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Abstract: Water scarcity is becoming an increasing problem worldwide, and an issue com-
pounding the problem is water leakage in the piping networks delivering potable/consumable
water to end-users (Sensus, 2012). In this paper, we consider the problem of isolating leakages
in water supply networks using reduced network models. Using a reduced order model of the
network, the expected behaviour of the network can be estimated and then compared with actual
measurements obtained from the network. The result of this comparison is a set of residuals
which are used to isolate a leakage to a network node. The localization is based on a sensitivity
matrix which captures the residuals’ sensitivities to leakages. As the reduced order model is
adaptive based on measurements from the network, the reduced order model is plug-and-play
commissionable. The calculation of the sensitivity matrix is based on an EPANET model of the
network and is performed off-line.

Keywords: Water Supply Systems, Large-Scale Hydraulic Networks, Leakage Localization.

1. INTRODUCTION

Most water utilities use large efforts on leakage detection
and leakage localization. A task that becomes increasingly
important considering the increasing water scarcity world-
wide. The methods commercially available in the sector
span from detection based on change in the supply flow
typically during the night time, as e.g. proposed in PWiK
(2015), over acoustic equipment (Gutermann, 2015), to ad-
vanced signal analysis (Scolnicov and Horowitz, 2010). The
drawback of many of these methods is the labour needed
for either performing the leakage search (acoustic) or for
setting up and maintaining the detection systems (signal
analysis), or the need for expensive equipment (acoustic).
In this paper, we investigate the performance of a set of
residuals, which we proposed in Jensen et al. (2018b) and
Jensen and Kallesøe (2016) for the purpose of isolating
leakages in a water distribution network. The residuals are
generated using an adaptive model whose parameters are
obtained from historical data.
While most of the existing literature considers model based
methods for detection and localization of leakages in water
supply systems, data driven leakage localization is also
an option. Mashford et al. (2009) describes a data driven
method using support vector machines trained by simula-
tion data. The method in Bicik et al. (2011) can be seen
as a hybrid approach where the output of a determinis-

tic hydraulic model is combined with a statistic model
of pipe breakage and statistics from consumer contracts.
Subsequently, evidence theory is used to produce a spatial
distribution of belief and plausibility of failure among the
network components.
In model based leakage localization, output prediction
together with optimisation in a weighted least squares set-
ting was formulated in Andersen and Powell (2000) where
state estimation is performed by solving an optimisation
problem. Among the estimated states it is then possible to
have the nodal demands in the network including leakages.
This method was extended in Kang and Lansey (2009) to
include stochastic variables by introduction of probabilis-
tic estimators such as a Kalman filter.
Geometric leakage localization is considered in Casillas
et al. (2015) where vectors of residuals are matched against
pre-calculated signature vectors to isolate leakages. Leak-
age localization using fault sensitivity matrices has been
explored in Pérez et al. (2011) where the sensitivity of
pressure measurements to predefined fault scenarios is
employed. The sensitivity matrix is pre-calculated using
simulations.
The above mentioned methods require either manual
labour or preliminary knowledge in the form of a network
model. The approach considered in this paper is plug &
play, which limits the installation, commissioning, and op-
eration costs substantially. Our approach utilises pressure
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measurements at specific nodes together with a reduced
network model, whose parameters are identified online,
to generate residuals for leakage localization. A detailed
derivation of the reduced order model structure is given in
Jensen et al. (2018a).
A dual problem to leakage localization is the optimal
placement of sensors which is important for any leakage
localization method. This topic is also the focus of many
works. These include Bonada et al. (2014) where sensor
placement is formulated as an optimisation problem which
is then solved using genetic algorithms, Bort et al. (2014)
where sensitivity matrices constructed from simulations
are used for optimal placement and Steffelbauer et al.
(2014) where output sensitivity to process noise such as
demand fluctuations is used to determine optimal sensor
placement. Here, we will assume that the sensor placement
problem has been solved prior to the residual generation.
The contribution of the current exposition consists of eval-
uating the performance of the residuals calculated using a
reduced order model presented in a previous paper in a
leakage localization scheme on data obtained from a real
water distribution network.
The structure of the paper is as follows. Section 2 gives the
general network model together with the reduced order
model. In Section 3, we then propose a set of residuals
and the method used for detection and localization of a
leakage. Section 4 gives numerical results obtained using
an EPANET model of a real distribution network. Lastly,
the paper ends with some concluding remarks in Section
5.

2. PRELIMINARIES

Water distribution networks can be described by a directed
and connected graph G = {V, E}. The elements of the set
V = {v1, . . . , vn} are denoted vertices and represent pipe
connections with possible end-user water consumption.
The ith vertex has three values associated to it: pi, di
and hi. The values pi [mwc] and di [m3/h] are variables
describing respectively the absolute pressure and demand
at the vertex. The value hi [m] is the geodesic level at the
vertex.
The elements of the set E = {e1, . . . , em} are denoted
edges and represent the pipes. The pressure drop due to
hydraulic resistance of the edge j is denoted by fj , and this
pressure drop is a function of the flow qj [m3/h] through
the pipe (edge) j. In the following exposition, we will follow
Jensen et al. (2018a) and use the following assumption.

Assumption 1. Each fi : R → R has the following struc-
ture

fi(qi) = ρi|qi|qi, (1)

where ρi > 0 is a parameter of the pipe and | · | denotes
absolute value.

Associated to the graph G, we have the incidence matrix
H, which we recall below

Hi,j =




−1 , if the jth edge is entering ith vertex.
0 , if the jth edge is not connected to

the ith vertex.
1 , if the jth edge is leaving ith vertex.

The incidence matrix has dimension n × m, where m is
the number of edges and n is the number of vertices in the

graph. Note that m ≥ (n− 1) for connected graphs.
The network must fulfil Kirchhoff’s vertex law which
corresponds to conservation of mass in each vertex, and
is described by

Hq = d, (2)

where q ∈ Rm is the vector of flows in edges and d ∈ Rn

is the vector of nodal demands, with di > 0 when demand
flow is into vertex i. Because of mass conservation in
the network, there can only be n − 1 independent nodal
demands which means that

∑n
i=1 di = 0.

Let p be the vector of absolute pressures at the vertices
and ∆p be the vector of differential pressures across the
edges, then the “Ohm law” for water networks gives

∆p = HT p = f(q)−HTh, (3)

where p ∈ Rn, f : Rm → Rm, f(q) = (f1(q1), . . . , fm(qm))
and fi strictly increasing. The function fi describes the
flow dependent pressure drop due to the hydraulic re-
sistance. The term HTh is the pressure drop across the
components due to difference in geodesic level between the
ends of the components with h ∈ Rn the vector of geodesic
levels at each vertex expressed in units of potential (pres-
sure).
Next, we partition the n vertices of the underlying network
graph into two sets, V = V̄ ∪ V̂. Here, V̂ = {v̂1, . . . , v̂c}
where c ≥ 1 represents vertices in the graph correspond-
ing to inlet vertices in the distribution network. The set
V̄ = {v̄1, . . . , v̄n−c} represents the remaining vertices in
the graph.
The m edges of the network graph are likewise partitioned
into two sets, E = ET ∪EC . Here, ET = {eT ,1, . . . , eT ,n−c},
EC = {eC,1, . . . , eC,m−n+c} and the partitioning is chosen
such that the sub-matrix, say H̄T , which maps edges in ET
to vertices in V̄ is invertible. Note, that such a partitioning
is always possible since any (n−1)-by-m sub-matrix of the
incidence matrix of a connected graph has full rank (n−1),
(Deo, 1974). It is also worth noting that for c = 1, the
graph T = {V, ET } is a spanning tree of the underlying
network graph.
With the chosen partitioning, we can rewrite (2) and (3)
as follows

d̄ = H̄T qT + H̄CqC

d̂ = ĤT qT + ĤCqC

fT (qT ) = H̄T
T (p̄+ h̄) + ĤT

T (p̂+ ĥ)

fC(qC) = H̄T
C (p̄+ h̄) + ĤT

C (p̂+ ĥ),

(4)

where H̄T (ĤT ) denotes the sub-matrix of H associated

with edges ET and vertices V̄ (V̂); H̄C (ĤC) denotes the
sub-matrix of H associated with edges EC and vertices V̄
(V̂). To state the reduced order model, we will also need
the following definitions of vectors aC and ν

qC = aCσ , d̄ = −νσ, (5)

where σ =
∑

i d̂i > 0 denotes the total inlet to the
network.

We associate the following three assumptions to the net-
work partitioning.

Assumption 2. The vectors p̂ of inlet pressures and d̂ of
inlet flows are measured. Furthermore, there exists a vector
y ∈ Ro where {y1 . . . , yo} ⊂ {p̄1, . . . , p̄n−c} of measured
pressures at the remaining vertices.
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measurements at specific nodes together with a reduced
network model, whose parameters are identified online,
to generate residuals for leakage localization. A detailed
derivation of the reduced order model structure is given in
Jensen et al. (2018a).
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The ith vertex has three values associated to it: pi, di
and hi. The values pi [mwc] and di [m3/h] are variables
describing respectively the absolute pressure and demand
at the vertex. The value hi [m] is the geodesic level at the
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edges and represent the pipes. The pressure drop due to
hydraulic resistance of the edge j is denoted by fj , and this
pressure drop is a function of the flow qj [m3/h] through
the pipe (edge) j. In the following exposition, we will follow
Jensen et al. (2018a) and use the following assumption.

Assumption 1. Each fi : R → R has the following struc-
ture

fi(qi) = ρi|qi|qi, (1)

where ρi > 0 is a parameter of the pipe and | · | denotes
absolute value.

Associated to the graph G, we have the incidence matrix
H, which we recall below

Hi,j =




−1 , if the jth edge is entering ith vertex.
0 , if the jth edge is not connected to

the ith vertex.
1 , if the jth edge is leaving ith vertex.

The incidence matrix has dimension n × m, where m is
the number of edges and n is the number of vertices in the

graph. Note that m ≥ (n− 1) for connected graphs.
The network must fulfil Kirchhoff’s vertex law which
corresponds to conservation of mass in each vertex, and
is described by

Hq = d, (2)

where q ∈ Rm is the vector of flows in edges and d ∈ Rn

is the vector of nodal demands, with di > 0 when demand
flow is into vertex i. Because of mass conservation in
the network, there can only be n − 1 independent nodal
demands which means that

∑n
i=1 di = 0.

Let p be the vector of absolute pressures at the vertices
and ∆p be the vector of differential pressures across the
edges, then the “Ohm law” for water networks gives

∆p = HT p = f(q)−HTh, (3)

where p ∈ Rn, f : Rm → Rm, f(q) = (f1(q1), . . . , fm(qm))
and fi strictly increasing. The function fi describes the
flow dependent pressure drop due to the hydraulic re-
sistance. The term HTh is the pressure drop across the
components due to difference in geodesic level between the
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levels at each vertex expressed in units of potential (pres-
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Next, we partition the n vertices of the underlying network
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where c ≥ 1 represents vertices in the graph correspond-
ing to inlet vertices in the distribution network. The set
V̄ = {v̄1, . . . , v̄n−c} represents the remaining vertices in
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EC = {eC,1, . . . , eC,m−n+c} and the partitioning is chosen
such that the sub-matrix, say H̄T , which maps edges in ET
to vertices in V̄ is invertible. Note, that such a partitioning
is always possible since any (n−1)-by-m sub-matrix of the
incidence matrix of a connected graph has full rank (n−1),
(Deo, 1974). It is also worth noting that for c = 1, the
graph T = {V, ET } is a spanning tree of the underlying
network graph.
With the chosen partitioning, we can rewrite (2) and (3)
as follows

d̄ = H̄T qT + H̄CqC

d̂ = ĤT qT + ĤCqC

fT (qT ) = H̄T
T (p̄+ h̄) + ĤT

T (p̂+ ĥ)

fC(qC) = H̄T
C (p̄+ h̄) + ĤT

C (p̂+ ĥ),

(4)

where H̄T (ĤT ) denotes the sub-matrix of H associated

with edges ET and vertices V̄ (V̂); H̄C (ĤC) denotes the
sub-matrix of H associated with edges EC and vertices V̄
(V̂). To state the reduced order model, we will also need
the following definitions of vectors aC and ν

qC = aCσ , d̄ = −νσ, (5)

where σ =
∑

i d̂i > 0 denotes the total inlet to the
network.

We associate the following three assumptions to the net-
work partitioning.

Assumption 2. The vectors p̂ of inlet pressures and d̂ of
inlet flows are measured. Furthermore, there exists a vector
y ∈ Ro where {y1 . . . , yo} ⊂ {p̄1, . . . , p̄n−c} of measured
pressures at the remaining vertices.
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Assumption 3. The total head is the same at all inlets at
any time, that is

p̂(t) + ĥ = κ(t)1, (6)

for some κ(t) ∈ R and where 1 denote the vector consisting
of ones.

Assumption 4. All non-inlet vertices with non-zero de-
mand have the same consumption profile. That is, the
vector ν is constant.

The assumptions listed above lead to the following propo-
sition, proposed in Jensen et al. (2018a).

Proposition 1. Applying Assumptions 1, 3 and 4, the
following expression for the pressure at the ith non-inlet
vertex applies

p̄i(t) = αiσ
2(t) + κ(t) + γi, (7)

with
αi = (H̄−T

T )ifT (−H̄−1
T H̄CaC + H̄−1

T ν)

γi = − h̄i,
(8)

where (H̄−T
T )i denotes the ith row of H̄−T

T .

Remark 1. Assumption 3 might seem hypothetical at first
glance, however, as we will show in Section 4 it is fulfilled
at least in some real-life cases. Furthermore, one could
design a control structure for the inlet pressures such that
Assumption 3 is explicitly fulfilled.

Remark 2. In case Assumption 4 is not fulfilled, αi will
be a time-varying parameter. Typically, the demand pro-
files in a water distribution network exhibit a periodic
behaviour which means that ν(t + T ) = ν(t) and σ(t +
T ) = σ(t) where T denotes the length of the period. Like-
wise, the parameter αi(t) will exhibit a periodic behaviour
in this case.

We will use the model (7) to predict the expected pressure
at a subset of vertices in V̄ where the pressure is measured.
To obtain such a prediction, the model parameters need
to be known. Since the model (7) of p̄i(t) is linear in the
parameters αi and γi, standard parameter identification
methods (Ljung, 1999) can be used to identify these pa-
rameters based on measurements of p̄i(t), σ(t) and p̂(t),
which are available due to Assumption 2. Subsequently,
having identified the parameters, the model (7) can be
used to predict the expected pressure p̄i(t) at a measure-
ment vertex, since the signals σ(t) and p̂(t) are known.

3. LEAKAGE DETECTION AND LOCALIZATION
METHODOLOGY

With a prediction model in place, we wish to use the model
to generate a set of residuals for use in leakage localization
in the distribution network. In this work, we will assume
the leakages are associated to the vertices in V̄ of the
network. In reality, leakages occur in the pipes (edges).
However, in practice it is sufficient to assume a simplified
situation where leakages occur at the existing vertices of
the network.

Assumption 5. A leakage affects the vertices in V̄, and
a leakage in the ith vertex is modelled by an additional
consumption in the vertex with a magnitude of li flow
units.

A leakage in the network will therefore change the vector
ν which describes the distribution of the demand across

the non-inlet vertices in the network. The change in ν
will cause a change in the parameter αi as seen in (8),
which in turn affect the model (7). Therefore, the pressure
estimated using the model will not correspond to the
pressure measured in the measurement vertex and this
discrepancy will be captured in the residual.
Let the expected pressure at a measurement vertex be

denoted p̄
(e)
i (t), then this is given by

p̄
(e)
i (t) = α

(e)
i σ2(t) + 1κ(t) + γi, (9)

where α
(e)
i is the is the expected value of the parameter αi

obtained from historical measurements. Then, we propose
the following set of residuals for leakage localization

ri(t) ≡ p̄i(t)− p̄
(e)
i (t) = (αi−α

(e)
i )σ2(t) = ∆αiσ

2(t), (10)

where p̄i is the measured pressure at the ith measurement
vertex and αi is the actual parameter of the system, see
also Jensen et al. (2018b).

3.1 Leakage detection

To detect leakages using the residuals, we will rely on the
hypothesis test stated in Jensen et al. (2018b), which is
based on the following assumption.

Assumption 6. The residual vector r(t) = (r1(t), . . . , ro(t))
is Gaussian distributed with zero mean and co-variance
matrix Σ(t), and a leakage only affects the mean value of
the residual.

The assumption that the leakage only affects the mean
value is generally not satisfied as seen in the last equality
in (10) since a non-zero ∆αi will overlay the residual with
the demand curve. However, for small ∆αi it is a good
approximation.

Assumption 6 motivates the following hypothesis test

H0 : r(t) ∈ N (0o,Σ(t)) , H1 : r(t) ∈ N (µ1,Σ(t)). (11)

The test random variable Td(t) for detection is given by

Td(t) = rT (t)Σ−1(t)r(t). (12)

It is known that Td(t) has the χ2-distribution with o-
degrees of freedom under the hypothesis H0, (Anderson,
2003). This means that for a given allowed false alarm-
rate, say Rf , the threshold Jd for alarm can be set using
the χ2-table with o-degrees of freedom by choosing Jd =
χ2
Rf

. Thereby, the probability of generating a false alarm

becomes P (Td(t) > Jd | H0) = Rf .

3.2 Leakage localization

For the purpose of localization of the leakage to a par-
ticular node, we will here rely on the method based on
the so-called sensitivity matrix, Casillas et al. (2013) and
Pérez et al. (2014). The method is well described in these
works and the purpose here is to test the quality of the
residuals generated based on the reduced order model (7).
The sensitivity matrix S is defined as the change in mea-
sured pressures with respect to an occurring leakage, that
is

S = [sij ] =




∂y1
∂l1

· · · ∂y1
∂ln−c

...
...

∂yo
∂l1

· · · ∂yo
∂ln−c



. (13)
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For practical purposes, the entries in the sensitivity matrix
S will be approximated using an EPANET model of the
network, using the following calculation

sij(k) ≈
y
(lj)
i (k)− y

(0)
i (k)

lj
, (14)

where y
(lj)
i (k) is the estimated output from EPANET

during the kth sample interval with leak lj ; y
(0)
i (k) is the

estimated output from EPANET during the kth sample
interval but with no leak.
In principle, S(k) should be determined for every sample
interval. However, due to the following assumption, the
number of different sensitivity matrices needed is limited.

Assumption 7. The system is periodic with period T =
τTs where Ts is the sample time.

Due to Assumption 7, the number of sensitivity matrices
which needs to be calculated is τ since we have sij(k +
τTs) = sij(k).
To isolate the vertex with the leakage, we use the columns
of S(k) as signature vectors and find the signature which
has the maximal normalised projection of the residual
vector. That is, given the residual vector r(k) and the jth
column s∗j(k) of S(k), first we calculate the normalised
projection

ψk(j) =
〈r(k), s∗j(k)〉
|r(k)||s∗j(k)|

, (15)

where j ∈ I = {1, 2, . . . , n− c} and 〈·, ·〉 denotes the inner
product.
Having calculated the normalised projections, the set of
leak vertex candidates, say V̄ l(k) ⊂ V̄, is then given as

V̄ l(k) = {v̄i ∈ V̄ | i = argmax
j∈I

ψk(j)}, (16)

given that the EPANET model is an accurate representa-
tion of the real network.
In practice, the set V̄ l(k) is extended to also include ver-
tices with a normalised projection close to the maximal,
that is

V̄ l(k) = {v̄i ∈ V̄ | ψk(i) ∈ [max
j∈I

ψk(j)− ε,max
j∈I

ψk(j)]},

(17)
where 1 >> ε > 0. This will increase the probability that
the leaking node is in the set V̄ l(k) if the EPANET model
is less accurate. The value of ε is a trade-off between the
size of the set V̄ l(k) of potential candidates and the chance
that the vertex with the leak is contained in the set. A
formal procedure for choosing ε is still an open question
and should be based on the uncertainty in the EPANET
model.
Given a set of candidates for a number of samples, say
(V̄ l(1), V̄ l(2), . . . , V̄ l(w)), one subsequently needs to com-
bine this information to choose a final set of candidate
nodes. One possibility is to choose the set V̄ l(k) for k ∈
{1, 2, . . . , w} with lowest cardinality.

4. EXPERIMENTAL RESULTS

In this section, we present results obtained using data
from an actual water distribution network. The data are
collected before and during a controlled test where a
leakage is introduced in the network by the opening of
a fire hydrant.

The network in question is illustrated in Fig. 1. The
network consists of 399 vertices and 429 edges (n = 399
and m = 429). This particular network has two inlets

Fig. 1. Illustration of the network with two inlets.

indicated with the arrows marked ’Input #’ (so c = 2) and

p̂ ∈ R2 (d̂ ∈ R2) is the vector of pressures (demands) at
these two vertices. The vector p̄ ∈ R397 (d̄ ∈ R397) consists
of the pressures (demands) at the remaining 397 vertices
in the network. Ten of the pressures in the vector p̄ are
measured, and the measurement points are indicated by
the arrows marked ’Output #’ (so y ∈ R10). The vertex
emulating the leakage is indicated by the arrow marked
’Leakage’.
Since the network has more than one inlet, we should
confirm that Assumption 3 is fulfilled. Otherwise, the
reduced order model (7) is not applicable for calculating
the expected pressure at the measurement points. Fig. 2
illustrates the total head at the two inlets in the network
during the test. As it can be seen in the figure, there
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Fig. 2. Time series of the total head at the two inlets during
the test.

is some discrepancy between the total heads at the two
inlets. However, overall they follow each other quite well.
The maximal absolute difference between the two heads
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For practical purposes, the entries in the sensitivity matrix
S will be approximated using an EPANET model of the
network, using the following calculation

sij(k) ≈
y
(lj)
i (k)− y

(0)
i (k)

lj
, (14)

where y
(lj)
i (k) is the estimated output from EPANET

during the kth sample interval with leak lj ; y
(0)
i (k) is the

estimated output from EPANET during the kth sample
interval but with no leak.
In principle, S(k) should be determined for every sample
interval. However, due to the following assumption, the
number of different sensitivity matrices needed is limited.

Assumption 7. The system is periodic with period T =
τTs where Ts is the sample time.

Due to Assumption 7, the number of sensitivity matrices
which needs to be calculated is τ since we have sij(k +
τTs) = sij(k).
To isolate the vertex with the leakage, we use the columns
of S(k) as signature vectors and find the signature which
has the maximal normalised projection of the residual
vector. That is, given the residual vector r(k) and the jth
column s∗j(k) of S(k), first we calculate the normalised
projection

ψk(j) =
〈r(k), s∗j(k)〉
|r(k)||s∗j(k)|

, (15)

where j ∈ I = {1, 2, . . . , n− c} and 〈·, ·〉 denotes the inner
product.
Having calculated the normalised projections, the set of
leak vertex candidates, say V̄ l(k) ⊂ V̄, is then given as

V̄ l(k) = {v̄i ∈ V̄ | i = argmax
j∈I

ψk(j)}, (16)

given that the EPANET model is an accurate representa-
tion of the real network.
In practice, the set V̄ l(k) is extended to also include ver-
tices with a normalised projection close to the maximal,
that is

V̄ l(k) = {v̄i ∈ V̄ | ψk(i) ∈ [max
j∈I

ψk(j)− ε,max
j∈I

ψk(j)]},

(17)
where 1 >> ε > 0. This will increase the probability that
the leaking node is in the set V̄ l(k) if the EPANET model
is less accurate. The value of ε is a trade-off between the
size of the set V̄ l(k) of potential candidates and the chance
that the vertex with the leak is contained in the set. A
formal procedure for choosing ε is still an open question
and should be based on the uncertainty in the EPANET
model.
Given a set of candidates for a number of samples, say
(V̄ l(1), V̄ l(2), . . . , V̄ l(w)), one subsequently needs to com-
bine this information to choose a final set of candidate
nodes. One possibility is to choose the set V̄ l(k) for k ∈
{1, 2, . . . , w} with lowest cardinality.

4. EXPERIMENTAL RESULTS

In this section, we present results obtained using data
from an actual water distribution network. The data are
collected before and during a controlled test where a
leakage is introduced in the network by the opening of
a fire hydrant.

The network in question is illustrated in Fig. 1. The
network consists of 399 vertices and 429 edges (n = 399
and m = 429). This particular network has two inlets

Fig. 1. Illustration of the network with two inlets.

indicated with the arrows marked ’Input #’ (so c = 2) and

p̂ ∈ R2 (d̂ ∈ R2) is the vector of pressures (demands) at
these two vertices. The vector p̄ ∈ R397 (d̄ ∈ R397) consists
of the pressures (demands) at the remaining 397 vertices
in the network. Ten of the pressures in the vector p̄ are
measured, and the measurement points are indicated by
the arrows marked ’Output #’ (so y ∈ R10). The vertex
emulating the leakage is indicated by the arrow marked
’Leakage’.
Since the network has more than one inlet, we should
confirm that Assumption 3 is fulfilled. Otherwise, the
reduced order model (7) is not applicable for calculating
the expected pressure at the measurement points. Fig. 2
illustrates the total head at the two inlets in the network
during the test. As it can be seen in the figure, there
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at any given time is 2.6 [mWc] and the RMS value of the
difference is 0.4 [mWc]. The value of κ(t) used for the
model (7) in the test is taken as the mean over the two
inlet heads at any given sample.
Fig. 3 illustrates the residuals obtained from the data
using (9) and (10). In the two top plots, the figure
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Fig. 3. Plot of the residuals r1 and r2 during the test
together with the leakage flow qleak.

shows the results for the two residuals obtained from the
measurement vertices marked ’Output 1’ and ’Output 2’
in Fig. 1. The bottom plot in Fig. 3 gives the leakage flow
at the vertex marked ’Leakage’. The blue lines in the plot
indicates that the result is obtained from a validation data
set, where there is no leakage in the network, while the
lines in red indicates results obtained during the leak. The
maximal size of the leak during the test is 2.5 [l/s], while
the mean value of the leak is 1.8 [l/s] (corresponding to
respectively ≈57 % and ≈41 % of night-time demand).
As it can be seen in Fig. 3, the difference between the
residuals generated during the situation without a leak
versus the situation with the leak is visually difficult to
establish. However, as illustrated in Fig. 4 there is a
statistical difference between the two situations. The top
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Fig. 4. Result of performing the statistical test on the
residuals during the leakage test.

plot in the figure gives the test variable Td during the
test. The middle plot is an alarm signal with the following
definition

ALM =

{
0 , Td ≤ Jd
1 , Td > Jd

. (18)

The probability of a false alarm is chosen to be 0.1, which
gives a threshold Jd = 23.21 from the χ2-distribution with
ten-degrees of freedom. As it can be seen in the figure, a
few false alarms are being generated during the validation

data set, whereas the frequency of alarms is much higher
during the leakage. Furthermore, it appears that it is
difficult to detect any difference during the early hours
of the day (from 00:00:00 to 08:00:00). We expect this is
due to the fact that the total demand is generally low
during this period with the consequence that the flow in
the system is low. Since we use pressure signals to detect
the leakage a low sensitivity towards flow variations during
periods with low flow is expected (due to (1)).
In Fig. 5, the localization results obtained using the de-
scribed sensitivity method on the generated residuals are
illustrated. The first six rows gives the result of the local-
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Fig. 5. Leakage localization results obtained from the
network.

ization with results obtained from four hours in each row.
That is, each subplot in the first six rows corresponds to
the results from one given hour. The number in parenthesis
above each plot is the index of the selected leak candidate.
The results are colour coded in the following way. Vertices
which have a small normalised projection of the residual
onto its corresponding column in the sensitivity matrix
are black. The vertices are increasingly red with larger
normalised projections. Vertices in turquoise are in the set
V̄ l of leakage candidates. Here V̄ l is given by all vertices
with an equal or higher projection than the vertex with
the leak. This means that the more turquoise vertices in
the figure, the worse the performance of the localization
is. However, this is of course not possible in practice and
a formal method for choosing ε in (17) is needed. The
vertex with the leak is marked with a blue triangle and
the chosen leak candidate which has maximal projection
is marked with a blue diamond. The bottom row in Fig. 5
gives the value of the normalised projection at each hour
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for the leaking node and for the node with the largest
projection.

5. CONCLUSION

In this paper, we have tested the performance of a set of
residuals generated using a data driven pressure model in a
water supply network. Using the sensitivity based method,
the residuals were used in a leakage localization scheme.
The results show that it is possible to isolate the leakage
to a limited set of candidate vertices which contains the
leaking vertex. Furthermore, the most likely candidate
vertex appointed using the method is generally close to
the actual leaking vertex. The method seems to perform
best when the flow in the system is high, which we see
as natural since the sensitivity of the pressure drop with
respect to the flow is increasing with the flow.
As described in the paper, the residual generation is based
on data driven network pressure models while the gener-
ation of the sensitivity matrix is based on an EPANET
model of the network. Future work will consist of inves-
tigating data driven localization methods which are not
relying on EPANET models to generate the sensitivity
matrix. In addition, parameters such as the age of pipes
could be introduced in the leakage localization scheme
since it is expected that older pipes are more likely to
break than newer ones.
Finally, it is noted that a few isolated false alarms ap-
peared when executing the algorithm on the non-leakage
validation data. However, it is noted that these were
isolated events, whereas during the leakage, the alarms
appear almost constantly. The tuning of the probabilistic
threshold, and/or some form of filtering of alarms (consid-
ering them as outputs of a stochastic process rather than
as independent stochastic variables), should thus also be
investigated in the future.
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for the leaking node and for the node with the largest
projection.

5. CONCLUSION

In this paper, we have tested the performance of a set of
residuals generated using a data driven pressure model in a
water supply network. Using the sensitivity based method,
the residuals were used in a leakage localization scheme.
The results show that it is possible to isolate the leakage
to a limited set of candidate vertices which contains the
leaking vertex. Furthermore, the most likely candidate
vertex appointed using the method is generally close to
the actual leaking vertex. The method seems to perform
best when the flow in the system is high, which we see
as natural since the sensitivity of the pressure drop with
respect to the flow is increasing with the flow.
As described in the paper, the residual generation is based
on data driven network pressure models while the gener-
ation of the sensitivity matrix is based on an EPANET
model of the network. Future work will consist of inves-
tigating data driven localization methods which are not
relying on EPANET models to generate the sensitivity
matrix. In addition, parameters such as the age of pipes
could be introduced in the leakage localization scheme
since it is expected that older pipes are more likely to
break than newer ones.
Finally, it is noted that a few isolated false alarms ap-
peared when executing the algorithm on the non-leakage
validation data. However, it is noted that these were
isolated events, whereas during the leakage, the alarms
appear almost constantly. The tuning of the probabilistic
threshold, and/or some form of filtering of alarms (consid-
ering them as outputs of a stochastic process rather than
as independent stochastic variables), should thus also be
investigated in the future.
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