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Abstract  

Mathematicians’ use of external representations constitutes an important focal point in 
current philosophical attempts to understand mathematical practice. In this paper, we add to 
this understanding by presenting and analyzing how research mathematicians use and 
interact with external representations. The empirical basis of the article consists of a 
qualitative interview study we conducted with active research mathematicians. In our 
analysis of the empirical material, we primarily used the empirically based frameworks 
provided by distributed cognition and cognitive semantics as well as the broader theory of 
cognitive integration as an analytical lens. We conclude that research mathematicians 
engage in generative feedback loops with material representations, that they use 
representations to facilitate the use of experiences of handling the physical world as a 
resource in mathematical work, and that their use of representations is socially sanctioned 
and enabled. These results verify the validity of the cognitive frameworks used as the basis for 
our analysis, but also show the need for augmentation and revision. Especially, we conclude 
that the social and cultural context cannot be excluded from cognitive analysis of 
mathematicians’ use of external representations. Rather, representations are socially 
sanctioned and enabled in an enculturation process.   
 
Keywords  
Mathematical practice; mathematical cognition; embodied cognition; distributed 
cognition; cognitive semantics; enculturation; external representations; diagrams. 
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1.0 Cognitive support in mathematical practice 
It is well known that most mathematical practices are crucially dependent on 
representations, material artifacts and other forms of cognitive support. Although 
humans (and several other species of animal) have an inborn ability to perform certain 
basic mathematical activities (such as subitizing and estimating the relative size of 
collections (Feigenson et al. 2004)), this capacity is extremely limited. If we wish to 
engage in more than trivial tasks, we are compelled to rely on cognitive strategies that 
extend and augment our innate mathematical abilities (cf. Frank et al. 2008; Núñez 
2009). In this paper, we aim to understand how research mathematicians use and 
interact with cognitive tools in order to scaffold and support their work with 
mathematics. 

Mathematicians’ use of representations for cognitive support has been 
explored from several different perspectives, such as cognitive science, philosophy, 
semiotics, and mathematics education. In relation to the literature on mathematical 
practice we will focus on here, the affordances and cognitive functions of various 
representational systems have been analyzed (e.g. Clark 1989, p.133; De Cruz and De 
Smedt 2013; Schlimm and Neth 2008; Zhang and Norman 1995), and historical case 
studies have pointed out that the choice of representational form can influence the 
theoretical and conceptual development of mathematics (e.g. Epple 2004; Johansen 
and Misfeldt 2015; Kjeldsen 2009; Steensen and Johansen 2016). The cognitive 
function of diagrams has also been explored through the investigation of examples 
and case studies (De Toffoli 2017; De Toffoli and Giardino 2014; Johansen 2014; 
Larkin and Simon 1987), where it has been shown that diagrams not only support 
syntactic transformations but also possess a number of qualitatively different 
cognitive affordances. Diagrams thus offer support for geometric and manipulative 
imagination and more intuitive forms of reasoning such as perceptual inference and 
inferences based in common, everyday experiences. In a case study on proofs in the 
mathematical field “analysis”, Carter (2010) demonstrated that although diagrams 
may not be present in the published proof, they can play a decisive role in concept 
formation and in discovering and formulating a proof. 

The role played by various writing media, especially blackboards, has been 
explored in two recent papers (Barany and MacKenzie 2014; Greiffenhagen 2014). 
The first of these followed the weekly seminars of a group of mathematics 
researchers; based on their observations, the authors concluded that there is a close 
connection between inscriptions and mathematical thinking, and that “[m]athematical 
writing and the mathematical thinking that goes with it are markedly dependent on the 
media available to the mathematician” (Barany and MacKenzie 2014, p.123). In a 
similar vein, Misfeldt (2011) investigated the mediation of mathematicians’ work as a 
writing process, and unveiled how the different functions that the creation of written 
representations serves are supported by different media (e.g. paper and digital media). 
Following a qualitative study focused on the experience of being a mathematician, 
Leone Burton (2004) suggested that thinking about mathematics can be organized into 
three distinct styles: visual, analytical, and conceptual. In relation to material 
representations, the visual thinking style will often be dynamic and pictorial (Burton 
2004, p.55), whereas the analytical style is more focused on algebraic representations 
and rule-based manipulations. The conceptual thinking style often builds on 
visualizations, but only in order to support the generation of a mental “image” with a 
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weaker relation to the material representations than the visual thinker. Often, 
mathematicians will use two of the thinking styles; however, very few mathematicians 
will use all three (Burton 2004, p.60). A similar description of the varied styles of 
reasoning in mathematics can be found in Thurston (1994).  
 Apart from the use of writing and drawing, the use of conceptual metaphors as 
a source of cognitive support has also attracted recent attention. Analysis of historical 
cases and of the language and gestures used among mathematics teachers and students 
involved in collaborative problem solving indicates that conceptual metaphors linking 
mathematical ideas and concepts to body-based experiences play an important role in 
some mathematical activities (Lakoff and Núñez 2000; Marghetis and Núñez 2010; 
Núñez 2004).  

1.1 Aim and scope 
The aim of this paper is to include the perspectives of research mathematicians more 
directly in the understanding of the role played by cognitive support in mathematics. 
Drawing from a qualitative interview study we conducted with active research 
mathematicians, we will analyze the processes that take place when mathematicians 
use the material world, and especially external representations, as a source of 
cognitive support. In other words, we will investigate the question: What is the 
qualitative nature of the processes and interactions that arise when research 
mathematicians use external representations for cognitive support?  
 As we answered this question, it became clear to us that even though it is in a 
sense trivial that mathematical cognition cannot be completely separated from the 
social context it plays out within, the actual nature of the interactions between this 
context, the mathematical ideas and the material manifestations involved, are not well 
understood in the literature. The first research question thus led to another, namely: 
What is the connection between external representations and the cultural practices and 
processes that govern their use?  

Finally, it should be noted that although we take departure in theories 
concerning human cognition in general our focus is on the cognitive practices we see 
in mathematics. It will thus be outside the scope of the paper to compare 
mathematical cognition to other fields and to discuss whether the cognitive processes 
we see in mathematics can also be found in other scientific disciplines.  
 The structure of the rest of the paper will be as follows: After a short 
description of our theoretical framework (section 1.2) and the empirical method used 
in the qualitative investigation (section 1.3), we will describe how the mathematicians 
in our investigation used externalization (section 2.0) and bodily experiences (section 
3.0) as sources of cognitive support. Next, we will describe the interaction between 
the cognitive strategies and the social context (section 4.0) before moving on to a 
discussion of our main results (section 5.0). 

1.2 Theoretical framework 

In our analysis, we will take as a point of departure in two well-established theories 
from current cognitive science: distributed cognition and cognitive semantics. We 
have chosen these two approaches because they provide an empirically founded basis 
for understanding two different and roughly complementary (cf. Johansen 2010) 
strategies humans use to achieve cognitive support from the material world: We 
humans distribute cognitive tasks onto external tools and artifacts, and we use basic 
experiences of interacting with physical reality to structure our abstract thinking. 
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Although these two strategies are described in slightly different ways and are given 
different weights by the various positions in the landscape of cognitive theories 
(sometimes referred to as the 4E: embodied, embedded, enacted, and extended 
cognition), they are empirically well established and can be seen as fundamental to 
the contemporary understanding of human cognition. We will furthermore supplement 
these two theories with elements from cognitive integration, which is a later 
development of distributed cognition and embodied and extended mind theory 
(Menary 2015). Especially, we will draw on the concepts of enculturation and 
cognitive niche building, as explained further below. Hence, our framework builds on 
distributed cognition, cognitive semantics, and cognitive integration.  
 The central idea of distributed cognition is the claim that skin and skull are not 
relevant barriers if we want to understand human cognition. The cognitive processes 
humans engage in are not always confined to our own brain, but are often distributed 
over other humans as well as over material objects and artifacts; therefore, if we want 
to understand human cognition, we need to take its distributed nature into account. In 
this perspective, material objects and artifacts play a vital role in our cognition, as 
they often allow cognitive processes to be performed faster, more reliably, or with 
less effort (Holland et al. 2000; Kirsh and Maglio 1994). Accordingly, the term 
cognitive artifacts has been introduced to designate those physical objects produced to 
take part in cognitive processes. Mathematical representations can be seen as a prime 
example of cognitive artifacts, and several of the studies mentioned above are in line 
with the field of distributed cognition (e.g. Clark 1989; De Cruz and De Smedt 2013; 
Zhang and Norman 1995). 
 Cognitive semantics adopts another strategy by focusing on the mapping of 
inferential structures primarily from material to conceptual domains. The idea here is 
that human abstract thought is highly dependent on everyday, body-based 
experiences. According to cognitive semantics, one of the central mechanisms of 
human cognition consists of the mapping of inferential structures from one domain to 
another, and we constantly and unconsciously use this ability to map inferential 
structures from the well-known domain of everyday experience onto more abstract 
domains (Fauconnier and Turner 2002; Lakoff and Johnson 1980; Lakoff and Núñez 
2000). This mechanism is called conceptual mapping. Our abstract thought is thus 
shaped by our bodily presence in the world and our basic interactions with material 
reality.  

Menary’s (2015) theory of cognitive integration is a recent development and 
augmentation of, especially, embedded mind theories (such as distributed cognition). 
If human cognition is indeed distributed and depends on cognitive artifacts, the skills 
and practices needed to engage in these distributed processes are of vital importance. 
These practices are cultural in the sense that they are public and enacted; and using a 
term from Hutchins (2011), Menary calls the acquisition of such practices 
enculturation (Menary 2015, p.4). He further claims that such cognitive practices 
“transform our existing biological capacities, allowing us to complete cognitive tasks, 
in ways that our unenculturated brains and bodies will not allow” (Menary 2015, p. 
4). These tools and practices are passed on from one generation to the next, and 
humans are thus born not only into an ecological niche shaped by our forefathers, but 
also into a “highly structured cognitive niche that contains not only physical artefact, 
but also representational systems that embody knowledge (writing systems, number 
systems, etc.); skills and methods for training and teaching new skills […] and 
practices for manipulating tools and representations” (Menary 2015, p.6). On the one 
hand, this niche transforms and sculpts our cognitive capacity (Menary 2015, p.8); on 
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the other, it can be transformed by us through the invention of new tools and 
practices, although Menary does not explicitly explain how such changes are formed. 
The cognitive niche is thus used as an analytic tool referring to specific aspects of the 
environment relevant for understanding a specific mathematical activity from a 
cognitive perspective. 

1.3 Empirical methods 
The interview study that forms the empirical foundation of this paper was based on 
qualitative interviews with 13 active mathematicians of three different nationalities, 
but all working at Danish universities (see Misfeldt and Johansen (2015) for a 
thorough description of the empirical investigation). We chose to limit our 
investigation to researchers of pure mathematics, but we included interviewees from 
various fields, such as algebra, topology, and analysis. We further selected tenured 
mathematicians who were mature enough in their careers to have experience with 
different aspects of mathematical work (e.g. to develop results, publish papers, 
participate in review and community work and to be part of various forms of research 
collaborations). 

All interviews were between 30 and 60 minutes long, except for one that 
lasted nearly 100 minutes. The interviews followed a semi-structured approach (Kvale 
1996), with prepared questions and clear thematic framing, but were still open-ended 
enough to allow the actual experiences of the respondents to remain in focus. The 
interview guide focused on the mathematicians’ work and problem-solving processes. 
More specifically, we asked each respondent the following: Try to describe how you 
begin to work on a problem. How do you find a suitable mathematical problem to 
work on? What are the different stages in your work, and how would you explain the 
process? What do you imagine, and what do you write down/draw, when you start 
working on a problem? We also asked the respondents to provide examples of the 
notes and sketches they had recently made during their work. 

All interviews were recorded, transcribed, and coded in NVivo 10. 
Photographs or scans of visual representations produced or referred to by the 
mathematicians in the interviews were also collected. 

The data we built our analysis upon were derived from these interviews; more 
specifically, from interview excerpts coded with “materiality,” “inscriptions,” and 
“tools.” Our focus on the cognitive role means that we used the cognitive frameworks 
described above as a window for analyzing these data1.  

The direct quotations from the interviews included in this paper have been 
translated where necessary and edited to remove redundancies that result from direct 
transcription of spoken language (cf. Johansen and Misfeldt (2014: 45); Misfeldt and 
Johansen (2015: 360); Johansen and Misfeldt (2016)).  

Finally, as our analysis is not based on a large-scale quantitative investigation 
we cannot claim generalizability in the statistical sense of the word. Rather, as we 
have taken a qualitative and grounded approach, we have based ourselves in the work 
																																																								
1	The aspects of the interviews not discussed in the analysis in this paper mainly relate to the selection 
of mathematical problems and the choice of representation connected to different communicative 
contexts. These aspects of the investigation are reported in Misfeldt and Johansen (2015) and Johansen 
and Misfeldt (2016). We refer to the analysis from these papers where appropriate. A general 
description of the educational implication of the study has been given in Johansen and Misfeldt (2014). 
In contrast to the papers previously published, the paper at hand focus on cognitive aspects of the use 
of representations and seeks to understand the relationship between the cognitive and the social aspects 
of representation use. 
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of Kathy Charmaz (2006, p 182) and have evaluated our analysis on the central 
criteria credibility and resonance. We claim that our analysis is credible because the 
data was internally compared in the systematic coding and analysis process, and 
because our interpretation and analysis provide insight into the specific utterances of 
the mathematicians in a consistent way. Furthermore, the conclusions we have 
developed seem to resonate with the experience of other mathematicians we have 
(informally) discussed our work with as well as with the academic field investigating 
mathematical practices. In that sense and with these cautions in place we do claim that 
our analysis and conclusions address common aspects of the mathematical work 
practice.  

2.0 Using and interacting with material representations 
We begin our presentation of the empirical material by investigating whether the 
cognitive practices of research mathematicians are distributed in the sense predicted 
by the theory of distributed cognition. As we shall see, they are: All our respondents 
considered writing and drawing to be an integral part of their work process. One 
respondent (R10), for instance, explained that he would always try to have pen and 
paper at hand because he could not work without these tools: “Of course you could 
train yourself to do it mentally,” he continued, “but this is not how you work. This is 
not how I work. When I work, I write things down on a piece of paper.” Asked 
directly whether he solved problems mentally, another respondent (R11) asserted: 
“No, no. You write... You write... You write. You calculate a little on different sheets 
of paper, but usually, you know, they get thrown out or typed into the computer.” In a 
similar vein, R12 explained that doing mathematics is, to a large extent, a matter of 
“sitting down with a locked door and a pen and a piece of paper” (and not, as one 
perhaps might expect, sitting down with a locked door and thinking)2.  

Other aspects of the distributed cognition framework were also readily 
confirmed by the practices we encountered; algebraic symbols were used as epistemic 
artifacts to allow the mathematician to externalize calculations and simply read off the 
results (De Cruz and De Smedt 2013), and various external representations were used 
to stabilize complex conceptual structures, thus serving as material anchors in the 
sense developed by Hutchins (2005)3.  

Having confirmed the existence of distributed elements in mathematicians’ 
cognitive practices, we can move on to describe the nature of this distribution in detail 
by exploring two examples in greater depth.  

One respondent, R12, used a particular drawing as an important element in his 
research practice. He redrew the drawing for us (Figure 1), and when we asked him 
why he needed to draw the figure instead of just imagining it, he explained that he 
needed to do so in order to keep track of all the elements involved in the problem. 
Pointing out some of these elements in the drawing, he said:  

 
R12: If I should imagine this in my head. Well? It is just a small step this, and if I had 
to imagine this. I want to find out how small this angle can get, so it is an advantage 

																																																								
2	It	should	be	noted	that	we	do	not	interpret	this	to	suggest	that	mathematics	is	always	
performed	in	solitude	behind	closed	doors	as	an	individual	activity.	Rather,	the	point	is	that	the	
thinking	process	(alone	or	in	groups)	most	often	involves	writing	and	sketching.	
3	As	pointed	out	by	one	of	the	anonymous	reviewers	the	role	of	diagrams	in	mathematics	is	very	
diverse,	and	diagrams	may	also	in	some	cases	be	used	as	epistemic	artefact	in	a	way	similar	to	
symbols	(see	e.g.	De	Toffoli	and	Giardino	2014).			
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to have written it somewhere, right? So this is alpha, I've found a limit for. So I start 
calculating how small it can get. [...] And then we have this angle, we could call it 
Teta [Goes on adding and describing several other features in the drawing]. And then 
I begin to have several things to keep track of. And if you have to keep this in your 
head, things start to go wrong.  
 

Figure 1: Figure drawn on blackboard by R12. 

The drawing, in other words, functions in part as a material anchor used to stabilize an 
elaborate conceptual structure by capturing ideas and concepts as traces of chalk on a 
blackboard. This is a clear case of externalizing, and yet, the drawing also played a 
more active role in the formation of mathematical ideas. R12 went on to describe how 
the various stages of the representation opened new possible venues for investigation 
and inference. Some of them were small and incremental, while others were more 
radical. To exemplify, he reported how he had had a major breakthrough with the 
problem one night when he started to imagine a particular line segment of the drawing 
pointing in a different direction. Thus, the drawing—in the form of the geometric 
properties of an envisioned revision of the diagram on which he had been working—
prompted new solution strategies. 

The idea that a drawing or a symbolic representation can suggest new moves 
or prompt ideas you might otherwise not have had forces us to add an important 
nuance to our understanding of the way mathematical cognition is distributed. The 
case above cannot be understood as a simple case of cognitive offloading, where an 
active cognitive agent offloads or distributes a cognitive task onto a passive cognitive 
tool. Rather, the case marks a clear shift in agency and indicates that the relationship 
between mathematicians and the cognitive tools they use is dynamic and interactive.  

To explore this further, we will investigate another example, in which the 
respondent (R1) directly addressed this aspect of his use of external representations 
(more specifically, his use of diagrams):   

 
R1: I have something in my head, but I need to write it down in order for it to be 
concrete and correct; that is, sometimes you have a wrong picture in your head. 
Interviewer: So it might be that you have a diagram in your head, so to speak, and 
then... 
R1: Yes, not in detail, but... You need to have the structure of the diagram in your 
head. It doesn’t come by itself. What you have in your head is an attempt to structure 
information. Or the beginning of it. And then you start writing it down, and it might 
not be exactly what you had expected. You need to change it before it works, or it 
might not work. That also happens. [...] It is similar to telling it to somebody else. 
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When you do that, you also get your thoughts and the information you imagine more 
structured. 
 

For R1, the diagrams are not externalizations of cut-and-dry ideas and thoughts. 
Although R1 needs to have an idea before he puts pencil to paper, the externalizing 
process structures the idea and makes visible the need for elaboration, revision, and 
change. His use of representations is not a one-way relationship whereby ideas are put 
into material shape; rather, it is a rich, interactive, and dynamic relationship in which 
ideas and representations constantly shape each other. R1 does not simply “write 
things down” or use the external representations as a way to communicate or store 
information. Rather, the representations constitute an intimate part of his reasoning 
practice, and his final results are the product of a rich interplay between the 
mathematician and the representations he has utilized4. This dynamic interplay 
between mathematicians and representations illustrates how firmly the 
mathematicians are lodged in their cognitive niche. Mathematicians do not use 
representations in a plug-and-play fashion whereby mathematical ideas and content 
are developed prior to and independent of representations. Rather, the two are 
intimately interconnected. The intimacy of the relation between representations and 
mathematical thinking was seen in all the interviews we conducted, and will be 
present as an undercurrent in many of the examples we present below. In order to add 
another layer to our analysis, however, we will move its basis from distributed 
cognition to cognitive semantics, and explore how mathematicians use everyday 
experiences as a cognitive tool in their work practice.   

3.0 Relating everyday experiences to types of material representations 
In connection with the discussion of the representation in Figure 1, R12 also 
explained that such drawings allowed him to apply everyday experiences of the 
material world (such as “you cannot take a big thing and put it into a little thing”) to 
his mathematical work. This suggests that the dynamic relationship emerging from 
R12’s use of the blackboard not only includes the traces of chalk comprising the 
representation, but also R12’s previous body-based experiences of handling and 
manipulating physical objects of the material world. 

The use of everyday experience was a common aspect of our respondents’ 
work practice, and it was expressed in several qualitatively different ways. Some 
respondents would, for instance, use purely metaphorical expressions. For example, 
R8 described an object from topology—a spectral sequence—in the following way:  

 
R8: In topology, you sometimes use these spectral sequences. […] Well, a spectral 
sequence. You have… You have to imagine a book with pages. And then you have a 
page 1, which could be the one I have here, and a page 2 […] and so on. Each page is 
like a bi-graduated object. 

 
So here, we are invited to understand a particular type of mathematical object—
spectral sequences—through our preestablished understanding of a class of everyday 
objects—books. 

																																																								
4	As	one	of	the	anonymous	reviewers	kindly	pointed	out	such	dynamic	processes	are	not	
confined	to	mathematical	reasoning	or	reasoning	with	diagrams,	but	could	also	occur	in	
connection	to	other	representations	(see	e.g.	Clark	1998)	
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In the case above, the metaphor was established verbally, but in several other 
cases, the connection between mathematics and everyday experiences was established 
via a particular external representation. R12’s use of everyday experience as 
mentioned above was, for instance, mediated by and dependent on the particular 
drawing he used to represent his problem area. In the following, we will describe 
some of the ways representations are used to mediate the connection between 
mathematics and everyday experiences.  

We will begin with a diagram respondent R5 had been working with (Figure 
2).  
 

 
Figure 2: R5’s diagrammatic representation of an algebraic number field. The number field is represented 
by the symbol KK’, and its sub-parts by K, K’, and Φ. 

The diagram represents the structure of a particular type of mathematical set (an 
algebraic number field). When we asked R5 about the meaning of the diagram, he 
gave the following description:  
 

R5: These are very concrete things, right. These are number fields. […]. Up here is 
something [points to KK’], and it contains this [points to K] and this [points to K’], 
and both of these contain this [points to Φ]. 

 
When we asked whether he actually thought about the situation in the way the diagram 
describes, he answered:  
 

R5: I think about it this way. I do. I would imagine these pictures if I thought about it, 
I would. Because if you don’t have these pictures, it becomes very difficult to 
imagine the situation. 

 
R5’s description of number fields as “very concrete things” together with his pointing 
to the diagram and claim that he “think[s] about it this way” support the interpretation 
that he conceives of the number fields as if they were physical objects: To him 
number fields have a location in space, they can be decomposed, and the subparts can 
be arranged in space in the same structured way that a mechanic might place the gears 
of an engine he is disassembling on the floor of a garage. The lines in the diagram 
relate to imagined motions needed in order to reassemble the various parts of the 
object. If this interpretation is correct, then the diagram reveals the existence of a 
conceptual map that takes physical objects as a source domain and number fields as a 
target domain, that is: Composite physical objects are mapped onto number fields, and 
the subparts of physical objects are mapped onto the subparts of number fields. The 
diagram itself functions as a material anchor for this conceptual map in the sense that 
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it resembles a possible configuration of physical objects that could form a source for 
the conceptual map (cf. Johansen 2014). However, we do not believe that R5 
identifies the mathematical objects with the diagram as such. In this case the diagram 
and the conceptual map are interconnected: The diagram is only meaningful by way 
of the conceptual map5.   

R5 reassured us that everything in this and similar diagrams can be expressed 
in a purely symbolic way. He was, in other words, not forced to use the diagram as his 
representation; rather, it was a purely pragmatic choice:  

 
R5: If you don’t have these pictures, right, it is actually difficult to imagine the 
situation. [..] And if you have to visualize the situation in any way, it is difficult 
without the drawing. You could write it up using symbols, but it would be... If you 
wrote it up using symbols, then it would actually be much harder to read.  

 
The material diagram thus enabled the mathematician to visualize the situation he was 
working on and to apply his everyday experiences of decomposing and moving 
physical objects to his mathematical work. In a similar vein, R6 used a circular 
diagram (see Figure 3) to represent a permutation.6 When interpreting the diagram, 
one has to imagine that the numerals connected by a line inside the circle (such as 1 
and 3 in the figure) will change place when the permutation works.  

Asked why he used the diagram instead of purely formal thinking, R6 gave the 
following explanation:  

 
[The diagram] is a good way to depict things. To think. Perhaps because it is nice to 
think in pictures. To be able to visualize these manipulations. And then you also get a 
feeling for what you are looking for. […] If you have a visual way of thinking, it can 
become very obvious. At least we used them [the diagrams] a lot in our work, also as 
a way of getting ideas for the proofs. At one point, we found methods that could be 
used to remove such crossings, right. 

 
The diagram offers an effective visual organization of information to R6. This can 
support formal thinking, but there is also a clear connection to physical motions or 
																																																								
5	Note	that	by	his	we	do	not	mean	that	diagrams	cannot	support	formal	thinking.	Furthermore,	
certain	diagrams	can	also	be	subject	to	purely	formal	manipulations.		
6 In mathematics, a permutation is an operation that reorganizes the sequential ordering of the elements 
of a set.  

Figure 3: Example of a circular diagram (drawn by R6). 
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gestures. In the quote, R6 is using the diagram as a way to “be able to visualize these 
manipulations.” This indicates that the lines connecting the numerals are to be seen as 
traces of the movements we would perform if we actually permuted the numeral 
symbols present in the diagram. So, similar to the example above, the diagram 
anchors a conceptual map between body-based experiences of manipulating an 
arrangement of discrete objects and the abstract definition of the mathematical 
concept “permutation.” 

In the type of circular diagram used by R6, it is possible that two or more of 
the lines can cross each other—in Figure 3, for instance, the line connecting 1 and 3 
crosses the line connecting 2 and 4. R6 explained that within the theory he was 
working with, it was common to use the concepts “crossing permutations” and “non-
crossing permutations” to distinguish between permutations whose diagrammatic 
representations have and do not have, respectively, the kind of crossing lines seen in 
Figure 3. So here we see how particular material features of a diagram—the crossing 
or non-crossing of lines or movements—can be used to inspire and influence the 
conceptual development of mathematics; in this case, the distinction between different 
subclasses of the concept “permutation.”  

R6 saw the relationship between the formal and diagrammatic definitions of 
the concept in this way:  

 
You can define it [the concept] purely formally, right; and this is typically how you 
do it. But it’s just nicer to think or to make such a picture where you can see precisely 
what it is.  

 
So, although the concepts can be defined formally, they also importantly have a 
grounded meaning that is connected to particular features of diagrams and the bodily 
experiences associated with them—with the diagram, “you can see precisely what it 
is.”7  
 The two cases presented sit well within the framework of cognitive semantics: 
They support the claim that mathematicians actively apply conceptual mapping from 
body-based experiences to mathematical domains in their research process. The 
examples furthermore illustrate how the use of this cognitive strategy can be closely 
tied to the use and development of particular external representations; here, diagrams.  

In other examples, the everyday experiences of the mathematicians were not 
(primarily) exploited by establishing conceptual maps between domains of physical 
reality and domains of mathematical objects, but rather by the creation of external 
representations that, in turn, were used and explored as actual physical objects in the 
sense that purely typographic and topological aspects of the representation tokens on 
the paper were investigated. Several of our respondents thus used matrices as an 
important part of their problem-solving and explorative practices. They explained that 
matrices are useful because mathematically important properties can become visible 
as patterns and structures in the physical layout of the representations. One respondent 
(R5), for instance, explained the use of matrices this way:  

  
You can see ... you can visualize some properties. Let’s say for instance that there are 
only zeroes below the diagonal. That is something you can see in an instant, and you 
can also form a picture of it in your head, right, but it is also significant 
mathematically that it looks like this. It’s an expression that your map has certain 

																																																								
7	See	also	Carter	(2010)	where	the	role	played	by	the	same	type	of	circular	diagrams	in	finding	
and	constructing	a	mathematical	proof	is	discussed	in	depth.		



This is a pre-print version of an article accepted for publication in Synthese. The final authenticated version 
is available online at: http://dx.doi.org/10.1007/s11229-018-02033-4.  
	

12	
	

properties. You can write them up, but it is much easier to visualize them this way 
using the matrix form.  
 

R5 considered the guidance he received from matrix patterns to be “crucial” and 
concluded by explaining that, in some cases, an essential part of the problem-solving 
process can be accomplished “just by staring at it [a matrix] and finding a pattern.” 

To illustrate the strength and diversity of the matrix language, we will 
investigate another example. Respondent R13 was trying to generalize a theorem from 
square to rectangular matrices8 and, as an important part of his working process, he 
would draw outlines of such matrices. In Figure 4, we see one of these drawings. 
Here, a rectangular matrix is represented as a large rectangle, and three square 
matrices are represented as smaller squares. With this representation, parts of the 
mathematical problem are reduced to a more intuitive problem of fitting small squares 
into a larger rectangle, and the drawing makes it easier for the mathematician to 
visualize and handle the different ways this can be done.  
 

 
Figure 4: One of R13’s drawings. The outer rectangle indicates the outline of a large rectangular matrix. 
The small squares inside it indicates the outlines and possible positions of three smaller square matrices.  

In principle, a matrix can be represented as a list ordered by indices in two 
dimensions, thus: {a11, a12, a13, ..., a21, a22, a23, ...}. When we asked R2 whether he used 
such lists instead of the usual two-dimensional representation, he answered:  

 
No, no, because part of the problem was to find the right pattern in the matrix we 
were looking at. So it was important that there were only zeroes in some triangles and 
that there were some [particular] structures if you looked at the diagonals and so on.  

 
In a similar vein, R5 acknowledged that you could make a list or give an explicit 
description of the map represented by the matrix:  
 

But the matrix is a short form [of a list or description]. It is extremely practical 
because it is something you can keep in your head, right; you can keep this picture in 
your mind whereas it would be very difficult keeping the explicit description in your 
mind, right?  

 

																																																								
8 Square matrices have the same number of rows and columns and will consequently typically have a 
square typographical outline in the usual representational form. In contrast, in rectangular matrices, the 
number of rows does not coincide with that of the columns.  
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So, our respondents were clearly not just focused on creating some external 
representation that they could point to. Rather, they were interested in the particular 
visual organization matrices offered to them. There may be several different 
advantages of using matrices. As R5 explained, the organization offered by matrices 
is so intuitive that you can easily visualize them and keep them in your mind; but 
more to the point here, matrices allow mathematicians to tackle mathematical 
problems using geometric imagination as well as knowledge and skills that are based 
on the everyday experiences of handling material objects. Due to the matrix 
representation, the ability to recognize a triangle of zeros in an array of numbers or—
in the case of R13 (Fig. 4)—experiences with fitting small square boxes into a larger 
rectangle can become a valuable resource that the mathematician can exploit in his 
work practice. Matrices, therefore, are not only tools that allow the mathematician to 
externally anchor and manipulate mental content. They are also tools used to translate 
mathematical properties from various fields of mathematics into geometrical features 
of a representation, and this translation allows the mathematician to activate his or her 
reservoir of geometric experience obtained by being in, moving through, and handling 
the geometrically structured physical world.  
 As these examples illustrate, the two cognitive strategies—externalization and 
the use of embodied experiences—are interconnected. Representations are used not 
only to anchor conceptual structures and externalize cognitive tasks, but also to 
facilitate the use of embodied experiences in mathematical work.  

As a final aspect of the complex relationship between representation and 
experience, the experiences mathematicians had from handling external 
representations could also be turned into a primary resource of its own, playing a 
cognitive role similar to embodied physical experiences. Some of our respondents 
would deliberately aim to build up such experiences. This was particularly clear in the 
case of R2. He explained how he would often approach a new problem by calculating 
numerous examples in search for patterns that could be exploited. He was aware that 
he could have saved time by using the computer to generate examples, but normally 
he would refrain from doing so; if he had found an interesting pattern using computer 
calculations, he would even redo the calculations by hand. He was not as much 
interested in the result of the calculation as in the experience he obtained from 
handling the formal structure by calculating simple examples. As he explained: 
 

R2: But for me it is always important to understand things with pen and paper as well 
[and not only by computer]. In a sense it gets better; I understand it better and 
remember it better afterwards. 

 
So here we see how an embodied, grounded understanding of a formal structure can 
be built not only through experiences of a physical nature, but also through direct 
experiences of manipulating and working with external representations of that 
structure.  

To summarize, mathematicians need material representations in order to work 
with mathematics. They use these representations not just as a way to store or convey 
cut-and-dry thoughts and ideas, but also and more importantly as a central aspect of 
the formation and shaping of their thoughts and ideas. Mathematicians interact with 
their representations and use them in a dynamic way. Their ideas, thoughts, and 
concepts both shape and are shaped by the properties of the representations they use. 
Moreover, external material representations support and facilitate mathematicians’ 
use of embodied experiences in the process of developing mathematical thoughts and 
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ideas. Material representations, in other words, constitute a vital part of the cognitive 
niche (or niches) of research mathematicians; and for that reason, the choice of 
representations is of vital importance, not only because different representations 
support the cognitive process to a lesser or greater extent, but also and more acutely 
because different representations influence the conceptual development of 
mathematics in different ways (as we saw in the case of the crossing permutations, 
Fig. 3) and will allow different aspects of the mathematician’s everyday experience to 
become manifest in mathematical practice (as we, for example, saw in the matrix 
case, Fig. 4).   

4.0 Enculturation: The material and the social 
The question of representation choice was not a part of our original research focus 
(which was: problem solving, the support delivered by artifacts and the mathematical 
writing process; Misfeldt and Johansen 2015), but the topic emerged in our interviews 
as an important category in the mathematicians’ work practice. Our data show that 
mathematicians are very aware of their choice of representation, and the analysis 
presented above suggests at least one reason: Material representations constitute a 
central cognitive tool to the mathematician; consequently, the cognitive possibilities 
of the mathematician are closely tied to the affordances of the representation he or she 
is using. In our interviews, it was, however, apparent that the mathematicians’ choice 
of a particular representation was founded not just in cognitive efficiency, but also in 
concerns of a more social nature. Therefore, it makes sense to investigate this aspect 
of their practice using the concept of enculturation.  

When our respondents reported the results of their work in mathematical 
journals, they clearly related to social norms and genre conventions. This relation was 
partly a subordination in the sense that the respondents needed to balance the 
cognitive affordances of figural representations (diagrams, figures, graphs, etc.) with 
journal genres and community norms that promote a more formal approach to 
mathematics; as indicated above, drawings and diagrams played a significant role in 
our respondents’ everyday practice, yet they were often downplayed in the published 
work. The respondents agreed that formalizable proofs are necessary, but they 
regretted the loss of figural representations in the formalization process (cf. Johansen 
and Misfeldt 2016). For instance, relating to the matrix outline in Figure 4, respondent 
R13 noted that the figure would not be in the final paper: “But really, it should be 
included because if I give a talk or try to explain it to anybody, I would draw the 
figure.” Along the same line, another respondent (R10) explained that the pictorial 
reasoning he had explained to us would not be present in the published papers, 
“Although,” he added, “you actually understand things better, I would say, [with 
pictures]” (Johansen and Misfeldt 2016, p.265). As these quotes reflect, the 
mathematicians clearly submitted to cultural norms governing the dissemination of 
research in mathematical journals, even though they were aware of the potential 
cognitive disadvantages these norms might have. Hence, mathematicians may feel in 
conflict with the norms and values governing the use of the cognitive tools present in 
their particular cognitive niche.  

It is perhaps not so surprising that mathematicians submit themselves to 
genres and norms when they write papers for publication, but we were more surprised 
to find that mathematicians also felt pressure to subordinate themselves to cultural 
norms and practices when they were working alone behind the closed doors of their 
offices. Accordingly, all the mathematicians we spoke with tended to express 
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themselves in preexisting representational languages instead of using idiosyncratic 
visualizations and representations, even in cases where the preexisting language did 
not represent the mathematical objects exactly as the mathematicians visualized them 
and where they could envision ways of representing the objects that came closer to 
their own conceptual image.  

This is seen in the following quote by R5, who continued his comments on the 
diagram reproduced in Figure 3 with the following observation: 
 

R5: This is the way I think about it. If you take this precise situation in my field, 
everybody in the whole world would draw it like this. It is simply because a culture 
has emerged concerning how... It has emerged because a particular mathematician at 
a particular point in time began drawing it like this.  
[…]  
R5: But I would add, that the pictures you have in your head do not only consist of 
diagrams and little symbols. There are also other things, right, that I do not draw 
because I cannot draw them.  
Interviewer: So the standard representation, it doesn’t capture everything that you 
imagine?  
R5: No no, it doesn’t. I would say that it’s only the bottom level of it, right. 

 
So, R5 chose to express himself in a preexisting representational language, although it 
did not fully capture what he imagined. There might be several explanations for this 
choice. One is cognitive economy. It takes time and effort to create a suitable 
representation—it might even not be possible—and consequently it is easier to speak 
using a preexisting one. From this point of view, a particular representational form 
can be seen as a culturally created resource that is available as part of certain 
cognitive niches (as explained by Menary 2015). This also means that the 
mathematicians’ decision to use a particular representation not only depends on the 
cognitive needs of the here and now, but is also historically situated and reflects the 
outcome of developments and negotiations of the past. To illustrate this, we can 
briefly return to the drawing made by R12 (Fig. 1). In the figure, we see a parabola 
drawn in a coordinate system, and although R12 was clearly interested in the 
geometric properties of the drawing (such as angles between lines, etc.), the problem 
he was tackling in fact belonged to number theory. The parabola in the drawing is 
thus a representation of the set of pairs of rational numbers, where the second number 
is the square of the first ({(𝑥, 𝑥%)|x ∈ ℚ}). It is not obvious how you get from a set of 
numbers to geometry, and the representation of the set above as a parabola is only 
possible with the aid of a sophisticated artifact (the Cartesian coordinate system) and 
a highly developed theoretical construct (analytic geometry). So, when R12 used a 
parabola to represent his number theoretical problem, he depended on the cognitive 
tools left for him to use by past mathematicians, on his and his predecessors’ 
development and appropriation of the cultural practices surrounding these tools, and 
on the negotiations that rendered these practices and tools acceptable parts of the 
cognitive niche inhabited by number theorists like himself (cf. Pycior 1997). 

In an in-depth analysis of the respondents’ choice of problem to work on 
(published in Misfeldt and Johansen 2015), we further observed that the possibility to 
resonate with trends in the mathematical community is one of the central criteria for 
choosing problems and research directions as a mathematician. For example, one 
researcher (R4) described how his supervisor always told him to think about what 
other mathematicians are interested in. It takes time and effort to read the work of 
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other mathematicians, and if no one is willing to invest the necessary time in reading 
your research,	“you might as well not have done it” (Misfeldt and Johansen 2015, p. 
367). 

Hence, mathematicians have a clear interest in getting their work recognized. 
For both emotional and strategic reasons, they need to get the attention of and 
resonate with other practitioners in their field. If you use your own idiosyncratic 
representations, it will be difficult for you to share ideas and collaborate with other 
mathematicians, not only because they might not understand the conventions of your 
representational language, but also because they might not understand you at a more 
fundamental cognitive level. This observation does not rule out the possibility that 
some mathematicians may succeed in introducing new notation. It only serves to 
explain why it is the exception rather than the norm.  

In a very literal sense, representations can create shared meaning for the 
inhabitants of a cognitive niche, even in cases where the representations are not used 
in published work. R6, for instance, did not use the circular diagrams (Fig. 3) in the 
publication of his results, but because basic concepts, such as crossing permutations, 
derive their meaning from the diagram, it would be difficult (or at least more difficult) 
for the mathematicians R6 was collaborating with to understand and resonate with his 
reasoning if they were using radically different diagrams or no diagrams at all. 
Exactly because material representations form a deeply integrated part of the 
mathematical reasoning process, and are not just a tool mathematicians use to convey 
ideas and thoughts, collaboration in mathematics is facilitated better if the 
mathematicians express themselves in shared representational languages.  

The need to share information with others, to focus on problems that resonate 
with peers, and to use commonly accepted representations is therefore not only a 
strategic and career-related consideration. It is also a way to participate in the shared 
and public cultural practices of a cognitive niche that transcend the psychological and 
strategic needs of the individual mathematicians, and is thus necessary in order to do 
mathematics as it is most commonly practiced, i.e., as collaborative work (cf. Burton 
2004). The idea that mathematicians enter a cognitive niche and are shaped by the 
cognitive tools and cultural practices existing in the niche is a very clear example of 
enculturation in the sense of the concept as used by Menary (2015).  

Although the strategic and emotional need for collaboration was strongly 
present in our interviews, it should be noted that such considerations may not be the 
only motivating factor in representational choice. Epistemic considerations may be of 
importance, but sociological factors such as the political and social outlook of the 
mathematicians may also play a role (e.g. Bloor 1981). It is however beyond the 
scope of this paper to pursue this perspective.  

5.0 An integrated understanding of cognitive mathematical practice  
In sum, our analysis of the empirical material has shown that (1) mathematicians 
interact with their material representations, and during this interactive work process, 
both their representations and ideas are changed and shaped. (2) Mathematicians use 
experiences of handling the physical world as a resource in their mathematical work. 
External, material representations can be used to facilitate the activation of such 
experiences, and they can constitute new domains for embodied experiences. (3) 
Mathematical work is done in cognitive niches constituted in part by the tools and 
cultural practices displayed with external representations. Individual mathematicians 



This is a pre-print version of an article accepted for publication in Synthese. The final authenticated version 
is available online at: http://dx.doi.org/10.1007/s11229-018-02033-4.  
	

17	
	

are enculturated in the sense that they take over or surrender to the practices that 
dominate the niche they are working within.  

Our analysis furthermore showed that these three aspects of the mathematical 
practice are interconnected and cannot be understood in isolation; the use of external 
representations as cognitive tools is interconnected with the use of embodied 
experiences and both of these strategies play out in a cognitive niche that is governed 
by social and cultural practices. The analysis thus shows the strength of using the 
basic concepts and ideas from the theory of cultural integration in the analysis of 
mathematical cognition. Cultural integration makes it possible to analyze and 
integrate different aspects of mathematical cognition without falling into eclecticism, 
and–of special importance for the paper at hand–the theory furthermore offers a view 
of the role played by mathematical representations that neither considers social and 
cultural factors to be superfluous nor regards mathematical representations to be a 
stable resource that is unaffected by culture. 

Still, our analysis also augments the theory of cognitive integration as it is 
presented by Menary (2015). As a first such augmentation Menary seems to focus on 
the development of cognitive artifacts and the related cognitive practices. As a central 
result of our analysis we saw that in mathematical cognition the use of external 
representations in distributed cognitive processes has a direct connection to the use of 
bodily experiences. The cognitive tools and practices that are found in a cognitive 
niche are closely tied to the embodied experiences of the cognitive agents exploiting 
the niche. As we have seen in section 3, this relationship can play out in several 
different ways; some representations may either by design or by accident facilitate the 
use of embodied experiences in a mathematical task (e.g. the matrix outline, Fig. 4), 
while on the other hand embodied experiences may add a crucial dimension of shared 
meaning to a particular representational form (e.g. the circular diagrams, Fig. 3). 
These phenomena seem crucial in the data we have presented here, and they should 
not be subordinated to, but rather integrated in the fruitful analysis of the connection 
between culture and cognitive tools that has been undertaken in cognitive integration. 

As a second augmentation cognitive niches are not fixed and stable. We may 
inherit a niche and use the tools it offers us, but the niche can also be shaped by us if 
we introduce new tools or manage to change current practices. Menary mentions 
symbolic novelty as one way a niche can be expanded, but he is aware that he does 
not have a good answer to the general question of novelty in mathematics (Menary 
2015: 15-16). Clearly, we are also not able to answer the question in full generality, 
but from our data we can point to more of the mechanisms that are at play in 
expansion and mathematical novelty. First, novelty in modern mathematics is not 
confined to new ways of using symbols. As we have seen in both section 2 and 3, 
diagrams and other forms of pictorial representations can have a generative power in 
the mathematical practice. Representations can not only suggest new proof strategies 
(as the drawing in Fig. 1 did to R12), they can also play a generative role in the 
development of mathematical concepts and in forming new connections to embodied 
experiences. These roles of representations can have consequences both on the level 
of individual cognition and on a more general cultural level as they may change 
mathematics e.g. in terms of central concepts and research agendas (see e.g. Johansen 
and Misfeldt 2015). Therefore, it is important to understand the processes that develop 
and change the cognitive niche of mathematics.  

So in sum, in this paper we have investigated the question of cognitive support 
in mathematics by analyzing the roles material representations play in the practice of 
research mathematicians. Our focus has been on the practices connected to the 
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creation of new mathematical knowledge as experienced and described by research 
mathematicians. As our main results, we saw that mathematicians depend heavily on 
external, material representations when they acquire new knowledge, that these 
representations play a generative role in the mathematical practice, and that the use of 
material representations is tightly connected to the use of embodied knowledge taking 
mathematicians’ everyday experiences as source domain. The cognitive practice of 
mathematicians is furthermore clearly situated in and influenced by its social and 
cultural context, and finally, we have exemplified how central concepts and ideas 
from the theory of cognitive integration can be used to tie together these diverse 
aspects of mathematical cognition into a combined whole. 
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