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ORIGINAL RESEARCH Open Access

ECMO improves survival following
cardiogenic shock due to carbon monoxide
poisoning - an experimental porcine model
Carsten Simonsen1,2* , Sigridur O. Magnusdottir2,3, Jan J. Andreasen1,2, Marianne Cathrine Rohde4

and Benedict Kjærgaard1,2,3

Abstract

Background: Severe intoxication with carbon monoxide (CO) is extremely lethal and causes numerous deaths due
to cardiac or respiratory failure. Conventional intensive treatment may not be sufficient. The aim of this study was
to investigate the treatment effect of extracorporeal veno-arterial extracorporeal membrane oxygenation (ECMO)
following severe CO poisoning in an experimental porcine model.

Methods: A total of twelve pigs were anaesthetized, routinely monitored and intoxicated by inhalation of CO until
the beginning of cardiac failure and randomized to a treatment (ventilator using an FiO2 of 100% or ECMO). In the
case of cardiac arrest, advanced resuscitation using standard guidelines was performed for at least 10 min. ECMO
was also initiated in the ventilation group if the return of spontaneous circulation did not occur within 10 min.
Lung tissue biopsies were obtained before and after CO intoxication.

Results: All animals in the ECMO group survived; however, one had to be resuscitated due to cardiac arrest. A
single animal survived in the ventilator group, but five animals suffered from cardiac arrest at an average of 11.8
min after initiation of treatment. Conventional resuscitation failed in these animals, but four animals were
successfully resuscitated after the establishment of ECMO.
A significant decrease was noticed in PO2 with increasing HbCO, but there was no increase in pulmonary vascular
resistance. No differences in H&E-stained lung tissue biopsies were observed.

Conclusions: The use of ECMO following severe CO poisoning greatly improved survival compared with conventional
resuscitation in an experimental porcine model. This study forms the basis for further research among patients.

Keywords: Carbon monoxide poisoning, Smoke poisoning, Extracorporeal membrane oxygenation, Hyperbaric
oxygenation, Cardiac failure, Respiratory failure, Pulmonary vascular resistance

Introduction
Carbon monoxide (CO) is extremely treacherous; invi-
sible and without smell or taste, this lethal gas overtakes
people without warning. Negligible CO concentrations
occur in the atmosphere, but large amounts of CO form
during the insufficient combustion of organic material,
and a primary risk of exposure is the inhalation of
smoke from fires [1]. Other significant sources of CO

poisoning include residential heat sources, suicide/at-
tempts and occupational exposure [2–5].
Approximately 50,000 annual contacts with emergency

departments in the US are due to CO poisoning, resul-
ting in approximately 2700 deaths [6, 7]. Surviving
patients may suffer from increased risk of developing
neurological symptoms, e.g., extrapyramidal symptoms,
encephalopathy and cardiac insufficiency [8–10].
The rationale behind all currently established treat-

ments for CO poisoning is to elevate the partial pressure
of oxygen in the blood, favouring the formation of HbO2

instead of HbCO, and to increase the oxygen content in
the blood [11, 12]. In mild cases, this is achieved by
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administering supplementary normobaric oxygen (NBO)
for inhalation. In more severe cases, hyperbaric oxygen
treatment (HBO) is used [11]. HBO can further increase
blood oxygen content, resulting in a decreased half-life
of HbCO, but the protocol for when to offer HBO differs
greatly internationally [13].
CO poisoning may have a profound effect on both

respiratory and cardiac function, but although HBO in-
creases blood oxygen tension and decreases HbCO
half-life, the benefits of HBO remain highly debated
[14–17]. Conventional intensive treatment methods may
not be sufficient, and the aim of the present study was
to investigate the treatment effect of extracorporeal
veno-arterial extracorporeal membrane oxygenation
(ECMO) following severe CO poisoning in an experi-
mental porcine model. The porcine model was chosen
due to the close resemblance between porcine and hu-
man anatomy/physiology [18]. We hypothesized that
(ECMO) would improve survival.

Methods
Ethical statement
This study was carried out in accordance with Danish
and European legislation regarding the use of animals
for research purposes. The experiments were approved
by the Danish Animal Experiments Inspectorate (J.nr.
2016-15-0201-01064). At all times, a veterinarian was
present, and all participants had training in laboratory
animal science prior to experimentation.

Experimental animals and instrumentation
All experiments were carried out at the Biomedical Re-
search Laboratory at Aalborg University Hospital,
Denmark. The research animals were 12 female pigs
(Danish Landrace) with an average weight of 48 kg
(range 45–51 kg) and approximately 90 days old. The
animals were housed in nearby boxes at the laboratory
for acclimatization up to 7 days prior to the experiment.
During this period, the animals had access to food/water
and were attended to by laboratory staff several times
each day. Premedication with Zoletil, an anaesthetic
combination drug containing equal concentrations of
Tiletamine and Zolazepam, was used. Anaesthesia,
which was similar in both study groups, was maintained
with continuous intravenous infusion of fentanyl and
propofol based on weight, with minor adjustments to
ensure that anaesthesia was sufficient. The animals were
intubated using a 6.5-mm cuffed endotracheal tube and
connected to a ventilator (Dameca DREAM, Rødovre,
Denmark). Tidal volume was calculated using 8 mL/kg
and the respiratory rate (RR) was adjusted according to
blood CO2 levels (14–17/min) and reduced whenever
ECMO was running. FIO2 was set at the lowest level
possible while still achieving blood PO2 levels within a

normal range. To avoid atelectasis, positive end-expiratory
pressure (PEEP) was fixed at five cm H2O and recruitment
was performed regularly by increasing PEEP to 10–15 cm
H2O. A small venous catheter was placed in one ear vein to
facilitate the infusion of fentanyl and propofol as primary
anaesthesia during the remainder of the experiment.
Throughout the experiment, fluid was administered accor-
ding to existing guidelines for porcine anaesthesia [19, 20].
A bladder catheter with a thermal sensor was inserted and
used for monitoring diuresis and core temperature. To de-
tect any possible arrhythmias, constant electrocardiography
was performed. Real-time arterial pressure measurements
were achieved using an arterial catheter connected to a
pressure transducer inserted into the right carotid artery.
The same catheter was used for drawing blood for analysis.
After a full sternotomy, arterial catheters were inserted

into the pulmonary artery and the left atrium to measure
pressure differences over the pulmonary vascular system.
The catheters were also used for drawing blood for ana-
lysis. Using an articulating dissection instrument (Wolf
Lumitip Dissector™, AtriCure, Mason, Ohio, US)-modi-
fied for multiple use as a guide, a division of the fibrous
tissue connecting the aorta and the pulmonary artery
was made, allowing for the placement of a sonography
probe (16–18mm, MediStim, Copenhagen, Denmark)
around the main pulmonary artery. The probe was
connected to a flow monitor (MediStim, Copenhagen,
Denmark), enabling real-time measurements of the
cardiac output.
The flow through the main pulmonary artery was used

as cardiac output and for calculating the pulmonary
vascular resistance (PVR). PVR was calculated using the fol-
lowing formula: PVR= (80 x (Mean Pulmonary Arterial
Pressure- Left Atrial Pressure))/Pulmonary Blood Flow. The
right femoral artery and vein were exposed after surgical in-
cision, and after heparin injection (30,000 IE), a 15 French
cannula (Medtronic, Minneapolis, Minnesota, US) was
inserted into the artery for infusion of blood from the extra-
corporeal system. Drainage to the system was achieved using
a 21 French cannula (Medtronic, Minneapolis, Minnesota,
US) inserted over a guide wire into the right jugular vein.
For extracorporeal circulation, we used a prototype

centrifugal pump to drive the extracorporeal circulation
through an oxygenator (QUADROX adult, Maquet,
Rastatt, Germany). Oxygen flow to the oxygenator was
set at a constant level of 2 L/min with 100% oxygen.
Extracorporeal blood flow was measured using an ultra-
sonic flowmeter (Sono TT, em-tec GmbH, Finning,
Germany). The pump was initially set to 3000 rounds
per minute (RPM), resulting in a mean flow of 2.4 L/
min. By using two additional Y-connectors, a shunt in
the external circulation was created, allowing us to ini-
tiate/stop external circulation quickly without tampering
with pump settings.
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CO was delivered from a pressure cylinder with an at-
tached pressure reduction valve. Through “air” tubes,
CO gas was connected to 1) a CO monitor (Exhaust
Emission Gas Analyser, Model SV-5Q, China Coal,
Shaanxi, China) and 2) the research animal via the venti-
lator, forming a closed system to avoid leakage of CO
into the operating theatre. When administering CO, the
valve was opened briefly with intervals to avoid overdo-
sing and to keep the inhalation concentration at a level
of approximately 1–2%. CO administration was stopped
permanently at the time of randomization. Conventional
arterial blood gas analyses were made regularly using a
blood gas analyser (ABL800 FLEX Series, Radiometer
Medical, Brønshøj, Denmark), allowing us to track
changes and to keep track of HbCO during the experi-
ment. Constant CO monitoring with an alarm was used
to secure the safety of laboratory personnel in the room.

Experimental protocol
Animals were randomly assigned to the study groups fol-
lowing simple randomization procedures (computerized
random numbers) by a third party. Allocation concealment
was kept blinded for the study personnel who were going
to implement assignments at the time that cardiac failure
was evident (defined as cardiac output decreased to 50%),
which was taken as a surrogate measure of severe CO in-
toxication. At this point, a sequential numbered, sealed,
opaque envelope was opened. Blinding to the allocated arm
was not possible due to the nature of the experiment. The
primary outcome in the model was survival. The histo-
logical effect on lung tissue and changes in PVR were used
as secondary outcomes.
Cardiac arrest, defined as systolic blood pressure below

25mmHg, was treated using advanced resuscitation ac-
cording to the 2015 guidelines of the European Resuscita-
tion Council [21, 22]. However, chest compressions were
replaced by internal cardiac compressions, and direct
current defibrillation was attempted using internal paddles
(Zoll Pro Pac MD, ZOLL Medical Corporation, Chelms-
ford, Massachusetts, US). If resuscitation failed in the venti-
lator group (defined as no return of spontaneous
circulation (ROSC) and a lack of any signs of improvement
in the condition within 10min), ECMO was established.
Weaning from ECMO in both groups was not attempted
until HbCO was less than 10%. Weaning was not con-
sidered successful unless 10min of off-pump circulation
was completed without cardiac or respiratory failure. All
animals were euthanized using pentobarbital intravenous
injection after completion of the experiments.
Tissue samples of approximately eight cm3 were taken

from the lungs close to the pleura at different sites prior
to CO poisoning. Similar samples were taken after intoxi-
cation at the time of randomization. These samples were
preserved using formalin and analysed microscopically at

the Department of Forensic Medicine, Aarhus University,
after slicing and staining with haematoxylin and eosin
(H&E).

Statistical analysis
We used the “resource equation” method for sample size
calculation in the present study, as it was not possible to
assume anything about the effect size or to determine
standard deviations from previous studies [23]. Accord-
ing to this method, the value “E” was measured by the
following formula: E = Total number of animals − Total
number of groups. Any sample size that maintained “E”
between 10 and 20 was considered adequate. To avoid
unnecessary wastage of resources and comply with eth-
ical issues, we kept the number of animals included in
this pilot study to six in each group, i.e., “E”: 12–2 = 10.
For statistical analysis, we used the open source free-

ware program R, version 3.4.3/R-studio and IBM SPSS,
version 25. Group comparisons at baseline and at the
point of randomization were made using an unpaired
t-test. Tests for normality were performed by visual in-
spection of qq-plots of all variables and Levene’s test for
equality of variances. A paired-samples t-test was con-
ducted to compare mean pO2 at baseline and mean pO2

at the point of randomization. A simple linear regression
was constructed to predict pO2 based on HbCO.
Similarly, we constructed a linear regression to predict
pulmonary vascular resistance (PVR) based on HbCO
and PVR based on pO2. An exponential regression was
performed to describe the correlation between lactate
and HbCO.

Results
There were no significant differences between the study
groups at baseline (Table 1) and at the time of
randomization (Table 2). The mean time of the duration
of CO intoxication was 53min: 51.0 min for the ECMO
group (SD = 13.3) and 56.5 min for the ventilator group
(SD = 14.8), p = 0.97.
All animals survived in the ECMO group for at least

10 min after weaning from ECMO once HbCO was
below 10%, although one had to be resuscitated due to a
cardiac arrest that occurred immediately after the initi-
ation of external circulation (ROSC after 17 min). The
mean time from the identification of heart failure to the
initiation of ECMO treatment was 4.3 min. Only one
animal survived in the ventilator group, and five suffered
from cardiac arrest at an average of 11.8 min after the
initiation of treatment. It was not possible to resuscitate
any of these animals by conventional means within 10
min of cardiac arrest. However, after initial resuscitation
attempts were abandoned, we established ECMO treat-
ment and successfully managed to resuscitate four of
these animals (Fig. 1). No adverse events occurred. Time
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on ECMO was 182.5 min (SD = 21.9) for the ECMO
group and 201.6 min (SD = 63.5) for those in the ven-
tilator group that ended up on ECMO after failure of
conventional resuscitation, p = 0.96. The mean time
for HbCO to fall below 0.1 after intoxication was
123.7 min (SD = 20.0) for the ECMO group and 163.7
min (SD = 15.2) for the ventilator group, p = 0.56.
Lactate concentrations in the blood increased expo-

nentially as HbCO increased, p < 0.001 (R2 of 0.562)
(Fig. 2a). A significant regression equation was found

when comparing pO2 with HbCO, p < 0.001, (R2 of 0.496).
The predicted pO2 was equal to 109.2 mmHg minus 10.4
mmHg for every 0.1% increase in HbCO (Fig. 2b). There
was a significant difference in pO2, mean 83.1mmHg
(95% CI: 72.8–93.0) at baseline vs. mean 26.3mmHg (95%
CI: 20.3–26.3) at randomization, p < 0.001. We did not
find a significant linear regression equation, p = 0.54
(R2 = 0.008) when exploring the association between PVR
and HbCO (Fig. 2c). However, mean PVR was the lowest
at HbCO= 54% corresponding to a mean PVR of 200

Table 1 Baseline characteristics

Ventilator (n = 6) ECMO (n = 6) Difference

CI (95%) CI (95%) P-value

Weight (kg) 48.7 46.2–51.1 47.5 44.5–50.5 1.17 0.46

HbCO (%) 2.9 2.3–3.5 3.2 2.5–3.8 −2.5 0.47

pH 7.41 7.33–7.49 7.42 7.36–7.47 −0.01 0.86

Hb (mmol/L) 4.58 4.08–5.09 4.87 3.84–5.89 −0.28 0.54

pCO2 (kPa) 5.37 4.85–5.88 5.27 4.70–5.84 0.10 0.75

pO2 (kPa) 11.53 8.33–14.74 10.68 9.58–11.78 0.85 0.53

Lactate (mmol/L) 1.23 0.72–1.75 1.1 0.68–1.53 0.13 0.62

Temperature (°C) 37.3 35.8–38.9 37 36.6–37.5 0.28 0.67

Cardiac output (L/min) 3.45 2.77–4.13 3.72 2.84–4.60 −0.27 0.55

MAP (mmHg) 78.5 62.9–94.1 85.7 76.1–95.3 −7.2 0.34

HR (beats/min) 71.2 47.5–94.8 73.5 57.2–89.8 −2.3 0.84

MPAP (mmHg) 24.5 23.1–26.0 25.8 20.0–31.6 −1.3 0.58

MLAP (mmHg) 10.2 8.9–11.4 10.5 9.4–11.6 −0.3 0.61

PVR (dyn·s/cm5) 344.2 238.7–449.6 325.2 248.8–401.5 19 0.72

The table shows baseline characteristics of essential values in the ventilator group vs the ECMO group. MAP Mean Arterial Pressure, HR Heart Rate, MPAP Mean
pulmonary Pressure, MLAP Mean left atrial pressure, PVR Pulmonary Vascular resistance

Table 2 Characteristics at point of randomization

Ventilator (n = 6) ECMO (n = 6) Difference

CI (95%) CI (95%) P-value

HbCO (%) 69.7 59.4–80.0 67.9 49.6–86.2 −2.0 0.83

pH 7.26 7.16–7.36 7.31 7.23–7.39 −0.05 0.34

Hb (mmol/L) 5.85 4.98–6.72 6.17 5.21–7.12 −0.32 0.54

pCO2 (mmHg) 37.7 29.0–46.4 39.2 34.4–44.0 −1.4 0.72

pO2 (mmHg) 34.5 21.5–47.6 24.4 17.4–31.4 10.1 0.12

Lactate (mmol/L) 7.33 6.45–8.22 6.27 5.27–7.26 1.07 0.07

Temperature (°C) 37.4 36.1–38.8 37.1 36.4–37.7 0.35 0.56

Cardiac output (L/min) 1.57 1.17–1.96 1.34 0.43–2.25 0.23 0.57

% of base line 49.5 37.5–61.4 41.33 6.39–76.26 8.13 0.59

MAP (mmHg) 46.3 35.1–57.6 38.8 32.3–45.4 7.5 0.18

HR (beats/min) 102.5 74.8–130.2 108.17 84.4–131.9 −5.67 0.70

MPAP (mmHg) 20,0 16.6–23.5 16.2 12.5–19.8 3.83 0.08

MLAP (mmHg) 8.2 5.6–10.8 7.8 5.4–10.3 0.33 0.82

PVR (dyn·s·cm−5) 657.3 316.2–998.5 579.8 207.8–951.9 77.5 0.70

The table shows characteristics of essential values at point of randomization in the ventilator group vs the ECMO group. MAP Mean Arterial Pressure, HR Heart
Rate, MPAP Mean pulmonary Pressure, MLAP Mean left atrial pressure, PVR Pulmonary Vascular resistance
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Fig. 1 Flowchart of survival. ECMO = Extracorporeal membrane oxygenation, ROSC = Return of spontaneous circulation

Fig. 2 a Correlation between blood lactate level and percentage of HbCO. b Correlation between the oxygen pressure in the blood and the
percentage of HbCO. c Correlation between pulmonary vascular resistance (PVR) and the percentage of HbCO in blood. d Correlation between
oxygen pressure in the blood and PVR
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dyn·s/cm5 (95% CI: 148–252) compared to the baseline
mean PVR of 319 dyn·s/cm5 (95% CI: 261–378) (Fig. 3a).
This difference was statistically significant (p < 0.001). No
correlation was found between pO2 and PVR, p = 0.76
(R2 = − 0.001) (Fig. 2d). Regarding the highest achieved
pO2 dependent on treatment, the highest pO2 on ECMO
was 551.3mmHg (95% CI: 487.5–615.0) versus the highest
pO2 on a ventilator at 99.8 mmHg (95% CI: 0–283.5)
(Fig. 3b). In surviving animals, we were able to increase
pO2 from a mean of 27.0mmHg (95% CI: 19.5–30.8) at
the time of randomization to a mean of 209.3 mmHg
(95% CI: 102.8–315.0), p = 0.003.
There were no microscopic differences in H&E-stained

lung tissue biopsies obtained prior to CO intoxication
versus after (Fig. 4). No intra-alveolar fluid accumulation
and no signs of inflammation were evident.

Discussion
In this study, we showed that ECMO treatment in severe
cases of CO poisoning greatly improved survival com-
pared with conventional resuscitation in an experimental
porcine model. Thus, ECMO may serve as a treatment
option in addition to conventional treatment following
severe CO poisoning. The use of HBO is only possible
in a limited number of hospitals within each country,
and treatment can only be offered to a fraction of the
population without the need for interhospital transporta-
tion. In contrast, ECMO treatment is available in mobile
systems and can be transferred to the patients [24]. In
Denmark, a highly mobile ECMO team exists, using
helicopter assets from the Royal Danish Airforce when
needed to reduce transport time.
The increased probability of survival, even following

cardiac arrest and resuscitation, underlines ECMO
treatment’s ability to stabilize respiratory and cardiac
function while proper restitution occurs. For practical

reasons, we weaned the animals from ECMO as soon as
HbCO was below 0.1%. In real clinical settings, more
time would probably be advisable to allow for more
complete restitution. We chose 10 min post-weaning as
marker for survival because in our experience, subse-
quent circulatory failure would probably reoccur during
this timeframe.
A large proportion of CO-poisoned patients may suffer

from lung injuries from other components in smoke
(e.g., nitrogen oxide gasses, hydrogen chloride) and ther-
mal injuries from the inhalation of hot gases. In these
cases, the benefits of ECMO would potentially be even
greater, as current treatment with a ventilator and/or
HBO rely on the lung diffusion capacity to ensure suffi-
cient oxygen tension in the blood.
In a study of 18 patients who suffered from cardiac

arrest due to CO poisoning, none of the patients who
were subjected to HBO treatment after resuscitation
survived hospitalization [14]. The authors concluded
that “the prognosis of this condition should be con-
sidered when making triage and treatment decisions
for patients poisoned to this severity”, implying that
the termination of treatment should be considered if
cardiac arrest occurs in this patient category. The
cause of this negative outcome may be explained by
pulmonary insufficiency due to inhalation injuries
from smoke/heat that make efficient gas exchange im-
possible, and a case report from 2017 indicated that
patients with pulmonary insufficiency might experi-
ence longer HbCO half-life, diminishing the possible
positive benefits of HBO treatment [25]. The results
of the present study imply that survival may be pos-
sible if ECMO can be established.
The benefits of ECMO may be explained by the re-

lease of strain on the heart, lowering oxygen con-
sumption and allowing sufficient restitution following
ischaemia. Another favourable effect of using ECMO is

a b

Fig. 3 a Comparison of pulmonary vascular resistance at baseline (HbCO at 3%) and at the point of heart failure (HbCO at 54%). b Highest
achieved oxygen pressure dependent on the treatment group
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its non-dependence on the condition of the lungs and
airways. ECMO has the potential to increase blood
oxygen tension, diminishing ischaemia and favouring
increased formation of oxyhaemoglobin and elimination
of CO.
Prior to the experiments, we expected that PVR

would increase during CO poisoning, contributing to
cardiac insufficiency through a backward failure
mechanism. However, this was not the case as the
trend was towards a lower PVR during CO poisoning.
It is possible that this can be explained by hypoxia
induction of the relaxation of smooth muscle cells in
resistance vessels in the pulmonary system, but separ-
ate experiments must be undertaken to clarify this.
To the best of our knowledge, no previous studies re-
garding changes in PVR due to CO poisoning have
been published.
We found a negative linear correlation between

HbCO and O2. Our initial presumption was that this
might be due to a negative impact on the lung tissue,
especially the diffusion barrier, making O2 absorption
progressively harder. This was not supported by the
histological findings on the lung biopsies obtained
prior to CO poisoning and compared individually
with biopsies obtained after CO poisoning; no consis-
tent differences were detected. The answer may be
found on a molecular level, undetectable by the
analysis of this experiment. Another hypothesis may

be that CO causes shunting in the lungs, which is
supported by our finding of decreased PVR.
Promising experiments have been made using light

to decrease HbCO’s half-life, and it would be simple
to expose the oxygenator in the ECMO system to a
strong source of light [26]. Other experiments have
used O3 instead of O2 as oxygen supply to the
oxygenator in the external circulation to decrease
HbCO’s half-life [27]. Some patients suffering from
CO poisoning due to inhaling smoke will also suffer
from cyanide poisoning [28]. A specific antidote for
cyanide may be administered while ECMO stabilizes
the patient, the effects of both CO and Cyanide
diminish and the patient recovers.
A limitation of this study is that all animals were

sacrificed at the end of the experiment due to ethical
reasons. Thus, we had no ability to evaluate any
neurological outcomes. Additionally, long-term mor-
tality and morbidity could not be evaluated. In two
case reports regarding successful ECMO support of
patients suffering from severe CO poisoning with in-
sufficient response to traditional ventilator therapy,
no neurological deficits were detected during
follow-up [29, 30]. There may be a theoretical risk
of bias if efforts for resuscitation differed between
study groups. However, we have no reason to believe
this was the case as we strictly followed published
resuscitation algorithms in both groups.

Fig. 4 Representative haematoxylin and eosin-stained slices of lung tissue at baseline and at a high level of CO intoxication
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Precautions must be taken when inferring results
from animal studies to human clinical settings; never-
theless, since this study involved large animals, we
speculate that similar results may be obtained when
humans are treated. Furthermore, the benefits of
using ECMO must be weighed against the risk of
potential complications.

Conclusion
The use of VA-ECMO following severe cases of CO poi-
soning with cardiogenic shock greatly improved short-term
survival compared with conventional resuscitation in an
experimental porcine model. This study forms the basis for
further research among patients.
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