of a BPMN model, Dijkman
et al.26 focused on the control flow prospective only
and did not include features such as artifacts, lanes,
and pools. The study by Wong and Gibbons27 used
communicating sequential processes (CSP) as the for-
mal language that can be semantically checked by a
tool called FDR.28 By this method, BPMN models are
mapped onto CSP events, and processes and the rela-
tion between tasks are described via CSP events. The
resulting CSP models are complex and their size is
huge. Moreover, this mapping cannot preserve the
structure of a BPMN model. In addition, no explana-
tion is presented for how the errors of a BPMN model
can be detected through CSP semantics.

Puhlmann and Weske29 presented a tool to analyze
business models statically. By their method, very few
subsets of elements of BPMN are mapped onto calcu-
lus. The main feature of BPMN, that is, error handling,
is ignored in it. Soundness can be checked by calculus
expressions. Experimental studies show that this
method cannot cope with large models (more than 10
nodes). Dijkman and Van Gorp30 defined a subset of
BPMN (Ver. 2.0) elements formally with regard to
graph rewrite rules. They showed that execution rules
formally defined in this method are simple because they
can be stated graphically. Using graph rewriting tools,
formal semantics can be directly used in execution of
models which were created in the BPMN. The issue of
their approach was that resource and data aspects are
ignored, and the provided semantics is least suitable for
verification of process correctness. Raedts et al.’s31

study presented a BPMN model which is automatically
transformed onto Petri nets and is analyzed using any
of the following tools: Yasper, INA, LoLA, and
Woflan. The Petri nets can be automatically trans-
formed onto a process algebraic language (mCRL2).
The limitations of this method include the following:
(1) few elements (gateways) are formally defined in the
transformation, that is, AND and XOR gateways and
(2) the method ignores the use of time and probability
to the transitions.

Ramadan et al.32 proposed formal semantics for
business process models by mapping BPMN onto
Colored Petri Nets (CPN). The proposed mapping is
then used for the validation of process models.
Koniewski et al.33 proposed the use of Petri nets and
BPMN formalism for building the models of multimo-
dal logistic chains. First, logistics operations related to
business processes are defined and then are represented
in BPMN. The model is transformed into several Petri
net phases. After that, for every single net, a single
phase of complicated multimodal logistic chain is
defined. The proper union of these nets forms a simula-
tion model. In the work by Wong and Gibbons,41

BPMN semantics is defined using CSP and refinement
procedure is defined for property checking. However,
the work by Wong and Gibbons41 does not display
how the data are modeled and how to detect several
sort of errors using CSP semantics. The study by El-
Saber and Boronat66 formulates a subset of BPMN in
Maude but does not consider multiple instances and
cancelation of sub-process. Furthermore, no tool was
provided to automatically generate Maude description
from BPMN models. Roa and colleagues67,68 illustrate
an approach focusing on anti-patterns in order to ver-
ify a block-structured collaborative business model
defined in UP-ColBPIP language. The proposed
approach covers numerous complex control flows but
it has limitation in identifying constructs such as sub-
processes, cancelation of instances, data object, and
dynamic multiple instances. Furthermore, it is claimed
that their approach can be utilized for BPMN language
as well. In the work by Kheldoun et al.,69 formal
semantics of BPMN is proposed using recursive Petri
nets and rewrite logic. In the obtained formalism, a
large number of subsets of BPMN elements including
multiple instantiation, cancelation of sub-processes,
and exceptional behaviors are covered, by which
Maude LTL model checker can be used to verify beha-
vioral properties of BPMN processes.

Preliminary background

In the section, we will briefly discuss BPMN and Petri
nets.

BPMN

BPMN offers a graphical representation for modeling
business processes. It is somehow similar to the UML.
It was first implemented in 2006 by Object
Management Group, and its latest version is 2.0. It is a
kind of languages with a huge pool of object types to
denote features of business processes, including control
flow, resources, data, and exceptions.

BPMN is generally designed for exhibiting business
processes at the theoretical level. Several categories of

4 Advances in Mechanical Engineering

elements in BPMN exist. Flow objects, Swim lanes,
connecting objects, and artifacts are among them.
There are many types of elements in each category.
Flow objects are used to represent the control flow fea-
tures of a business process with three types of elements,
that is, activities, gateways, and events. Moreover, con-
trol flow objects can be connected via sequence flows,
and directed arcs are used to connect two objects for
indicating the control flow.

The set of events in BPMN is shown in Figure 1 and
is briefly introduced as follows. A start event presents
the start of a process, while an end event specifies the
ending of a process. An intermediate event indicates
the occurrence of an event during a process. A message
event is triggered when a message is received. A timer
event is triggered when a particular date or time is
reached. Finally, an error event is started when an error
is detected during a process.

There are two types of activities: tasks and sub-
processes. A task is modeled as an activity when a work
is going to be performed within a process. A sub-
process is composed of multiple tasks and there is a
flow between these tasks. Gateways are used to model
merging and diverging of sequence flows. An exclusive
gateway indicates that only one outbound sequence is
performed. Its purpose is to join several diagrams into
one or divide one into several. A parallel gateway

presents the outbound activities that are performed in
parallel. More than two output flows are modeled via
complex gateways.

BPMN elements are connected with each other via
flows. Messages are exchanged between different pools
via message flows, whereas control flow objects are
linked through sequence flows. Artifacts are linked
with each other via associations. Different members are
disjointed from each other with a pool. An organiza-
tion is usually represented by a pool. It can either be
empty or have some processes. Lanes split activities in
a pool from each other. Artifacts in a BPMN model
are used to present new information to a user. Data
objects are one of the artifacts which are used for dis-
playing information. Basically, they do not affect the
process but instead they provide extra information to
the operator. Group does not have any effect on a pro-
cess either and is used to categorize similar activities
into a group. Finally, annotations deliver extra infor-
mation to a user. BPMN is implemented in many soft-
ware tools, among which are Oracle BPMN studio,70

Intalio,71 Signavio Process Editor,72,73 and so on.

Petri nets

The old-fashioned control theory works for time-driven
systems, that is, systems of synchronous and continuous

Figure 1. BPMN elements.

Mutarraf et al. 5

discrete variables, modeled by difference or differential
equations. Due to an extension in the scope of control
theory into the areas of robotics, manufacturing, com-
munication and computer networks, there is an increas-
ing demand for several models having the capability of
describing systems that evolve in accordance with the
abrupt occurrence, at possibly unknown irregular inter-
vals of physical events. Such systems whose states are
symbolic or logical, instead of numerical values that
vary in reaction to events, are called discrete event sys-
tems and their corresponding models are called discrete
event models.

As a mathematical and graphical tool for modeling
DEDS (discrete event dynamics systems), Petri nets are
suitable for modeling concurrent systems.74 Petri nets
have found their extensive applications to supervisory
control of discrete event systems75–78 and further in
previous works.79–81 This feature makes Petri nets a
successful candidate for defining semantics of BPMN
models in a formal way. Theoretically, Petri nets have
become quite strong since numerous tools have been
established for their analysis during the past several
decades.

A Petri net is a bipartite-directed graph composed of
places and transitions, where arcs are used to connect a
transition to a place or vice versa, but it is not possible
to connect the same type of nodes, that is, transition to
transition, or place to place. Places are usually repre-
sented by circles and transitions are represented as rec-
tangles. Tokens are placed in places and tokens
represent the things that will flow through the system.

Definition 1. A Petri net is a 4-tuple N =P, T ,F,V ,20–
25,82–84 graphically represented by a bipartite graph,
where

� P and T are finite sets of places and transitions,
respectively.

� P [T 6¼ ; and P \ T = ;.
� Flow relation F � (P 3 T) [(T 3 P) is the set of

arcs.
� V is a weight function:

V 2 ½F ! N
+ = f1, 2, . . .g�.

Basic elements of a Petri net contain places,
transitions, and arcs. Place p is said to be an input place
of transition t if there is a directed arc from p to t.
Place p is said to be an output place of transition t if
there is a directed arc from t to p. �t is used to denote
the set of input places of transition t, whereas t�

denotes the set of output places of transition t. In a
similar way, �p denotes the set of input transitions of
place p, whereas p� denotes the set of output transitions
of place p.

Definition 2. A marking of Petri net N =P, T ,F,V is a
mapping from P to N=N

+ [0f g, where M(p) repre-
sents the number of tokens in place p.

Definition 3. A marked Petri net is a tuple and is denoted
as (N ,Mo), where N represents the Petri net and Mo is
the initial marking of N.

Definition 4. (WF nets). A Petri net N =P, T ,F,V is said
to be a workflow (WF) net85 if

� N includes two distinct places s and f such that
s is a source place while f is a sink place, that is,
�s = ; and f�= ;.

� If a transition t� is added into it such that f 2 �t�
and s 2 t��, then the resulting net is strongly
connected.

In our case, we focus on an important consistency
property called n-soundness. It means the proper termi-
nation of the n-cases execution and the lack of tasks or
conditions which do not contribute to the processing of
cases.

We denote the initial markings as n � s and final
markings as n � f where n represents n cases (n 2 N).

Definition 5. (Soundness). A WF net (N , n � s) with N
being a Petri net carrying n cases, M being a marking,
and ½Mi being the marking set, is sound83 if

8M 2 ½n � si, n � f 2 ½Mi

� For all states Ms that are reachable from the ini-
tial marking with a firing sequence which leads
from a state M to the final marking

8M 2 ½n � si,M(f)øn) M = n � f

� The last state is the only reachable state starting
from the initial state with n tokens in place f

8t 2 T , 9M 2 ½n � si : M ½ti

� Finally, there should be no dead transitions in
(N , n � s).

Mapping BPMN elements onto Petri nets

BPMN and Petri nets are completely different stan-
dards. The former lacks proper semantics, whereas the
latter includes proper semantics that is helpful in ana-
lyzing BPMN diagrams. A BPMN process has the fol-
lowing characteristics: (1) a start event has no incoming
flow and a single outgoing flow, (2) an end event has
no outgoing flow but can have multiple incoming flows,

6 Advances in Mechanical Engineering

(3) events and activities have multiple input flows and
multiple output flows, (4) a decision or fork has pre-
cisely single incoming flow and more than one outgoing
flow, and (5) a merge or join gateway has more than
one input and a single output.

Event mapping

Anything that occurs during a sequence of a business
process is called an event. It can be referred to as a trig-
ger or a result. They are centered on where they happen
in a business process. An event can occur at the start of
a process, middle, or at the end of a process. A token is
generated when a start event is being triggered in a new
process. A token is consumed when an end event signal
appears and this token sinks under such a condition. In
Figure 2, the mapping between a subset of events onto
Petri net is given. A start event is mapped onto a Petri
net containing two places and a transition. For an end
event, we cannot simply just do the transformation as
shown in the mapping in Figure 2. Three special cases
of end events are shown in Figure 3: a) all sequence
flows come to one end event; b) there are numerous end
events and each of them has one incoming sequence
flow; and c) the combination of Cases 1 and 2. If we

simply use the transformation given in Figure 2 for an
end event, we are not able to decide which case occurs.
To solve this problem, we use a separate end event for
each task. Hence, there is a single transition and single
place for each sequence flow as in Figure 4.

If we simply use the transformation given in Figure 2
for an end event, we will not be able to decide which case
occurs. To solve this problem, we use a separate end event
for each task. Hence, there is a single transition and single
place for each sequence flow as shown in Figure 2.

Figure 3. End event cases.

Figure 2. Mapping of events onto Petri nets.

Figure 4. Solution to the end event problem.

Mutarraf et al. 7

A timer event is mapped onto a Petri net using a tran-
sition and a place. Here, the transition should be associ-
ated with time, that is, the initial time and final time. At
the initial time, the transition may or may not fire, but it
is supposed to fire at the final time. An intermediate
event is triggered when a message is received and it is
transformed onto a Petri net using a single place.

Activity mapping

Tasks are found to be the most essential process ele-
ments, which show work in a process. In BPMN, a task
indicates an atomic activity which is contained within a
process. Sub-processes are used when the activity can
be further decomposed. For our purpose, we map task

and sub-process onto Petri nets as a single transition
and a place as depicted in Figure 5.

For a task or a sub-process without any cycle, we
can simply transform it onto a Petri net as shown in
Figure 5. However, if there is a cycle in case of tasks as
shown in Figure 6, we cannot simply do so.

A demonstration is given in Figure 7. If a task with
a cycle is transformed simply using the method given in
Figure 5, a deadlock occurs, that is, task t1 cannot be
fired until there is a token in place p1 and p5.

Notice that Task t1 can fire if both p1 and p5 are
filled with tokens. However, according to the BPMN
diagram, Task 2 can be triggered if Task 1 or Gateway
2 is completed. To solve this problem, we just need to
remove the place connected with Gateway 2 and con-
nect transition t4 with p1. As a result, the obtained
Petri net, depicted in Figure 8, shows how to transform
a task with a cycle.

Gateway mapping

There are four types of gateways for mapping onto
Petri nets: inclusive gateway, parallel gateway, data
based exclusive (XOR) gateway, and event-based

Figure 5. Mapping activities onto Petri nets.

Figure 6. Case of task or gateway having cycles.

Figure 7. Transformation of a task or gateway having cycles.

8 Advances in Mechanical Engineering

gateway. Exclusive gateway is an alteration point of a
business process. For instance, if there are many paths
in a process, only one path can be taken among many
paths. Inclusive gateway is also a partition point and it
may trigger more than one outgoing paths but no sub-
stance that all outgoing conditions have satisfied or not.
A parallel gateway is used when there is an execution of
concurrent activities. In this situation, when the process
arrives at fork of parallel gateway, tokens are split into
multiple tokens and merged when it reaches at joining
parallel gateway. Event-based gateway is somehow sim-
ilar to exclusive gateway but the trigger of the gateway
is triggered by third party, that is, message sent by the
costumer or intermediate timer event. Mapping of gate-
ways onto Petri net is shown in Figure 9. The probabil-
ity can be added to exclusive, inclusive, and event-based
gateways. The probability for exclusive and event-based
gateways can be found using the property P(A)=
1� P(�A), whereas in inclusive gateway, if there are two
paths, each of them can be choosen or both can be
choosen. In this case, the property P(A [B)=P(A)
+P(B)� P(A \ B) can be utilized.

Swim lanes

The frequently used element in BPMN is the swim lane
which includes pools and lanes. A BPMN pool

characterizes a contributor who contributes in a pro-
cess. It is a rectangular package that can comprise flow
object tasks and sub-processes. A lane is also a rectan-
gular package, a sub-partition in a pool, where activi-
ties of a process are categorized and organized. The
main functionality of a swim lane is to assembe a set of
elements into a single unit. It does not have any impact
on the WF. Hence, to transform a swim lane onto a
Petri net, we simply convert it into different layers as
depicted in Figure 10. Our developed software package
is not capable to transform it into Petri nets as
GPenSIM is not a graphical tool, but in the manual
transformation, we can transform it as separate layers
for each lane as depicted in Figure 10.

Development of BPMN framework for
analysis

Based on the above transformation, we can discuss how
to analyze a BPMN model. In the process of doing it,
we present a framework. A block diagram as shown in
Figure 11 is used to illustrate the framework. A BPMN
diagram is created in Signavio Process Editor.72,73

Then, there are two ways for transformation, that is,
automatic and manual ways. By the former, an XML
file from Signavio Process Editor is downloaded and
inserted into a developed software package, where the

Figure 8. Recommended method to solve the cycle problem.

Figure 9. Mapping of gateways onto Petri nets.

Mutarraf et al. 9

BPMN process diagram is transformed onto Petri nets
by creating ‘‘m’’ files. Afterward, these ‘‘m’’ files are
used in MATLAB for analysis. By the manual way, the
transformation from a BPMN model onto Petri nets is
done manually using the mapping figures and then its
analysis is done using TINA. First, the manual method
can be used for a small-sized BPMN model having less
complexity, while the automatic method can be imple-
mented for large complex BPMN models without
requiring any human effort involved in mapping.
Second, the manual method can also be used to com-
pare the results obtained by GPenSIM because
GPenSIM is not a graphical-oriented tool. Figure 11
shows the assembly that is employed.

Step-by-step procedure of analysis using GPenSIM
(automatic path) is as follows:

� Input: A BPMN diagram.
� Output: Analysis result obtained in GPenSIM.
� Create a BPMN diagram according to user’s spe-

cification and requirements using a tool which
can export the process diagram onto XML.

� Fetch the XML file using our developed tool.
� Select the probability function.
� Develop a tool process XML file and transform

it into a Petri net.
� Output Petri net that describes the specification

requirement of BPMN.
� Analyze the transformed Petri net in the

GPenSIM tool.

End
Step-by-step procedure of analysis using TINA

(manual path) is as follows:

� Input: A BPMN diagram.
� Output: Analysis result obtained in TINA tool.
� Create a BPMN diagram according to user’s spe-

cification and requirements.
� Assign names to the tasks.
� Assign start and end event names to the BPMN

diagram.
� Select the gateways according to the require-

ments of BPMN diagram.
� Use mapping figures to transform start and end

events.
� Feed tokens to places and time to transitions

using TINA.
� Obtain the analysis results of the Petri net from

TINA.

End

Construction and format of BPMN models

To implement the proposed method, we need to decide
which tools can be used to create a static BPMN dia-
gram. The main concerns are that it should be an open
source, have the option to export the BPMN diagrams

Figure 10. Mapping of swim lane onto Petri nets.

Figure 11. Task execution diagram.

10 Advances in Mechanical Engineering

into XML format, and be easy to use. It is known that
Signavio Process Editor is one of the most popular
tools for BPMN models and it is also an open source
tool. Hence, we select Signavio as the tool for the cre-
ation of BPMN diagrams. We choose the XML format
due to its usability, compatibility, and relaxed dealing
out in Java program. Moreover, it is extendable and a
widely used standard.

Transformation of BPMN models into Petri nets

This module consists of a developed Java Program
whose input is an XML file that is exported from
Signavio. This module outputs a Petri net model after
the BPMN diagram is transformed. The elements, such
as start events, end events, gateways, tasks, and
sequence flows, can be inferred by this program. As
done in the third section, that is, by mapping BPMN
elements onto a Petri net, the mapping is explained

clearly, and using those mapping rules, we develop a
software package. In this module, a static BPMN
model is converted into a dynamic Petri net model. The
following algorithm shows the proposed approach.

Analysis

Several tools exist for Petri net modeling such as
SPNP, INA, CPN Tools, GPenSIM, and Renew Tool.
We choose GPenSIM for analysis since it has more
functionalities (i.e. mathematical formulas) as it is
embedded in the MATLAB environment, which makes
the simulation to be faster; the only restriction is that it
does not have a graphical view. The integration with
MATLAB can also harness diverse toolboxes available
in the MATLAB environment by combining GPenSIM
with the Control System Toolbox. The advantages of
GPenSIM over other toolboxes are as follows: we can
add probability to the gateways, time can be easily
added to transitions, and siphons and invariants can
also be found easily.

Analysis under GPenSIM. In this section, we present a
step-by-step procedure of how our developed software
package interacts with GPenSIM software tool.86,87

Step 1: Defining a Petri net graph. In the first step, ele-
ments are defined in a Petri net definition file (PDF).
In the PDF, a name of a Petri net is defined and then
elements, that is, places and transitions, are identified.
Moreover, the way in which these elements are con-
nected is also defined. It is the static part. The weights
on arcs are part of this file. The step-by-step procedure
of the PDF file is as follows:

1. Mention all elements as a function: function
[PN_name, set_of_places, set_of_trans, set_of_
arcs] .=model_def (global_info)

2. Assign a name to a Petri net:
PN_name= ‘‘Name of a Petri net’’;

3. Identification of places by their names:
set_of_places={‘‘Place-1 ‘‘Place-2,’’ ‘‘Place-
3,’’.};

4. Identification of transitions by their names:
set_of_trans={‘‘Transition-1,’’.};

5. Finally, elements connections are defined with
the weights on arcs: set_of_arcs={‘‘Place-1,’’
‘‘Transition-1,’’ 1, .‘‘Place-2,’’ ‘‘Transition-1,’’
2, .‘‘Transition-1,’’ ‘‘Place-3,’’ 1, .};

It starts from defining functions and moving down
with the set of places, the set of transitions, and the set
of arcs. While defining the set of arcs, we should also
decide the weight of an arc, as given above in the first

Algorithm 1: Transformation from BPMN into Petri net
elements

� Input: XML file of BPMN diagram.
� Output: A Petri net model.
� ej ¼ ½es; ee; ts; ge; gi; gp; geb; sf ; as�
� // es = start event, ee = end event, ts = tasks, ge = exclusive

gateway, gi = Inclusive gateway, gp = parallel gateway,
geb = event based gateway, sf = sequence flows,
as = annotations, d= process end, mappp = transformation
rules (discussed in section ‘‘Mapping BPMN elements onto
Petri nets’’).

� Convert XML file onto BPMN model.
� Bj;k = Array of events, j = number of events, k = occurrence of

each event.
� while (ej! = end).
� {
� m ¼ ej

� k ¼ 1
� while (m<d)
� {
� Bðj;kÞ m (m = List of BPMN elements)
� kþþ
� mþþ
� }
� ej + +
� jþþ
� }
� Cj;k ¼ Bj;k

� Cj;k mappp

� for (a= 1 to j)
� {
� for (b= 1 to k)
� {
� Ba, b mappp (Transformation of BPMN elements into

Petri nets)
� }
� }
END

Mutarraf et al. 11

place and transition with weight 1 and in the second
place and transition with weight 2.

Step 2: Simulation file. The second step includes the
dynamics of a Petri net. In this step, we need to inscribe
the main simulation file (MSF). At first, we load the
static Petri net model, move on further with the
dynamics of the Petri net, and decide the number of
tokens in places and the firing time of transitions. The
steps are as follows:

1. Load the Static Petri net Graph: png=petrinet-
graph (‘‘model_def’’);

2. Set the initial marking on places: dynamic_
info.initial_markings={‘‘Place-1,’’ 2, ‘‘Place-
2,’’ 4, .};

3. Assign firing time to transitions: dynamic_info.
firing_times={‘‘Transition-1,’’ 20, .};

Step 3: Simulation results

In this step, the function gpensim is used to simulate
a Petri net model.
Sim_Results= gpnsim (png, dynamic_info);

Step 4: View simulation results

Simulation results can be viewed in this step;
print_statespace (Sim_Results).

Step 5: Plot the results. Finally, the function plotp is
used to plot the results. The number of tokens in places
is plotted on y-axis and time on x-axis.

plotp (Sim_Results, {‘‘Place-1,’’ ‘‘Place-2,’’.});

Analysis under TINA tool. TINA88,89 is a tool for analyzing
Petri nets with the possibility of adding priorities, time,

and stopwatches. The purpose of choosing TINA is its
graphical view of places, transitions, arcs, and tokens,
which is lacked in GPenSIM. It can help in building
reachability analysis, structural analysis, and stepper
simulator.

Comparison of tools

There are two tools which we use in analyzing BPMN
models. They are General Petri Net Simulator
(GPenSIM) and TINA. Table 1 shows that GPesnSIM
lack the graphical view of Petri nets, whereas TINA
lacks addition of probability to transitions.

Experimental studies

Example 1

The BPMN model of a student applying to a university
is shown in Figure 12. Upon the submission of docu-
ments to the university, an initial review process for the

Table 1. Comparison of different Petri net tools used.

Tools

Properties GPenSIM TINA

Liveness � �
Safe ß �
Invariants � �
Siphon � �
Colored Petri Nets � ß
Reachability states � �
Graphical view ß �
Probability to the gateways � ß
Timed Petri nets � �

TINA: Timed Petri Net Analyzer.

Figure 12. BPMN model of Example 1.

12 Advances in Mechanical Engineering

candidate’s admission starts. If he fails to qualify, a
rejection email is sent by the university, otherwise the
student is prompted to pay the application fee. The stu-
dent then pays the application fee and a message is gen-
erated acknowledging that the payment is done
successfully. On the other hand, if the applicant is
unable to receive a message, he waits for a duration of
1 day, till he receives an acknowledgment of the
received payment.

Analysis for Example 1 using GPenSIM. GPenSIM, a tool
integrated with MATLAB environment, is used for
the analysis of Petri net models. Figure 13 illustrates
the simulation result of a student who is applying to the
university for an admission. The x-axis shows the firing
times, whereas y-axis depicts the number of tokens in
places. Initially, the tokens are set to be 10 in initial
place p0 showing the number of applicants and 10
tokens are added to place p11 in order to trigger mes-
sage events. The probabilities for the gateway is as fol-
lows: Initial_review_passed_yes=0.8 and Initial_
review_passed_no=0.2. As the probability is set with
the gateways, the initial tokens will divide accordingly in
the end places. At the end, there are eight tokens in place
End1 and two tokens in place End2, which shows that
80% of the students who applied for admission usually
pass the initial review, whereas 20% students fail to pass
initial review. Moreover, two tokens in place p11 indi-
cate that the message event is triggered eight times. The
average simulation time is noted as 0.587 s.

Analysis under TINA tool. The transformed Petri net
model of Example 1 (applying for an admission) is

shown in Figure 14 and the verification results are illu-
strated in Table 2. The result displays that the trans-
formed Petri net model of Example 1 is neither live nor
safe. In fact, it is an ordinary Petri net which consists
of one place invariant and no siphons in it. Initially,
tokens are set to be 10 in place p0. With the use of step-
per simulator in TINA, we can randomly simulate the
transformed Petri net. The benefit of using TINA tool
over GPenSIM is its ability to represent transitions,
places, and arcs graphically. Moreover, stepper simula-
tor displays token movement in places and indicates
the enabled transitions.

Example 2

The BPMN model of a patient having an accident
being admitted to the hospital is created in Signavio
Process Editor. As shown in Figure 15, the patient is
brought to outpatient department (OPD) and a token
is assigned to the patient. The patient is then shifted to
emergency because of his critical condition. After that,
he is referred to surgical specialist and at the same time
his tests are conducted, and the lab reports are trans-
ferred to medical specialist (M�S), cardiac surgeon
(C�S), or both which is represented as B�T because the
patient was priorly suffering from cardiac disease.
Based on consensus between doctors, he is transferred
to operation theater. After the successful operation and
treatment, the patient is discharged from the hospital.

Analysis for Example 2 using GPenSIM. The simulation
result of an accidental patient after transforming it to
Petri nets using our developed software package is

Figure 13. Simulation result of Example 1 in GPenSIM.

Mutarraf et al. 13

depicted in Figure 16. Initial tokens are set to be 10 in
place p0. The probability is set with the inclusive gate-
way and the initial tokens will divide accordingly,
whereas there is no need to involve probability with
parallel gateway as all tasks need to be performed in
parallel. The probability of the tasks M�S, C�S, and

B_T is set to be 0.5, 0.0, and 0.5, respectively. The same
number of tokens in the initial place and final place
shows that net is sound.

Analysis under TINA tool. The BPMN model depicted in
Figure 15 is transformed manually into Petri net using
mapping figures depicted in section ‘‘Preliminary back-
ground.’’ The transformed Petri net model of a BPMN
model shown in Figure 15 is depicted in Figure 17 and
verification results of the transformed Petri net model
are illustrated in Table 3 which shows that the trans-
formed net is pure and is ordinary, which neither has
any place or transition invariants nor any siphon.
Furthermore, it is bounded and a free-choice Petri net.
As TINA lacks addition of probability to the gateways,
we can only add firing delays to the transitions in
TINA. Tokens can be moved between the initial and
final time of transition once the initial time of a transi-
tion is enabled.

10

Start

p1 p2

p3 p6

p0

Apply for admission

Initial Review Passed_Yes

Initial Review Passed_No

Pay application fee
t9

t10

10

p7

p8
[1,1]

p9

confirmation received

p 1 0

t14

t8p6

Application rejected

p11

End 2

t13

End 1

Inquire about
application fee

p 4N o

Figure 14. Transformed Petri net model of Example 1.

Table 2. Analysis of Example 1 in TINA.

Tool

Properties TINA
Liveness ß
Safe ß
Ordinary �
Pure �
Invariants �
Siphon �
Free choice �
Bounded �

TINA: Timed Petri Net Analyzer.

Figure 15. BPMN model of Example 2.

14 Advances in Mechanical Engineering

S-soundness

Soundness is a notion of correctness of WF nets. The
need of S-soundness arises for the exclusive and

event-based gateways. It states that the number of
tokens in source place is equal to the sum of tokens in
the sink places.

Definition 6. (S-WF net). A Petri net N =\P, T ,F,V. is
an S-WF net if

� There is a source place s and a set of sink places
f= ff1,f2, . . .g, that is, �s =f and f�i =f

where i= f1, 2, . . .g.
� If a transition t� is added into it such that
ff= ff1,f2, . . .g��t� and s 2 t��, then the
resulting net is strongly connected.

Definition 7. (S-soundness). A S-WF net (N , n:s) with N
being a Petri net carrying n cases, M being a marking,
and ½Mi being the marking set, is sound if

Figure 16. Simulation result of Example 2 in GPenSIM.

10 p 1 5

p9

p8

p7

S tart Lab

p1

OPD

p2

T ok en

p3

Em ergenc y

p4

p0

Parallel_f ork[1,1]

p6

p5

t4

t2

OT

t3

S _S

[4,4]

t9

p 1 0

p 1 1 C_S

M _S

B_T

p 1 2

p 1 3

p 1 4

[5,5]

[9,9]

[4,4]

t8

t6

t7

E n d

p 1 6

p 1 7

p 1 8

D
ischar ge

End_task

Figure 17. Transformed Petri net model of Example 2.

Table 3. Analysis of Example 2 in TINA.

Tool

Properties TINA
Liveness ß
Safe ß
Ordinary �
Pure �
Invariants 3
Siphon 3
Free choice �
Bounded �

TINA: Timed Petri Net Analyzer.

Mutarraf et al. 15

� The option to complete (for every case, it is
always possible to reach the state marked as f);

� Proper completion (for every case, if f is
marked, all other places should be empty);

� No dead transition;
� The number of tokens in the source place should

be equal to the sum of tokens in the sink places.

Formally

� 8M 2 ½n � si, n � f 2 ½Mi
� 8M 2 ½n � si,M(f)øn) M = n � f
� 8t 2 T , 9M 2 ½n � si : M ½ti
� s=

Pn

k = 1

fi

The soundness property relates to the dynamic beha-
vior of WF nets. As from Definition 7, the first and the
foremost requirement is that it should always be possi-
ble to reach final state, that is, tokens in the sink places,
starting from the initial state. From Figure 18, it is clear
that there is a single token in place p0 at the start, and
after firing transitions, the token is at a sink place which
fulfills our first requirement. The second requirement is
that when the token is in the sink place, all the places
should be empty. Figure 18 depicts that when the token
is in the place p19, rest of the places are empty. The first
two requirements are known to be as proper termina-
tion. The third requirement states that there should be
no dead transitions in a process and the last require-
ment states that number of tokens in the source place is
equal to the sum of tokens in sink places. Moreover, it
represents that either of the gateway paths is chosen the

number of tokens in sink and source places are similar
which shows the absence of deadlocks.

Remaining token problem

A process model is accomplished when at least one of
the end tasks has been performed at least once and for
that process instance there is no other enabled task. In
terms of Petri nets, for a single process, if there is any
token in a sink place, the rest of places should be empty.
If there is still a token remaining in rest of the places
except the source and sink ones, the process may not be
completed properly. In Figure 19, if Task 3 is enabled
and fired, the process will be completed but a token will
be left in between Task 1 and Parallel join at place p4.
In this scenario, the process needs to be corrected in
order to properly remove this remaining token. The
analysis results in Figure 20 depict that the number of
tokens in the sink and source places is not equal, which
shows a deadlock in the system. Now, if the token is
not terminated, there might be two cases, that is, either
it will be a deadlock or a livelock. For the manual
method, the places will be back-tracked to determine
the token location in the Petri net model, whereas in the
automatic method, GPenSIM itself will determine the
location of the unterminated token in the model, which
indicates the defected part of the model.

Comparison of number of elements in both
standards

The simulation experiments are carried out with the
help of using randomly generated BPMN processes. In

Figure 18. Example of S-soundness.

16 Advances in Mechanical Engineering

Table 4, based on the simulation, we present the com-
parison of the number of elements in these two models.
Using a Petri net model, we can perform dynamic

analysis in contrast to static analysis using BPMN. The
simulation time using GPenSIM in MATLAB is shown
in Table 4.

p1

p2

Source place

p3

p6

p5

p8

p7

p9

Start_process

Parallel_fork

End_process

Sink place

XOR_Mergeparallel_join

Task_1

Task_2

Task_3 XOR_MergeTask_4

p 4

Figure 19. Petri net model with improper completion.

Figure 20. Analysis of Petri net model with improper completion in GPenSIM.

Table 4. Comparison of number of elements in BPMN and petri net standards.

S. no. BPMN model Transformed Petri net model

Tasks Events Gateways Places Transitions Time (s)

1 5 5 2 14 13 0.587
2 9 3 4 20 20 1.388
3 46 10 9 83 74 2.184
4 4 3 1 10 9 0.27
5 8 3 1 14 13 0.301
6 5 3 3 14 12 0.298
7 5 2 2 13 13 0.286

BPMN: Business Process Model and Notation.

Mutarraf et al. 17

The tasks, events, and gateways of the BPMN model
in Table 5 are taken from the work by Dijkman et al.26

and the transformation time is compared with our pro-
posed approach which includes transformation and
analysis time. It can be seen that there is a significant
reduction in time using the proposed approach com-
pared with the work by Dijkman et al.26

Conclusion and future work

The BPMN standard lacks formal semantics, which
limits its applications since one cannot examine the cor-
rectness of BPMN models from the perspective of syn-
tax. We choose Petri nets as a dynamic model for
verification due to their simulation capabilities, includ-
ing mathematical functions and some other toolboxes
in MATLAB. The contribution of this article is the
extension of subset of BPMN elements that are trans-
formed onto Petri nets. Furthermore, the addition of
time with the tasks and the probability with gateways
add additional features to business process modeling.
Using the proposed mapping rules, a software package
is developed that transforms BPMN elements onto
Petri nets. Simulation results show that using this tech-
nique, the transformation time is subsequently reduced.
The manual method further helps us view Petri net ele-
ments graphically, as well, and provides some other
analysis properties such as safeness which GPenSIM
lacks. Our future research is to make transformation of
all BPMN constructs on the basis of the formalism pro-
posed by Kheldoun et al.69 and extended with time and
probability. Moreover, we will study the deadlock
problem90 in a business process model and use this
model to the wireless sensor networks.91,92

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work is supported by the National Natural
Science Foundation of China, under grant no. 61873342, and
the Science and Technology Development Fund, MSAR,
under grant no. 122/2017/A3.

ORCID iD

Zhiwu Li https://orcid.org/0000-0003-1547-5503

References

1. BPMN specification—business process model notation.

BPMN.org, 2017. http://www.bpmn.org (accessed 3

April 2017).
2. Shapiro R. A technical comparison of XPDL, BPML

and BPEL4WS. Cape Visions 2002; 37: 38–39.
3. Eriksson HE and Penker M. Business modeling with

UML: Business Patterns at Work. 1st ed. John Wiley &

Sons, Inc., New York, USA: 1998.
4. Yu H and Wu D. Enterprise modeling based on IDEF

and UML. In: 2015 4th international conference on

advanced information technology and sensor application

(AITS), Harbin, China, 21–23 August 2015, pp.59–62.

New York: IEEE.
5. Dennis AR, Hayes GS, Daniels RM, et al. Re-engineer-

ing business process modeling. In: Proceedings of the

27th Hawaii international conference on system sciences,

Maui, HI, 4–7 January 1994. IEEE Comput. Soc. Press.
6. Mendling J, Lassen KB and Zdun U. On the transforma-

tion of control flow between block-oriented and graph-

oriented process modeling languages. Int J Business Pro-

cess Integr Manage 2008; 3: 96–108.
7. Ouyang C, Verbeek E, Van Der Aalst WM, et al. Formal

semantics and analysis of control flow in WS-BPEL. Sci

Comp Program 2007; 67: 162–198.
8. Chen YF, Li ZW, Barkaoui K, et al. Compact supervi-

sory control of discrete event systems by Petri nets with

data inhibitor arcs. IEEE T Syst Man Cyber 2017; 47:

364–379.
9. Uzam M, Li ZW, Gelen G, et al. A divide-and-conquer-

method for the synthesis of liveness enforcing supervisors

Table 5. Comparison of transformation time with the work by Dijkman et al.26

S. no. BPMN model Comparison of transformation time

Tasks Events Gateways Time (s) Time (s)26

1 11 2 11 1:086 1:234
2 4 2 2 0:483 0:703
3 3 2 4 0:587 0:734
4 7 4 8 0:971 1:297
5 2 2 4 0:493 0:797
6 5 2 2 0:285 0:641

BPMN: Business Process Model and Notation.

18 Advances in Mechanical Engineering

for flexible manufacturing systems. J Intel Manufact

2016; 27: 1111–1129.
10. Li ZW, Liu GY, Hanisch MH, et al. Deadlock preven-

tion based on structure reuse of Petri net supervisors for

flexible manufacturing systems. IEEE T Syst Man Cy A

2010; 42: 178–191.
11. Ma ZY, Li ZW and Giua A. Design of optimal Petri net

controllers for disjunctive generalized mutual exclusion con-

straints. IEEE Trans Automat Contr 2015; 60: 1774–1785.
12. Ye JH, Li ZW and Giua A. Decentralized supervision of

Petri nets with a coordinator. IEEE T Syst Man Cyber

2015; 45: 955–966.
13. Ma Z, Li Z and Giua A. Characterization of admissible

marking sets in Petri nets with conflicts and synchroniza-

tions. IEEE Trans Automat Contr 2017; 62: 1329–1341.
14. Ma Z, Tong Y, Li Z, et al. Basis marking representation

of Petri net reachability spaces and its application to the

reachability problem. IEEE Trans Automat Contr 2017;

62: 1078–1093.
15. Zhang JF, Khalgui M, Li ZW, et al. Reconfigurable coor-

dination of distributed discrete event control systems.

IEEE Trans Contr Syst Tech 2015; 23: 323–330.
16. Wu NQ and Zhou MC. Schedulability analysis and opti-

mal scheduling of dual-arm cluster tools with residency

time constraint and activity time variation. IEEE Trans

Automat Sci Eng 2012; 9: 203–209.
17. Wu NQ and Zhou MC. Modeling, analysis and control

of dual-arm cluster tools with residency time constraint

and activity time variation based on Petri nets. IEEE

Trans Automat Sci Eng 2012; 9: 446–454.
18. Wang X, Khemaissia I, Khalgui M, et al. Dynamic low-

power reconfiguration of real-time systems with periodic

and probabilistic tasks. IEEE Trans Automat Sci Eng

2015; 12: 258–271.
19. Zhang SW, Wu NQ, Li ZW, et al. Petri net-based

approach to short-term scheduling of crude oil opera-

tions with less tank requirement. Informat Sci 2017; 417:

247–261.
20. Zhu GH, Li ZW, Wu NQ, et al. Fault identification of

discrete event systems modeled by Petri nets with unob-

servable transitions. IEEE Trans Syst Man Cyber Syst.

Epub ahead of print November 2017. DOI: 10.1109/

TSMC.2017.2762823
21. Liu GY, Li P, Li ZW, et al. Robust deadlock control for

automated manufacturing systems with unreliable

resources based on Petri net reachability graphs. IEEE

Trans Syst Man Cyber Syst. Epub ahead of print April

2018. DOI: 10.1109/TSMC.2018.2815618
22. Zhu GH, Li ZW and Wu NQ. Model-based fault identifi-

cation of discrete event systems using partially observed

Petri nets. Automatica 2018; 96: 201–212.
23. Cong XY, Fanti MP, Mangini AM, et al. On-line verifi-

cation of current-state opacity by Petri nets and integer

linear programming. Automatica 2018; 94: 205–213.
24. Zhang HM, Feng L, Wu NQ, et al. Integration of

learning-based testing and supervisory control for

requirements conformance of black-box reactive systems.

IEEE Trans Automat Sci Eng 2018; 15: 2–15.
25. Zhang H, Feng L and Li Z. A learning-based synthesis

approach to the supremal nonblocking supervisor of

discrete-event systems. IEEE Trans Automat Contr 2018;

63: 3345–3360. DOI: 10.1109/TAC.2018.2793662
26. Dijkman RM, Dumas M and Ouyang C. Semantics and

analysis of business process models in BPMN. Informat

Software Tech 2008; 50: 1281–1294.
27. Wong PY and Gibbons J. A process semantics for

BPMN. In: Proceedings of the international conference on

formal engineering methods, London, 2–4 June 2008,

pp.355–374. Berlin; Heidelberg: Springer.
28. Gibson-Robinson T, Armstrong P, Boulgakov A, et al.

W. FDR3 –a modern refinement checker for CSP. In:

Proceedings of the International Conference on Tools and

Algorithms for the Construction and Analysis of Systems,

Berlin, Heidelberg, pp. 187–201. Springer.

29. Puhlmann F and Weske M. Investigations on soundness

regarding lazy activities. In: Dustdar S, Fiadeiro JL and

Sheth A (eds) International conference on business process

management. Berlin; Heidelberg: Springer, 2006, pp.145–

160.
30. Dijkman R and Van Gorp P. BPMN 2.0 execution

semantics formalized as graph rewrite rules. In: Mendling

J, Weidlich M and Weske M (eds) Proceedings of the

international workshop on business process modeling nota-

tion. Berlin; Heidelberg: Springer, 2010, pp.16–30.
31. Raedts I, Petkovic M, Usenko YS, et al. Transformation

of BPMN Models for behaviour analysis. In: Modelling,

simulation, verification and validation of enterprise infor-

mation systems, Funchal, 12–13 June 2007, pp.126–137.

INSTICC.
32. Ramadan M, Elmongui HG and Hassan R. BPMN for-

malisation using coloured Petri nets. In: Proceedings of

the 2nd GSTF annual international conference on software

engineering & applications (SEA 2011), Singapore, 12–13

December 2011. Singapore GSTF.

33. Koniewski R, Dzielinski A and Amborski K. Use of Petri

nets and business processes management notation in

modelling and simulation of multimodal logistics chains.

In: Proceedings of the 20th European conference on model-

ing and simulation, Institute of Control and Industrial

Electronics, Warsaw University of Technology, Warsaw,

28–31 May 2006, pp.28–31. European Council for Mod-

elling and Simulation.
34. Meghzili S, Chaoui A, Strecker M, et al. Transformation

and validation of BPMN models to Petri nets

models using GROOVE. In: Proceedings of international

conference on advanced aspects of software engineering

(ICAASE), Constantine, Algeria, 29–30 October, pp.22–

29. IEEE.
35. Dijkman R, Dumas M and Ouyang C. Formal semantics

and analysis of BPMN process models using Petri nets.

Technical report, Queensland University of Technology,

Brisbane, QLD, Australia, 2007.
36. Groefsema H and Bucur D. A survey of formal business

process verification: from soundness to variability. In:

Proceedings of the 3rd international symposium on business

modeling and software design, Vienna, 2–4 July 2013,

pp.198–203. SciTePress.
37. Kherbouche OM, Ahmad A and Basson H. Using model

checking to control the structural errors in BPMN mod-

els. In: 2013 IEEE seventh international conference on

Mutarraf et al. 19

research challenges in information science (RCIS), Paris,
29–31 May 2013, pp.1–12. New York: IEEE.

38. Roy S, Sajeev ASM, Bihary S, et al. An empirical study
of error patterns in industrial business process models.
IEEE Trans Serv Comp, 2014; 7: 140–153.

39. Awad A, Decker G and Weske M. Efficient compliance
checking using BPMN-Q and temporal logic. BPM,
2008; 5240: 326–341.

40. Van Gorp P and Dijkman R. A visual token-based for-
malization of BPMN 2.00 based on in-place transforma-
tions. Informat Software Tech 2013; 55: 365–394.

41. Wong PYH and Gibbons J. Formalisations and applica-
tions of BPMN. Sci Comp Program 2011; 76: 633–650.

42. Börger E and Sörensen O. BPMN core modeling con-
cepts: inheritance-based execution semantics. In: Embley
DW and Thalheim B (eds) Handbook of conceptual mod-

eling. London: Springer, 2007, pp.287–332.
43. Wong PYH and Gibbons J. A process semantics for

BPMN. In: ICFEM 2008, Kitakyushu, Japan, 27–31
October 2008, pp.355–374. New York: ACM.

44. Favre C, Völzer H and Müller P. Diagnostic information
for control-flow analysis of workflow graphs. In: Chechik
M and Raskin JF (eds) Tools and algorithms for the con-

struction and analysis of systems. Berlin: Springer, 2016,
pp.463–479.

45. Ackoff RL. Scientific method: optimizing applied research

decisions, 1962. New York: Wiley.
46. Lindsay A, Downs D and Lunn K. Business processes-

Attempts to find a definition. Informat Software Tech

2003; 45: 1015–1019.
47. Aguilar-Saven RS. Business process modelling: review

and frame- work. Int J Product Econ 2004; 90: 129–149.
48. Hepp M, Leymann F, Domingue J, et al. Semantic busi-

ness process management: a vision towards using seman-
tic web services for business process management. In:
Proceedings of the E-business engineering (ICEBE), Beij-
ing, China, 12–18 October 2005, pp.535–540. New York:
IEEE.

49. Lin Y and Strasunskas D. Ontology-based semantic
annotation of process templates for reuse. Proc CAISE

2005; 5: 593–604.
50. Harrington HJ. Business process improvement: the break-

through strategy for total quality, productivity and compe-

titiveness. New York, NY: McGraw-Hill, 1991.
51. Davenport TH. Process innovation: reengineering work

through information technology. Boston, MA: Harvard
Business Press, 1993.

52. Hammer M. Reengineering work: don’t automate, oblit-
erate. Harvard Business Rev 1990; 68: 104–112.

53. Hammer M and Champy J. Reengineering the corpora-

tion: manifesto for business revolution. Grand Rapids, MI:
Zondervan, 2009.

54. Kettinger WJ, Teng JT and Guha S. Business process
change: a study of methodologies, techniques, and tools.
MIS Quarterly 1997; 21: 55–80.

55. Phalp KT and Martin S. Quantitative analysis of static
models of processes. J Syst Software 2000; 52: 105–112.

56. Phalp KT. The CAP framework for business process
modeling. Informat Software Tech 1998; 40: 731–744.

57. Lohmann N, Verbeek E and Dijkman R. Petri net trans-
formations for business processes–a survey. In: Jensen K

and Van Der Aalst W (eds) Transactions on Petri nets and

other models of concurrency (ToPNoC II), vol. 5460. Ber-

lin: Springer, 2009, pp.46–63.

58. Gottschalk F, Van Der Aalst WM and Jansen-Vullers M.

Merging event-driven process chains. In: Zahor T (ed.)

Proceedings on the move to meaningful internet systems:

OTM. Berlin: Springer, 2008, pp.418–426.
59. Fisteus JA, Fernández LS and Kloos CD. Formal verifi-

cation of BPEL4WS business collaborations. In: Interna-

tional conference on electronic commerce and web

technologies, Zaragoza, 31 August–3 September 2004,

pp.76–85. Berlin: Springer.
60. Fu X, Bultan T and Su J. Analysis of interacting BPEL

web services. In: Proceedings of the 13th international con-

ference on World Wide Web, New York, 17–22 May 2004,

pp.621–630. New York: ACM.
61. Fahland D and Reisig W. ASM-based Semantics for

BPEL: the negative control flow. In: Proceedings of the

12th international workshop on abstract state machines,

Paris, 8–11 March 2005, pp.131–152. New York: ACM.
62. Farahbod R, Glässer U and Vajihollahi M. Specification

and validation of the business process execution language

for web services. In: International workshop on abstract

state machines, Wittenberg, 24–28 May 2004, pp.78–94.

Berlin: Springer.
63. Ferrara A. Web services: a process algebra approach. In:

Proceedings of the 2nd international conference on service

oriented computing, New York, 15–19 November 2004,

pp.242–251. New York: ACM.
64. Hinz S, Schmidt K and Stahl C. Transforming BPEL to

Petri nets. In: International conference on business process

management, Nancy, 5–8 September 2005, pp.220–235.

Berlin: Springer.
65. Van Der Aalst WM and Ter Hofstede AH. YAWL: Yet

Another Workflow Language. Informat Syst 2005; 30:

245–275.
66. El-Saber N and Boronat A. BPMN formalization and

verification using Maude. In: Proceedings of the workshop

on behaviour modelling-foundations and applications,

York, 22 July 2014. New York: ACM.
67. Roa J, Chiotti O and Villarreal P. Specification of beha-

vioral anti-patterns for the verification of block-

structured collaborative business processes. Informat

Software Tech, 2016; 75: 148–170.
68. Villarreal PD, Lazarte I, Roa J, et al. A modeling

approach for collaborative business processes based on

the UP-ColBPIP language. In: International conference

on business process management, Ulm, 7 September 2009,

pp.318–329. Berlin: Springer.
69. Kheldoun A, Barkaoui K and Ioualalen M. Formal veri-

fication of complex business processes based on high-level

Petri nets. Informat Sci 2017; 385: 39–54.
70. Das M, Deb M and Wilkins M. Oracle business process

management suite 11g handbook. New York: McGraw-

Hill, 2012.
71. Bhandari R, Suman U and Ramani AK. Web service

composition through BPEL using Intaglio. In: Proceed-

ings of the computational intelligence and information tech-

nology, Pune, India, 7–8 November 2011, pp.873–876.

Berlin: Springer.

20 Advances in Mechanical Engineering

72. Chinosi M and Trombetta A. BPMN: an introduction to
the standard. Comp Standard Interfaces 2012; 34:
124–134.

73. Signavio. Signavio offers collaborative process decision
management, 2017, https://www.signavio.com/ (accessed
April 2017).

74. Peterson JL. Petri nets. ACM Comp Surv (CSUR) 1977;
9: 223–252.

75. Cong X, Fanti M, Mangini A, et al. Decentralized diag-
nosis by Petri nets and integer linear programming. IEEE
T Syst Man Cyber 2018; 48: 1689–1700.

76. Chen YF, Li ZW and Barkaoui K. New Petri net struc-
ture and its application to optimal supervisory control:
interval inhibitor arcs. IEEE T Syst Man Cyber 2014; 44:
1384–1400.

77. Chen YF, Li ZW, Barkaoui K, et al. On the enforcement
of a class of nonlinear constraints on Petri nets. Automa-

tica 2015; 55: 116–124.
78. Bai LP, Wu NQ, Li ZW, et al. Optimal one-wafer cyclic

scheduling and buffer space configuration for single-arm
multicluster tools with linear topology. IEEE T Syst Man

Cyber 46: 1456–1467.
79. Tong Y, Li Z and Giua A. On the equivalence of observa-

tion structures for Petri net generators. IEEE Trans Auto-

mat Contr 2016; 61: 2448–2462.
80. Tong Y, Li ZW, Seatzu C, et al. Verification of state-

based opacity using Petri nets. IEEE Trans Automat

Contr 2017; 62: 2823–2837.
81. Wang X, Li Z and Wonham WM. Dynamic multiple-

period reconfiguration of real-time scheduling based on
timed DES supervisory control. IEEE Trans Ind Infor-

mat, 2016; 12: 101–111.
82. Barkaoui K and Petrucci L. Structural analysis of

workflow nets with shared resources. In: Proceedings of

the workflow management: net-based concepts, models,

techniques and tools (WFM98, Volume 98/7 of Computing

Science Reports), Lisbon, 22 June 1998, pp.82–95. Eind-
hoven: Eindhoven University of Technology.

83. Barkaoui K, Ben Ayed R and Sbai Z. Uniform verifica-

tion of workflow soundness. Trans Inst Measure Contr J

2011; 33: 133–148.
84. Barkaoui K and Pradat-Peyre JF. On liveness and con-

trolled siphons in Petri nets. In: Billington J (ed.) Applica-

tion and theory of Petri nets 1996. Berlin: Springer, 1996,

pp.57–72.
85. Van Der Aalst WM. Verification of workflow nets. In:

Azema P and Balbo G (eds) International conference on

application and theory of Petri nets. Berlin; Heidelberg:

Springer, 1997, pp.407–426.
86. GPenSIM: a tool for mathematical modeling simulation

of discrete-event systems. Davidrajuh.net, 2017. http://

www.davidrajuh.net/gpensim (accessed April 2017).
87. Davidrajuh R. Developing a Petri nets based real-time

control simulator. Int J Simulat Syst Sci Tech 2012; 12:

28–36.
88. The TINA toolbox Home Page—TIme Petri Net Analy-

zer by LAAS/CNRS. projects.laas.fr, 2017. http://projects

.laas.fr/tina (accessed April 2017).
89. Gardey G, Lime D and Magnin M. Romeo: a tool for

analyzing time Petri nets. In: Proceedings of the interna-

tional conference on computer aided verification, Edin-

burgh, 6–10 July 2005, pp.418–423. Berlin: Springer.

90. Gu C, Li ZW, Wu NQ, et al. Improved multi-step look-

ahead control policies for automated manufacturing sys-

tems. IEEE Access, https://doi.org/10.1109/ACCESS.

2018.2872572 (accessed 21 September 2018).
91. Grichi H, Mosbahi O, Khalgui M, et al. RWiN: New

methodology for the development of reconfigurable

WSN. IEEE Transactions on Automation Science and

Engineering 2017; 14: 109–125.

92. Grichi H, Mosbahi O, Khalgui M, et al. New power-

oriented methodology for dynamic resizing and mobility

of reconfigurable wireless sensor networks. IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems 2018;

48: 1120–1130.

Mutarraf et al. 21

