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HIGHLIGHTS 

- A stereo imaging method was adapted to quantify in situ fishing gear habitat effect.

- The movement of the leadline of light and heavy bottom gillnets on sand was assessed.

- The direct mechanical damage to the seabed (penetration) of gillnets was minimal.

- The sweeping movements were higher than estimated by experts, up to 2 m.

- Light nets were moving significantly more than heavy ones.

ABSTRACT 

Gillnets are one of the most widely used fishing gears, but there is limited knowledge about 1 

their habitat effects, partly due to the lack of methodology to quantify such effects. A stereo 2 

imaging method was identified and adapted to quantify the dynamic behavior of gillnets in-3 

situ. Two cameras took synchronized images of the gear from slightly different perspectives, 4 

allowing to estimate the distance from the observation unit to the gear such as in the human 3D 5 

vision. The sweeping motion on the seabed and the penetration into the sediment of the leadline 6 

of light and heavy commercial bottom gillnets deployed in sandy habitats in the Danish coastal 7 

plaice fishery were assessed. The direct physical disruption of the seabed was minimal as the 8 

leadline was not penetrating into the seabed. Direct damage to the benthos could however 9 

originate from the sweeping movements of the nets, which were found to be higher than usually 10 

estimated by experts, up to about 2 m. The sweeping movements were for the most part in the 11 

order of magnitude of 10 cm, and resulted in a total swept area per fishing operation lower than 12 

any of the hourly swept area estimated for active fishing gears. Whereas the general perception 13 

is that heavy gears are more destructive to the habitat, light nets were moving significantly 14 

more than heavy ones. The established methodology could be further applied to assess gear 15 

dynamic behavior in-situ of other static gears.  16 
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1. Introduction17 

Ecosystem effects of fisheries and in particular habitat damage is of high interest in an18 

Ecosystem Approach to Fisheries as some fishing gears can remove or damage habitat forming 19 

structures, potentially reducing the complexity, diversity and productivity of benthic 20 

environments (Jennings and Kaiser, 1998; Kaiser et al., 2000; Kaiser et al., 2002; Hermsen et 21 

al., 2003; Grabowski et al., 2014). The Marine Strategy Framework Directive defines seabed 22 

integrity as one of the descriptors required by the European Union member states to ensure 23 

Good Ecological Status (E.C., 2008). Methods are being developed for assessing the 24 

responsiveness of different seabed habitats to fishing activities, resulting in habitat sensitivity 25 

maps, which can be used in marine spatial planning (Eno et al., 2013). Eco-labelling initiatives 26 

have started to take gear impacts on habitats into account in their assessments (Olson et al., 27 

2014). In this context, providing documentation for the habitat effect of fishing gears is of prime 28 

importance, especially for small-scale fisheries where maintaining profitability may be 29 

challenging and where there are benefits to keeping fishing in traditional fishing grounds, 30 

including sensitive areas, or where higher prices could be obtained from eco-labelling.  31 

Gillnets stand as the fourth most important general gear type (out of 8) contributing to the 32 

global marine catches (in weight, based on data from 1950 to 2001, Watson et al., 2006). About 33 

40% of the European fishing vessels belong to the small-scale bottom-set gillnets fleet (by 34 

number, as of December 2016), with 33 644 active vessels under 12m with set gillnets (GNS) as 35 

main gear, and up to 80% in Denmark for example (by number, with 1838 active vessels under 36 

12m with GNS as main gear as of December 2016) (E.C., 2016). It is generally assumed that 37 

habitat impacts of fixed gears are lower than those of mobile gears (Suuronen et al., 2012; 38 

Grabowski et al., 2014). However, these conclusions are based on few experimental studies. For 39 
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example, there were only five studies regarding fixed gears, i.e., longlines, traps and gillnets, out 40 

of 97 used for the latest assessment in New England, US (Grabowski et al., 2014). Taking a 41 

closer look at bottom gillnets, the lack of studies regarding habitat impact might be attributed to 42 

the general assumption of negligible effects (Uhlmann and Broadhurst, 2013). However, after in 43 

situ observation at two rocky reefs, Shester and Micheli (2011) identified set gillnets as a 44 

priority conservation concern due to their potential to damage habitat-forming species. In the 45 

Welsh part of the Irish Sea, Eno et al. (2013) assessed nets sensitivity as high to medium for 46 

high to low fishing intensities in 8 habitats out of 31, mostly rock with associated branching 47 

species such as kelp, seaweeds or maerl beds. There is no direct evidence of potential effect for 48 

many of the current habitat-gear combinations, and the degree to which fixed gears drift on the 49 

bottom has to be quantified for the different bottom types (Eno et al., 2013; Grabowski et al., 50 

2014).  51 

There is limited knowledge about the habitat effects of bottom gillnets partly due to historical 52 

focus on active gears, but also because data collection and analysis calls for the development of 53 

appropriate innovative assessment methodologies. Several optical or acoustic techniques have 54 

been developed as complementary tools to assess the impact of mobile gears on the seabed 55 

(Smith et al., 2003; Humborstad et al., 2004; O’Neill et al., 2009; Lucchetti and Sala, 2012; 56 

Depestele et al., 2016). However, not all techniques provide a spatial resolution fine enough to 57 

assess bottom gillnets. Others are restrictive in sampling duration. Eventually, not all techniques 58 

can easily and safely be operated around bottom gillnets, prone to entanglement. Video offers 59 

more precision and less bias than direct visual observation, as it is possible to view each 60 

recording repeatedly or at lower speed (Neuswanger et al., 2016). Nevertheless, the value of a 61 

video recording as informative data also depends on the ability to extract relevant measurements 62 
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(Struthers et al., 2015; Neuswanger et al., 2016). Waterproof action cameras are now commonly 63 

available tools to deliver cost efficient high-definition underwater video recordings (Struthers et 64 

al., 2015) using simple deployment platforms. 65 

In bottom-set gillnets, the gear components in contact with the seabed are the leadline, the 66 

anchors and the bridle lines (connecting the anchors to the netting). Gillnets may be dragged on 67 

the seabed and become tangled in bottom features as the gear moves with the water flow while 68 

fully deployed on the seabed. Gillnets may also be snagged on benthic structures or organisms 69 

during retrieval of the gear (Shester and Micheli, 2011). The gear characteristics and rigging 70 

specifications play a key role in the net behavior, and therefore its potential seabed effects. The 71 

net is spread vertically by the buoyancy of floats on the headline and weight in the leadline 72 

(Takagi et al., 2007; He and Pol, 2010). The gear is usually moored at both ends with weights or 73 

anchors, which can cause vertical and horizontal deformation of the netting (Shimizu et al., 74 

2007; He and Pol, 2010). Water flow pushes the netting to incline and bulge out of the vertical 75 

plane (Stewart, 1988; Takagi et al., 2007). Shimizu et al. (2007) calculated that the leadline 76 

would slide across the sea bottom if the force acting on the leadline is larger than the coefficient 77 

of static friction, but sliding motions of bottom gill nets during fishing have not been directly 78 

observed in any study to our knowledge.  79 

The aim of the study was to identify, adapt, test and use a suitable methodology for assessing 80 

the dynamic behavior of the leadline of bottom gillnets, i.e., the sweeping motion on the seabed 81 

and the penetration into the sediment. An in-situ pilot experiment using stereo imaging was 82 

carried out in the Danish gillnet coastal plaice fishery.  83 

2. Material and methods84 
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Stereo imaging: general principle and quantitative measurements with VidSync 85 

Stereo imaging consists of two cameras taking synchronized images of a scene from slightly 86 

different perspectives, or vantage points, which then allow to estimate the distance to an object 87 

such as in the human 3D vision. If an object is uniquely identified in both images and if the 88 

translation and rotation of one camera relative to the second is known, it is then possible to 89 

estimate the location of the object in 3D space (Schmidt and Rzhanov, 2012). 90 

The free open-source Mac application VidSync (www.vidsync.org) was developed based on 91 

the OpenCV library computer vision algorithms by Neuswanger et al. (2016) to process stereo 92 

video recordings. The mathematical calculations of 3D measurements and their application in 93 

VidSync are detailed by Neuswanger et al. (2016).  94 

Before the proper calculation of the 3D coordinates of a point, one has to correct for lens 95 

distortion and establish the perspective of each camera. Lens distortion is induced by the fisheye 96 

lens of the camera, meant to widen its angle of view, but particularly pronounced when the 97 

camera records underwater through housing and prone to bias calculations. Correction factors, 98 

or distortion parameters, can be found by locating nodes on a chessboard pattern or calibration 99 

frame and arranging them into straight lines. The same chessboard pattern can be used to 100 

calculate the projection matrices for each camera by matching the known physical 2D node 101 

coordinates on each face of the calibration frame with screen coordinates, which are recorded in 102 

VidSync by clicking on the centre of each node on the video recordings.  103 

The 3D coordinates of a point are calculated in VidSync by iterative triangulation, aiming at 104 

establishing two lines-of-sight that approximately intersect at the point of interest, which is 105 

undertaken by clicking on the different points of the leadline, on each video recording. The 106 
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calibration frame is the only source of information on the scaling of distances from which 107 

VidSync reconstructs a 3D space from the 2D video recordings. 108 

Pilot experiment: location of the sea trials, net type and gear specifications 109 

The pilot experiment took place in ICES area IIIa (Kattegat) off the coast of Northern 110 

Denmark aboard a small research vessel (5 m) on September 10th 2015. Because of its 111 

importance regarding Danish traditional commercial fishing grounds, and as the probability that 112 

the leadline would slide across the sea bottom is higher for smooth surfaces than for rough 113 

surfaces (Shimizu et al., 2007), the experiment took place on sandy bottom. Nets were deployed 114 

in shallow waters, i.e., 1.5 to 3 m depth, to operate the observation units as best as possible in 115 

relation to the deployed gillnets in the relatively turbid waters. Our experimental conditions 116 

were at the lower depth range of commercial practices, but many coastal vessels participating in 117 

the gillnet plaice fishery, usually fish between 2 and 8 m in the summer and autumn. All 118 

observations were made away from the surf zone in calm weather to limit the influence of 119 

waves. 120 

Two different types of commercial bottom gillnets, light and heavy, were used to give a 121 

gradient of commercial conditions. All nets were commercial plaice gillnets, and heavy and light 122 

nets differed only in the specifications of the head- and leadlines (Table 1). The headline was 123 

different for the two gear types as it influences the inclination of the net and has commonly more 124 

buoyancy for heavier nets in commercial conditions. It is commercial practice to work with such 125 

a net height when targeting plaice (1.1 m). Mesh size was selected according to the fish target at 126 

the chosen trial location, i.e., plaice on sandy habitat. Both net types were made by Daconet 127 

(www.daconet.dk) with the same manufacturing process.   128 

Pilot experiment: stereo recording units and their calibration 129 
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Each observation unit was composed of a simple metallic frame made of 1 cm diameter steel 130 

sticks (Fig. 1). Each metallic frame was ballasted with concrete poured in 7.5 cm diameter and 131 

12.5 cm long polyvinyl chloride (PVC) tubes at each foot. The use of a light frame ensured a 132 

surface as small as possible for limiting drag, whereas the heavy feet guaranteed that the frame 133 

would remain in position when lowered on the seabed. Two cameras in their waterproof housing 134 

were mounted on the frame at a distance of 65 cm from each other and protected by netting (Fig. 135 

1). The use of netting aimed at preventing entanglement of the netting of the gillnet into the 136 

frame when in contact. Cameras were GoPro Hero 3 and 3+ cameras, each pair of a recording 137 

unit having identical settings (type of camera and video mode). For all fleets, the video 138 

resolution was set to 1080p SuperView, i.e., the sides of the video were stretched out for greater 139 

viewing, the frame per second was set to 30, and the field of view was set to Ultra Wide. Initial 140 

testing of the set-up with resolution set to 4K and frame per second set to 12 resulted in 141 

measurement errors exceeding 25%. 142 

A 3D calibration frame of 80 x 51 x 31 cm with a 9-by-15 node pattern in the front face and 143 

an 8-by-5 node pattern in the back face was used (Fig. 2). The front face was made of perspex 144 

acrylic glass (PMMA) (http://vink.dk/), which can refract light when looking at the back frame 145 

and slightly change the apparent position of the nodes (Neuswanger et al., 2016). A correction 146 

was applied to compensate for light refraction by the front frame based on the thickness of the 147 

material (35mm), the refractive index of the material (PMMA, 1.491), and the refractive index 148 

of the medium (salt water, 1.342) (Neuswanger et al., 2016). 149 

Each observation unit, consisting of two cameras mounted on a metallic frame was submerged 150 

in water and calibrated at the Nordsøen Oceanarium (http://nordsoenoceanarium.dk/).  151 
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Pilot experiment: experimental set-up and measurement of water flow speed 152 

Three individual net panels were attached at the floatlines to form a fleet, similar to 153 

commercial practice (Fig. 3a). All fleets were set in a straight line parallel to the coast and the 154 

predominant current direction. Fleets were anchored at both ends with four kg anchors using six 155 

metres bridle lines following commercial practices. As the motion at a specific section of the net 156 

depends on its relative position (Shimizu et al., 2004), each stereo recording unit was positioned 157 

on the seabed facing the middle length of the fleet, i.e., the part of the net the most likely to slide 158 

assuming that the nets are set in a straight line, at about 1 to 2 m from the net (Fig. 3b). Three 159 

fleets were soaked at the same time for two to three hours during the day. Fleets soaked together 160 

formed a run. Data was collected while the gear was fully deployed on the seabed. 161 

Nets were marked with different red tape patterns on the leadline to ensure that these marks 162 

would easily be uniquely identified on the video recordings (Fig. 3 and 4). A high resolution 163 

clock (B. Lundgren, pers. comm.) was recorded at the beginning of every recording, providing a 164 

distinctive feature to synchronize the video recordings from the left and right cameras to the 165 

nearest video frame. 166 

The water speed was recorded using two sets of a GPS device (GP-102, 167 

www.canmore.com.tw) attached to a buoy and left drifting during data collection (Fig. 5). A 168 

holed PVC tube with attached lead hanging from the buoy was used to make sure that the 169 

measurement gave the current speed in the water column and not at the surface (wind drift). Use 170 

of the flow speed average from the bottom up to the net height could lead to more precise 171 

calculation by incorporating vertical difference in flow speed caused by the bottom boundary 172 

layer, but it is commonly accepted to use the current speed measured at the median net height in 173 
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the mid-point location between the nets (Matuda and Sannomiya, 1977a, b; Matuda and 174 

Sannomiya, 1978; Matuda, 1988; Shimizu et al., 2007). 175 

Hourly instantaneous horizontal seawater velocities (2D) at 1m depth were also extracted 176 

from the Forecasting Ocean Assimilation Model 7 km Atlantic Margin model (FOAM AMM7) 177 

(EU Copernicus, 2017). The 7 km resolution of the model restricts its utility in the coastal zone 178 

where strong sub-grid scale variability in shallow water bathymetry affects the wave field, and 179 

modelled data was therefore used as an overall indication of water flow speed in the area, but 180 

not for instantaneous measurement at each net position.  181 

Pilot experiment: data analysis 182 

The position of the calibration frame defined the 3D coordinate system, i.e., the origin (0, 0, 183 

0) was the bottom left point on the front face of the calibration frame, the front and back faces184 

were found in the x-z plane, with the front face in the plane y=0 and the back face in the plane 185 

y=distance between both faces (Fig. 2). Thus, the net movements in the X dimension were 186 

positive when the net moved rightward or negative leftward (Fig. 4). The movements in the Y 187 

dimension were positive when the net moved backward or negative forward. As the observation 188 

units were facing the coast during deployment, the movements in the Y dimension were positive 189 

when the net moved towards the coast and negative towards the open sea. The movements in the 190 

X and Y dimensions represent the sweeping motion of the net. The movements in the Z 191 

dimension were positive when the net moved upward, i.e., lifting off the seabed, or negative 192 

downward, i.e., dropping on the seabed. The movements in the Z dimension represent the seabed 193 

penetration.  194 

We checked for data entry mistakes or calibration problems by examining diagnostic error 195 

measures provided for each 3D point by Vidsync (Neuswanger et al., 2016). To quantify actual 196 
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errors in 3D measurements, the calculated (VidSync) and measured (measuring tape) distances 197 

between two nodes as well as between the two faces of the calibration frame were compared in a 198 

first control test, and the calculated and measured distances between two coloured threads on the 199 

leadline of both light and heavy gillnets were compared in a second control test. The first point 200 

calculated was set as a reference starting point with a given position of zero in the three 201 

dimensions, and the position value of this reference point was subtracted from the position 202 

values of the following points. The dynamic behavior of the leadline was analysed using a 203 

simple motion metrics in the three spatial dimensions, i.e., the maximum distance covered by the 204 

leadline in each dimension, calculated as the difference between the maximum and the minimum 205 

position values of each mark.   206 

Significant differences between light and heavy net configurations were tested for as follows. 207 

Data exploration was applied following Zuur et al. (2010). The effect of net configuration (light 208 

or heavy), run (I or II) and dimension (X, Y or Z) on the maximum movement of the leadline 209 

was initially modelled as a linear regression model containing sensible interactions based on 210 

experimental knowledge and data exploration as in model (1). A log-transformation was applied 211 

on the response variable as a solution to heterogeneity of variance. As the video recording 212 

duration varied between marks (Table 2), duration was used as an offset. The linear regression 213 

model is given by:  214 

log(Yi) = β (Dimensioni, Neti, Runi) + 1*log(Durationi) + εi with εi ~ N(0, σi
2) (1)215 

where Yi is the maximum movement of the ith mark, β is the population slope and εi is the 216 

residual normally distributed with expectation 0 and variance σi
2.  217 
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Model selection was applied to model (0) by dropping individual explanatory variables one by218 

one based on hypothesis testing (F-statistic), and resulted in the preferred model (2): 219 

log(Yi) = β (Dimensioni) + γ (Neti, Runi) + 1*log(Durationi) + εi with εi ~ N(0, σi
2) (2)220 

All parameters were tested significant at p-value <0.001. The four assumptions that allow the 221 

sample data to be used to estimate the population data are: normality, homogeneity, 222 

independence and fixed explanatory variable (i.e., measurement error in the explanatory variable 223 

is small compared to the noise in the response variable). The chosen model (2) was validated by 224 

visual inspection of the residuals.  225 

The video recordings were processed with VidSync version 1.66 (www.vidsync.org). All 226 

other analyses were performed by the open-source software R 3.2.3 (R Core Team, 2016).  227 

3. Results228 

Data collected and error measures 229 

Video recordings from five fleets were clear and long enough for analysis, i.e., three fleets for 230 

run I and two fleets for run II (Table 2). Nets were deployed at 3 and 1.5-2 m depth, 231 

respectively, for runs I and II. All video recordings were collected in good weather and sea 232 

conditions. Modelled hourly water velocities were (average ± standard deviation) 0.049 ±0.003 233 

and 0.031 ±0.027 m.s-1, respectively, for runs I and run II, which was in agreement with 234 

measured water velocities of 0.028 ±0.025 m.s-1 for run II. A total of eight marks could be 235 

uniquely identified on the leadline, i.e., one mark for fleet Ia, Ib, IIa, two marks for fleet Ic and  236 

three marks for fleet IIb (Table 2). Total video recordings duration per mark ranged from 13 to 237 

138 minutes, with an average of (mean ±standard deviation) 73 ±84 min for light nets and 109 238 
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±41 min for heavy nets (Table 2). An extract of one of the recordings is given as an example 239 

(supplementary material). 240 

Diagnostic error measures provided for each 3D point by Vidsync did not show any data 241 

entry mistake or calibration problem. 242 

Distortion corrections reduced the distortion error, i.e., the distance between the input screen 243 

points and the reprojected screen points, by (mean ±standard deviation) 54 ±12% for all cameras 244 

in all recording units. The remaining distortion per point was 0.94 ±0.21 pixels on average for 245 

all cameras in all recording units. There was a slight increase in absolute error for calculations 246 

near the edge or centre of the screen for some of the video recordings.  247 

In the first control test, the calculated (Vidsync) and measured (measuring tape) distances 248 

between two nodes as well as between the two faces of the calibration frame were compared. 249 

The Vidsync calculated distances were quite close to the measurements of the real distances, 250 

with on average all measurement errors smaller than 10% (Fig. 6a).  251 

In a second control test, the calculated (Vidsync) and measured (measuring tape) distances 252 

between two coloured threads on the leadline of three light and four heavy gillnets were 253 

compared. The Vidsync calculated distances were quite close to the measurements of the real 254 

distances, with on average all measurement errors smaller than 25% (Fig. 6b). However, overall, 255 

measurement errors for heavy nets in run I were up to around 150%, underestimating the 256 

calculated distances compared to the measured ones.  257 

Based on in-situ stereo vision measurements, the presented methodology can quantify the 258 

dynamic behavior of the leadline of commercial bottom gillnets gillnet.  259 
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Dynamic behaviour of the leadline and maximum distance covered by the leadline 260 

Marks were either stationary, e.g., mark 1 in the Y dimension, moved regularly continuous, 261 

e.g., mark 1 in the X dimension, or moved with a sudden step, e.g., mark 6 in the X and Y262 

dimension (Fig. 7). Overall, marks on the same net moved similarly, e.g., marks 3 to 5 on fleet 263 

Ic, even though local disparities were found, e.g., marks 7 and 8 on fleet IIb (Fig. 7). When 264 

moving, all marks moved in a single direction in all dimensions, e.g., to the right only for mark 265 

1 or to the left only for mark 6 (Fig. 7). However, not all fleets moved in the same direction, e.g., 266 

not all moved leftwards or towards the coast (Fig. 7).  267 

The leadline was moving but not penetrating into the seabed as seen from the recorded 268 

images, downward movements as calculated values in the Z dimension being most likely due to 269 

slight disparities in the seabed features. The leadline was apparent in most of the footages, 270 

except in rare occasions in which about five cm in length were not visible. The sea bottom was 271 

slightly bumpy and it was not possible to see if the leadline was covered by sand or only behind 272 

a bump in these few occasions. 273 

 The maximum distance covered by each mark on the leadline ranged from 0.14 to 1.10m, 274 

0.06 to 2.01m and 0.02 to 0.26m in the X, Y and Z dimensions, respectively, with an average of 275 

(mean ±standard deviation) 0.96 (±0.20) for light and 0.31 (±0.15) m for heavy nets, 1.5 (±0.67) 276 

for light and 0.38 (±0.25) m for heavy nets, and 0.14 (±0.17) for light and 0.06 (±0.03) m for 277 

heavy nets, in the X, Y and Z dimensions, respectively (Table 2). The maximum swept area 278 

covered by the movements of each observed mark (X and Y dimensions) ranged from 0.02 to 279 

1.65m2, with an average of 1.41 (±0.34) and 0.13 (±0.15) m2 for light and heavy nets, 280 

respectively (Table 2). The leadline movements in the three dimensions were found to be 281 

significantly different, with larger maximum movements in the Y dimension (Table 3). 282 
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Whatever the net type, the leadline moved 1.14 (0.49-2.65) times more in the Y dimension 283 

(backward-forward ) than in the X dimension (rightward-leftward), and 7.30 (3.15-16.89) times 284 

more in the Y than in the Z dimension (upward-downward) (Fig. 8).  285 

Differences between net types and runs 286 

The leadline movements were significantly different for the two tested net configurations: for 287 

both runs, light nets were moving more than heavy nets (Table 3). Whatever the dimension, light 288 

nets moved 32.53 (95% confidence limits: 11.01-96.09) times more than heavy nets in run I, and 289 

1.41 (0.43-4.61) in run II (Fig. 8). A significant interacting effect of runs (Table 3) was found, 290 

with both light and heavy nets moving more in run I than run II. Light nets moved 26.79 (6.81-291 

105.47) times more in run I than in run II, and heavy nets moved 1.16 (0.50-2.68) times more in 292 

run I than in run II. This is in line with higher water velocities in run I compared to run II.  293 

4. Discussion294 

Stereo-imaging for quantifying gear dynamic behavior in-situ 295 

The dynamic behavior of the leadline of commercial bottom gillnets could be quantified in 296 

details using the presented methodology based on measurements of in-situ stereo vision 297 

recordings. The methodology quantify both the seabed penetration and sweeping motion of the 298 

leadline. This methodology can be further applied to assess habitat effect of other gear types, 299 

especially other static gears such as creels and pots, or more generally further assess gear 300 

dynamic behavior in-situ. Indeed, as net geometry affects the gear selectivity, an improved 301 

understanding of the gear dynamic behavior would provide a better insight into the capture 302 

process (Shimizu et al., 2004; Herrmann et al., 2009).  303 

This is a pre-copyedited, author-produced version of an article accepted for publication in [ICES Journal of Marine Science] following peer review. The version of 
record [Esther Savina, Ludvig Ahm Krag, Niels Madsen, Developing and testing a computer vision method to quantify 3D movements of bottom-set gillnets on 
the seabed, ICES Journal of Marine Science, Volume 75, Issue 2, March-April 2018, Pages 814–824] is available online at: [https://doi.org/10.1093/icesjms/
fsx194].

Acc
ep

ted
 m

an
us

cri
pt



Page 16 of 27

The stereo-imaging experimental set-up, i.e., the choice of camera separation and the 304 

dimensions and position of the calibration frame, was configured to measure relatively small 305 

objects close to the cameras. Accuracy and precision decreased as distance from the cameras 306 

increased. The nets were not expected to move in such an order of magnitude, but a larger 307 

chessboard, i.e., large enough to fill the screen, could have helped limit our measurement errors. 308 

The fish eye effect could be reduced by limiting the field of view (instead of choosing ultra wide 309 

setting).  310 

A variety of challenges were faced when deploying the observation units near the nets at sea, 311 

among which water turbidity, also noticed as a limitation for optical methods by Lucchetti and 312 

Sala (2012) and Struthers et al. (2015). The video recordings could also appear blurry due to the 313 

scattering effects of particles in the water column, and images could be exposed differently from 314 

the two cameras due to irregular lightning and displacement between the cameras (Schmidt and 315 

Rzhanov, 2012). These optical limitations reduced the number of recorded images that could be 316 

processed. A camera that only captures light reflected from objects further away than a certain 317 

distance could be used to remove the effects of scattered light and therefore solve the issue of 318 

water turbidity (under development, L.A. Krag, pers. comm.). 319 

Calibration and distortion corrections obtained in a tank were used for processing the in-situ 320 

video recordings. The same camera specifications, i.e., camera settings and relative orientation, 321 

for each recording unit, were used but any optical adjustment such as removing a camera from 322 

its underwater housing to change a battery or a change of the angle between the cameras during 323 

transportation/aboard the vessel may have affected the parameters and therefore the results. The 324 

control tests did not show major issues, and one can therefore rely on the order of magnitude of 325 
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the results. But, the cameras should remain fixed throughout the experiment in a later use of the 326 

stereo-imaging method.  327 

Pilot estimation of gillnets 3D dynamic behaviour and their seabed effects 328 

The leadline of bottom gillnets, fully deployed on the bottom, could sweep the seabed in 329 

sandy habitats up to about 2 m, for the most part in the order of magnitude of 10 cm. 330 

Movements were either continuous or in a sudden step, which was different from the periodical 331 

displacement observed by Shimizu et al. (2004). This could be due to a different initial net shape 332 

and spread of the leadline for each fleet when reaching the sea bottom (Shimizu et al., 2007), or 333 

local water flow disparities. The in-situ measurements of the leadline showed that movements 334 

were the smallest in the Z dimension, less than a few centimeters. The leadline was moving but 335 

not penetrating into the seabed as seen from the recorded images, downward movements as 336 

calculated values in the Z dimension being most likely due to slight disparities in the seabed 337 

features.  338 

In terms of seabed disturbance, this means that the physical disruption of the seabed 339 

(penetration) of gillnets is minimal compared to the sweeping of the gear, whereas seabed 340 

penetration was observed as partly responsible for habitat physical impact in active fishing gears 341 

(Eigaard et al., 2016; Depestele et al., 2016). The potential direct damage to the benthos would 342 

therefore originate from the sweeping movements of the gillnets, as the leadline and netting can 343 

snag and entangle available entities. The sweeping movements of plaice gillnets in the Danish 344 

fishery were found to be higher than usually estimated by experts, but cannot be compared to 345 

other in-situ measurements as these are the first quantitative measurements to our knowledge. A 346 

maximum of 30 kms of nets are soaked in a typical bottom-set gillnets fishing operation 347 

(Montgomerie, 2015). The swept area can roughly be estimated to about 0.04 km2 for light nets 348 
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and 0.01 km2 for heavy nets (based on a rectangle area calculation using the average measured 349 

range per mark in the Y dimension as presented above, i.e., 1.5 for light and 0.38 m for heavy 350 

nets). This is lower than any of the hourly swept area estimated for active fishing gears by 351 

Eigaard et al. (2016), ranging from 0.05 km2 for beam trawl to 1.5 km2 for Scottish seining 352 

surface impact. However, the swept area of an active gear is swept once by the gear, whereas 353 

passive gear are likely to sweep the same area multiple times. The measured movements were 354 

representative only to a certain point of what really happens: as the nets were getting too far 355 

from or too close to the recording unit, it was not possible to take measurements anymore. The 356 

present measurements of the movement of the leadline are therefore underestimated. However, 357 

the movement of the leadline was not unlimited as the fleets were anchored on the bottom. For 358 

the same reason, a major difference between longer soak durations on the estimated swept area 359 

was not expected. 360 

The dynamic behavior of the leadline was analysed using a simple motion metrics in the three 361 

spatial dimensions, i.e., the maximum distance covered by the leadline in each dimension. 362 

However, how fast the leadline moves is also expected to play a key role in the assessment of 363 

the potential effects of the leadline movement on the seabed. Indeed, the fastest movements of 364 

the leadline are the ones most likely to cause damage. As observed previously, marks moved 365 

either regularly continuous, or with a sudden step, and speed was therefore not a good indicator. 366 

Further assessment should include a spatio-temporal trajectory analysis, with focus on 367 

acceleration, i.e, change in velocity with time.  368 

The observations of the pilot project only covered the soaking phase of a gillnetting operation, 369 

i.e., when the gear was fully deployed on the bottom, and not the retrieval of the gear, therefore370 

not covering the total potential habitat effect of bottom gillnets. Shester and Micheli (2011) 371 
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observed the entanglement and removal of kelp plants and gorgonian corals by set gillnets while 372 

being hauled. Effects of hauling are more likely to be destructive as more power is exerted 373 

through the nets (hauler) than when soaking, for which, e.g., a stone could eventually stop the 374 

net. It is however known from fishermen practices that the way the gear is handled when hauling 375 

can significantly reduce possible habitat damage, e.g., hauling in the current direction. 376 

Gear configuration as mitigation measure 377 

As demonstrated in this experiment, the gear configuration affects the sweeping of the nets, 378 

with light nets moving significantly more than heavy ones. Whereas the general perception is 379 

that heavy gears are more destructive to the habitat, such as in active gears (Kaiser et al., 2002), 380 

it was demonstrated here that a heavier leadline would result in less movement, being the actual 381 

issue in terms of potential habitat damage of bottom-set gillnets. Therefore, gear configuration 382 

has a strong mitigation effect regarding the sweeping behavior of the leadline, and habitat 383 

damage could be reduced by using nets mounted with heavier leadlines.  384 

In addition to the tested net configuration, i.e., light and heavy nets, other components of the 385 

fishing gear in gillnets could be looked at to mitigate their habitat effects. Bridles attached to the 386 

head or bottom line will give the netting different types of curves which will affect the drag 387 

(Stewart and Ferro, 1985). Twine diameter, mesh size, netting hanging ratio and length of fleets, 388 

as well as the way the nets are set out could also affect the drag and therefore the leadline 389 

movement of bottom-set gillnets. 390 

General applicability of the results 391 

Due to the limited number of observations and choice of model, movement values presented 392 

here were not meant to be predicted outside of the experimental conditions. Water flow speeds 393 

during data collection were lower than the average range in coastal Danish waters (0.26 to 394 
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0.77m.s-1) (National Geospatial-Intelligence Agency, 2013). Therefore, such experimental 395 

conditions of mild sea conditions gave conservative estimates. The flow from waves, induced by 396 

wind, and current, induced by both tides and wind, represents the most common flow condition 397 

on the seabed for shallow water depths at our scales of interest (spatial and temporal) (Jensen 398 

and Jónsson, 1987; Otto et al., 1990; Myrhaug, 1995; Soulsby, 1997). The complex effects of 399 

water flow, waves and wind, can change at a small scale, and influence the behavior of the gear 400 

(Shimizu et al., 2004). These local differences in water flow could be a reason for the significant 401 

interacting effect of runs. When moving, all marks moved in a single direction in all dimensions, 402 

which indicated that movements were not caused by the local action of waves, i.e., flow and 403 

surge which would have resulted in, e.g., repeated forward-backward movements. When 404 

moving, not all fleets moved in the same direction, which indicated that movements were not 405 

caused by the overall action of waves, i.e., towards the coast. Detailed measurement of the 406 

current direction and speed in further experiments could provide with a better understanding of 407 

the environmental variables at stake. Very shallow waters were needed to test how to operate the 408 

camera cages, and also because water was turbid at the time of data collection. Further 409 

estimations should be run in deeper waters for which water flow conditions would be different, 410 

as the turbulent boundary layer does not occupy the entire water column contrary to shallow 411 

waters (Soulsby, 1997; Otto et al., 1990). This is conditioned on an improved method that 412 

allows to place an observation unit quite close to the net at such depths, e.g., using a sonar, and 413 

external lightning to compensate for the reduced light conditions.  414 

Because the pilot project was located in very shallow waters, a small net height was chosen. It is 415 

commercial practice to work with such a net height, but higher nets may have an influence on 416 
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the overall gear equilibrium and drag. So may caught fish, but it is generally assumed that fish 417 

would not have a great effect (Shimizu et al., 2007).  418 

Supplementary material 419 

An extract of one of the video recordings is given as supplementary material at ICESJMS 420 

online.  421 
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Table 1. Specifications of individual net panels used in the experimental set-up for light and heavy gear 
types. Height is given as stretched height. Headline and leadline types are given as specified by the net 
maker Daconet (firm’s internal specification without unit). Specifications differing between the two gear 
types, light and heavy, are emphasized in bold.  

Gear specifications Light  Heavy 
Net Type Gillnet 

Target species Plaice 
Twine Diameter 0.30 mm 

Type   Monofil 
Material  Nylon 
Knot   Double 

Mesh size  Nominal (bar length) 68 mm 
Dimensions Height (mesh depth) 1.1 m (8.5)  

Length (knot length) 82 m (4800) 
Hanging ratio   25% 

Headline Type (Hau Line mono) 1.5  2.5 
Buoyancy per 100 m 600 g  1200 g 

Leadline Type (Hau sinkline lead-free) 1.5 3 
Weight per 100 m 3.9 kg 11 kg 
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Table 2. Run, fleet and net type for each of the eight marks on the leadline of gillnets observed in the 
pilot sea trial. Clip gives the total duration in min of the recorded images for each observed mark. The 
maximum distance (Max. distance) gives the maximum distance in m covered by the movements of each 
observed mark in the X, Y and Z dimensions. The maximum swept area (Max. swept area) gives the 
maximum swept area in m2 covered by the movements of each observed mark in the X, Y and Z 
dimensions. 

Mark  Run Fleet Net type Clip (min) Max. distance (m) Max. swept area (m2) 
X   Y   Z 

1 I Ia Heavy 125 0.32 0.19 0.05 0.06 
2 I Ib Light  13  0.82 2.01 0.26 1.65 
3 I Ic Heavy 128 0.30 0.44 0.07 0.13 
4 I Ic Heavy 133 0.59 0.73 0.12 0.43 
5 I Ic Heavy 101 0.21 0.56 0.06 0.12 
6 II IIa  Light  132 1.10 1.06 0.02 1.17 
7 II IIb Heavy 29  0.14 0.29 0.04 0.04 
8 II IIb Heavy 138 0.29 0.06 0.03 0.02 
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Table 3. Estimates and standard errors (se) of the parameters in the chosen model for the log expected 
maximum movement of the leadline. All parameters were tested significant at p-value <0.001. 

Parameters  Estimate (se) 
β (Dimensioni) 
Dimension X -5.56 (0.54)
Dimension Y -5.43 (0.54)
Dimension Z -7.42 (0.54)
γ (Neti, Runi) 
Light net, Run I 3.29 (0.69) 
Light net, Run II  0 (0) 
Heavy net, Run I -0.19 (0.54)
Heavy net, Run II -0.34 (0.59) 
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Fig. 1. The observation unit. 

Fig. 2. The calibration frame. 

Fig. 3. Experimental set-up for stereo imaging with (a) side view of a fleet, i.e., a ganged 

sequence of 3 individual gillnets, set on the bottom, (b) top view of the observation unit 

positioned in front of a net. 
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Fig. 4. An in situ example (fleet Ic) of the positions of three different marks (identified from 3 to 

5) on the leadline of the same net recorded in the three dimensions (X, Y and Z).

Fig. 5. Drifting device to measure current speed and direction with (a) full view of the device, (b) view of 

the device at sea, and (c) close-up view of the lower end of the PVC tube which allows to measure at the 

median net height in the water column. Two similar devices were left drifting between the nets during 

data collection. 
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Fig. 6. (a) Relative difference of the calculated distances (with Vidsync) compared to the 

measured distances (with a measuring tape) between two nodes of the calibration frame on the 

back and front faces in the X (horizontal) and Z (vertical) dimensions, and between the back and 

front faces of the calibration frame (Y). (b) Relative difference of the calculated distances (with 

Vidsync) compared to the measured distances (with a measuring tape) between two coloured 

threads on the leadline of light and heavy bottom gillnets. On both (a) and (b), the horizontal 
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dashed line stands for reference as no difference between measured and calculated. The 

distances measured are given as an average ±standard deviation with n the number of 

observations on the left of each plot. The number of the calculated distances used for the 

comparison is given on the right of each corresponding boxplot. 

This is a pre-copyedited, author-produced version of an article accepted for publication in [ICES Journal of Marine Science] following peer review. The 
version of record [Esther Savina, Ludvig Ahm Krag, Niels Madsen, Developing and testing a computer vision method to quantify 3D movements of bottom-
set gillnets on the seabed, ICES Journal of Marine Science, Volume 75, Issue 2, March-April 2018, Pages 814–824] is available online at: [https://
doi.org/10.1093/icesjms/fsx194].

Acc
ep

ted
 m

an
us

cri
pt



Page 5 of 6

Fig. 7. Time plot of the relative position of the eight marks on the leadline of light and heavy gillnets 

observed in the pilot sea trial, in the X, Y and Z dimensions. The relative position is given in m as the 

distance from the initial position (horizontal dashed line). Time is given as the real time of the day in 

hour:minutes. 

This is a pre-copyedited, author-produced version of an article accepted for publication in [ICES Journal of Marine Science] following peer review. The version of 
record [Esther Savina, Ludvig Ahm Krag, Niels Madsen, Developing and testing a computer vision method to quantify 3D movements of bottom-set gillnets on the 
seabed, ICES Journal of Marine Science, Volume 75, Issue 2, March-April 2018, Pages 814–824] is available online at: [https://doi.org/10.1093/icesjms/fsx194].

Acc
ep

ted
 m

an
us

cri
pt



Page 6 of 6

Fig. 8. Expected relative difference (95% confidence limits) in the maximum distance covered by the 

movements of the leadline for the different experimental configurations. 
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