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Abstract: In this paper, a Lyapunov-based method is used in order to determine the stability
boundaries of the grid-connected voltage source converter (VSC). To do so, a state space model
of the VSC is used to form the Lyapunov function of the system. Then, by using the eigenvalues
of the Lyapunov function, the system stability boundaries will be determined. It is shown that the
grid-connected VSC works in its stable mode when all of its Lyapunov function’s eigenvalues are
positive. The proposed model validity is tested by time-domain simulation. Simulation results show
that the method is credible in determining the stability margin of the grid-connected VSC.

Keywords: Voltage Source Converter (VSC); Energy Function (EF); Lyapunov-based stability analysis

1. Introduction

As the penetration of Distributed Generations (DGs) increases, the stability assessment of the
power systems becomes more complicated. This is because of the very detailed control systems of the
power electronic-based (PE-based) units [1]. Although the stability of the conventional power systems
is a well-explored field of research, the integration of the PE-based units with the main grid and its
penetration bring new challenges to the transmission and distribution system operators in respect of
the reliability and the stability, which leads to new perspectives of the grid codes [2]. What makes the
stability assessment of the PE-based energy sources different from the conventional power generators is
in their control systems and their inertia. Generally, a PE-based unit has a small inertia compared with a
conventional power plant. On the other hand, in the modeling of DGs connected to the power systems,
typically called grid-connected Voltage Source Converters (VSCs), the control system plays a vital
role [3]. In this manner, stability assessment of the control systems of the PE-based units is the matter
of importance, which is well studied in [4–9], and still is a matter of concern for researchers [10,11].

There are many methods in the stability assessment of the power systems, such as Nyquist
stability analysis, eigenvalue-based methods, root locus analysis, etc. [4–7]. Generally, methods
developed for the stability analysis can be divided into two main categories: time-domain analysis,
and frequency-domain analysis methods [4]. In time-domain analysis, the non-linearity behavior of
the system is taken into account, while in most frequency-based methods linear techniques are applied
in order to assess the stability [12]. The main disadvantage of the time-domain-based methods is that
it is time consuming; hence, its computational burden increases as the system size becomes large.
Therefore, these methods are not practical for large-scale systems [13].

On the other hand, regarding frequency-based methods, linear techniques are applied in order
to analyze the system behavior. These linear techniques may apply into linear or linearized systems.
PE-based power systems are nonlinear-based in their nature. In order to use linear-based stability
analysis methods for PE-based power systems, linearization techniques should be applied. In addition,
these methods are only credible around one equilibrium operating point of the system [14]. With this

Energies 2018, 11, 2533; doi:10.3390/en11102533 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-9018-2260
https://orcid.org/0000-0003-2757-3813
https://orcid.org/0000-0001-8311-7412
https://orcid.org/0000-0002-8635-7689
http://www.mdpi.com/1996-1073/11/10/2533?type=check_update&version=1
http://dx.doi.org/10.3390/en11102533
http://www.mdpi.com/journal/energies


Energies 2018, 11, 2533 2 of 16

in mind, both linear and nonlinear methods have their merits and demerits. This is mentioned in
Table 1.

Table 1. Power Electronic-based power system stability techniques and their characteristic.

Power Electronic-Based Power System Stability Assessment

Linear-Based Method [5] Nonlinear-Based Methods [15]

Characteristic

Techniques - Nyquist stability criterion [16]
- Bode stability criterion [17]
- State-space stability analysis [18,19]
- Root-locus stability analysis [20]

- Phase plane stability analysis [21]
- Lyapunov stability analysis [22–25]
- Describing function method [26]
- Popov stability criterion [27]

Global equilibrium point Only valid for one equilibrium
point Valid for all equilibrium points

Model accuracy
An approximation of the system
will be modeled using linearizaing
techniques [28].

The exact model of the system will be
evaluated.

Computation complexity They are mostly easy to implement
and assess.

Nonlinear-based methods are more
complex than linear techniques.
Their computational burden increase
as the system size increases.

To overcome these drawbacks, nonlinear-based methods are developed in order to evaluate
the stability of the power systems [8,15]. One of the main sub-categories of the nonlinear stability
assessment of the power systems belongs to the energy function-based (EF-based) methods (also known
as Lyapunov-based methods). The idea behind the EF-based methods is that the system is called
stable if and only if its energy is positive and the derivative of its energy with respect to the time
is not positive [29]. Based on that, many attempts have been done in order to assess the stability
of the PE-based power systems, which is reviewed in [8]. Although, Lyapunov-based methods
may show either the system works in its stable mode or not, it will not be useful in designing
the control parameters. On the other hand, as its nonlinear nature, Lyapunov-based methods are
credible for all operating points of the system. Therefore, it is appropriate to use it for large-signal
stability assessment [30]. As a nonlinear stability assessment technique, the Lyapunov stability
method is credible for both small signal and large-signal stability analysis. The main challenge in
determining the stability boundaries using the Lyapunov stability method is to determine the energy
function. Although some attempts have been done in order to determine the energy function of a
system, there is no straight method in order to define it [15,29]. In most cases, PE-based units are
considered as energy sources that are coupled into the main systems [9,31]. In order to find the
energy function for the PE-based units, the synchronous machine equivalent of the VSC is defined
in [32]. Although synchronous machine equivalent of the VSC shows appropriate results both in
simulation and experimental tests, the converter may not act as its synchronous machine equivalent
in all conditions, which leads to some drawbacks of the equivalent synchronous machine of the VSC
[33,34]. The stability analysis of the equivalent synchronous machine of the VSC can be assess by its
linear approximation model [34]. On the other hand, an energy function is well developed for the
synchronous machines, which can be used for the VSC as well. Yet, the main question of defining the
step by step method for determining the energy function is not been answered [5,22,32,34].

By applying Lyapunov-based methods, it is possible to control the PE-based unit independent
of the system parameters in addition to handling large-signal disturbances [35]. In [36],
the Lyapunov-based stability analysis is applied on a reduced-order model of the system in
order to assess the large-signal stability of the system. Results are compared with the full-order
eigenvalue-based stability analysis, and it is shown that the energy function can appropriately
determine the stability boundaries of the system. In [22], a current controller is designed based
on the Lyapunov function in order to control the active and the reactive power of the converter. in this
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paper, the error of the control parameters of the system from their reference values is considered as
the key components of the energy function. Although the format of the energy function and how to
assess the stability of the system based on the Lyapunov function is described in this paper, the relation
between the energy function and the system state variables are not cleared. In [23], state variables of
the system are considered in the energy function. Although the stability boundaries are determined
using the direct Lyapunov method, the energy function parameters’ effect on the system stability is not
explained in the paper. The idea of using the Lyapunov function for the large-signal stability analysis
is widely accepted, as it is still an interest of researchers [37]. Although, the Lyapunov function is used
in order to assess the stability of the PE-based units in the literature, there is less attention in systematic
analyzing the stability of the PE-based systems using the EF. To the best knowledge of the authors,
there is less attention on determining the energy function of the system systematically. However, the
impact of the energy function parameters on finding the stability boundaries is not yet investigated.

In this paper, a systematic analyzing method of the grid-connected VSCs is developed based on
the Lyapunov function of the system. To do so, current control system and the time delay caused
by switching of the converter are modeled in state space form. Then, the matrix energy function is
introduced in order to find the boundaries of the stability. A parametric form of the Lyapunov function
is presented in a matrix format in order to find the marginal point of the stability. It is shown that as
long as the energy function is defined in a credible format, i.e., in positive definite form, the system
will stay stable in stability region. Therefore, the stability boundary is independent of the defined
energy function. In addition, the eigenvalue-based stability analysis is presented in order to validate
the systematic energy function-based method. In this manner, the main contributions of this effort are
listed as follows:

1. Proposing a systematic way in order to find the Lyapunov function of the grid-connected VSC
based on the system state variables.

2. Parametric analysis of the energy function for the stability of the grid-connected VSC.
3. Studying the effect of the linearization on determining the stability margin of the

grid-connected VSC.

Another issue to be mentioned is that controlling in the dq frame leads to coupling between
d and q element. Therefore, decoupling terms are needed in order to have an appropriate control
system. The time delay is not typically considered in the decoupling process. As the time delay is not
considered in decoupling, shown in the simulation results section, the method gives an approximation
of the conservative stability boundaries.

The rest of the paper is organized as follows. Section 2 presents the concept of the Lyapunov
function and its application in stability of the system. The parametric Lyapunov function and its
validity to compare with linear methods, e.g., eigenvalue-based stability assessment, are proposed
in Section 3. Simulation results are illustrated in Section 4. Finally, the conclusion of the paper is
presented in Section 5.

2. Lyapunov-Based Stability Assessment

In this section, the basic concept of the Lyapunov-based stability assessment is explained. Consider
a synchronous generator with voltage value of Eg 6 θ, connected to the grid with voltage V 6 0 through
a line with reactance as shown in Figure 1. The active power transferred from synchronous generator
to the grid can be calculated as follows:

P =
EgV
XL

sin θ (1)
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LXgE  0V

Synchronous 

Generator Grid side

Figure 1. A simplified diagram of a synchronous machine connected to the grid via a line, XL.

Assume that the reactance of the transmission line abruptly changes from XL1 to XL2, which is less
than XL1. The mechanical power produced by the generator (Pm) is considered to be fixed, while the
electrical active power produced by the generator will change into P1 due to the new transmission
reactance value as shown in Figure 2. The difference between mechanical and electrical active power
can be calculated in the swing equation as follows:

M
d2θ

dt2 = Pm −
EgV
XL

sin θ (2)

where M is the total moment of inertia of the generator. θ and Pm are synchronous generator rotor
angle and its mechanical active power, respectively.



P

1LX

2LX

mP

1 2

1P

2P

3

2A

1A

Figure 2. Active power transferred from the generator to the grid versus angle.

The difference between mechanical and electrical power will cause accelerating in the rotor of
the generator. This will continue until the mechanical and electrical power become equal. After that,
the electrical active power will continue increasing until it reaches P2. If there is no damping in the
system, electrical active power will continue oscillating between P1 and P2. By adding a damping
factor in the system, the electrical active power may eventually converge to Pm. The area of A1 and
A2 show the amount of energy added to the system during the acceleration time and absorb by the
system during deceleration period, respectively. Based on Lyapunov stability definition, A1 and A2

should be equal in order to have a stable equilibrium operation point.
For the generator, the energy function may be defined in many forms. Here, the Lyapunov

function is considered as follows [38]:
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V (θ, ω) =
1
2

Mω2 − Pm (θ − θs)−
EgV
XL

(cos θ − cos θs) (3)

where ω is the angular velocity of the synchronous generator rotor angle is the stable equilibrium
point generator angle. The energy function may be divided into two parts: the kinetic and potential
energy, as follows: {

VP = −Pm (θ − θs)−
EgV
XL

(cos θ − cos θs)

VK = 1
2 Mω2

(4)

The potential energy is zero at stable equilibrium point and it reaches its maximum value when
VK becomes zero. As there is a limitation in system states value, there is maximum value for the
potential energy. If the system’s maximum kinetic energy is more than the maximum value of the
potential energy, then the system will continue accelerating beyond the maximum value of the potential
energy. This leads the system into instability. The value of the energy function is always positive,
and its derivative with respect to the time is negative in order to decelerate the system into the stable
equilibrium point. This concept is widely used in the stability analysis of the system. In the next
section, its use in relation to the grid-connected VSCs will be discussed.

3. Parametric Lyapunov-Based Stability Analysis of the Grid-Connected Voltage Source
Converter (VSC)

3.1. Modeling of the Grid-Connected VSC

In this section, the Lyapunov function is used in order to determine the stability boundaries of the
grid-connected VSCs. To do so, the VSC is considered as it works in the grid-feeding mode. In this
manner, only current control and time delay are considered in the control loop and the plant, as shown
in Figure 3.

AC

Voltage Source 

Converter

DC

abcI
Converter 

Control

PWM

gL RfL

abcV

*
abcI

Figure 3. A Grid-connected VSC working in the grid-feeding mode.

In this model, the converter is connected to an ideal DC voltage source, and the grid is assumed
to be an ideal three-phase voltage source. Therefore, Lg = 0 and the VSC’s voltage at the Point of
Common Coupling (PCC) is assumed to be fixed. The control system is designed in the dq rotating
frame, hence Park’s and Clarke’s transformation are applied in Iabc in order to control Id and Iq as
related to the current in the d- and q-axis, respectively. The combination of the Clarke and Park
transformation is used to transfer Iabc into Id and Iq is presented as follows: Id

Iq

I0

 =
2
3

 cos (ωt) cos
(
ωt− 2π

3
)

cos
(
ωt + 2π

3
)

− sin (ωt) − sin
(
ωt− 2π

3
)
− sin

(
ωt + 2π

3
)

1
2

1
2

1
2


 Ia

Ib
Ic

 . (5)
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where ωt is the voltage phase, as the voltage at the PCC is fixed by the grid side, which makes it stable
in order to use for the Phase Locked Loop (PLL). This can be determined by using the PLL, as shown
in Figure 4, where θ̂ is an approximation of the voltage phase [39].

Vabc
abc

dq
.K s KP i

s

Vq



s

1

s

̂

Vd

cos

sin



Figure 4. Block diagram of the used Phase Locked Loop.

The current reference can be determined by using desired active and reactive power as follows:{
P = IdVd + IqVq

Q = IdVq − IqVd
(6)

where P and Q are desired active and reactive power of the VSC, respectively. In addition, Vd and
Vq are voltage values at the PCC in the d- and q- axis, respectively. As the voltage is assumed to be
fixed, Id and Iq can be controlled directly by choosing their related reference values (Id.ref and Iq.ref).
The whole process of the current control is shown in Figure 5.

Current Controller


abc

dq

Id




Iq






dq

abc

PWM 

abc

dq

abc

dq 





abcV

*
abcI

Iabc

.Id ref

.Iq ref

s

PI 
Vq





.K s KP i

s



.K s KP i

s



Id L

L

ud

uq

.dT s
e


Iabc

Iq

 
1

.f gL L s R 

Figure 5. Block diagram of the grid-connected VSC including the current control and the time delay.

To consider the time delay into the model, the pade approximation is used in order to linearize the
nonlinear behavior of the delay.

e−Td .s =
1− 0.5Td.s
1 + 0.5Td.s

(7)

where Td is time delay, e.g., 1.5 times of the converter’s sampling time period.
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Considering a state variable for each integrator of the system x = (x1, x2, x3), the state space
equations of the current control is presented as follows for the d axis:{

ẋ = Ax + BId.re f
Id = Cx

(8)

where matrices A, B, and C are:

A =

 0 0 −Ki
1

0.5Td
− 1

0.5Td
− KP

0.5Td

− 1
L

2
L

KP−R
L

 B =

 Ki
KP

0.5Td

−KP
L


C =

(
0 0 1

) (9)

where Ki and KP are the integrator and proportional coefficients of the PI current controller, Td is the
time delay of the PWM and the discrete implementation, L and R are the inductor and the resistor of
the converter filter plus the grid impedance, respectively.

The state space equations for the q-axis is similar to the state space equations in d axis, yet only
the d axis control is presented for the sake of brevity. In the Lyapunov-based stability assessment of
the system, only the Matrix A of the system is used, which is discussed in the next part.

3.2. Systematic Lyapunov-Based Stability Method

To assess the stability of the system by using the energy function method, first the Lyapunov
function and its derivative with respect to the time should be determined. The Lyapunov function may
include physical variables or the whole state variables of the system. Here, as the detailed model of the
system is presented, the Lyapunov function is defined based on all state variables of the system. In this
manner, the Lyapunov function and its derivative with respect to the time are defined as follows:

V(x, t) = xTPx

V̇(x, t) = dV(x,t)
dt =

d(xTPx)
dt =

(
d(xT)

dt

)
Px + xTP

(
d(x)

dt

)
= xT (ATP + PA

)
x = −xTQx

(10)

where x and xT are the state variables vector and its transpose vector, respectively. A is the state matrix
of the system, which is defined in the Section 3.1. Here, Q is defined as follows:

Q = −
(

ATP + PA
)

. (11)

P and Q are numerical matrices, which are explained next. If both P and Q are positive definite,
then the system works in the stable mode. By defining the P, Q will be determined based on the system
state matrix. Alternatively, by defining Q, P can be determined. Here, Q is defined in a specific positive
definite manner, then system stability is determined based on the analyzing the matrix P. Before that,
the definition of the positive definite matrix is explained.

Assume Q is an nn positive definite matrix. Then, it should satisfy the following inequality:

(
s1 s2 · · · sn

)
Q


s1

s2
...

sn

 > 0 (12)

where s1, s2, . . . , and sn are non-zero real numbers. Alternatively, if all eigenvalues of the Q have
a positive real part, then it is positive definite. In order to calculate the eigenvalues of the system,
the following equation should be solved:
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det (λI−Q) = 0 (13)

where I is an n× n identity matrix. λ indicates the eigenvalues of the system. Here in this approach,
a specific form of Q is defined as (15), then, for every positive real value of a, Q satisfies (13).

Q =

 2× a a a
a 2× a a
a a 2× a

 . (14)

In order to proof the mentioned claim, applying (2) into (14) will result in the following:

a(s1 + s2)
2 + a(s2 + s3)

2 + a(s1 + s3)
2 (15)

which is always positive for all positive value of a and non-zero values of s1, s2, and s3, s1, s2, and s3.
With this in mind, next, P will be determined based on the system state matrix, as shown in (9),

and the Q. Assume P as follows:

P =

 P11 P12 P13

P21 P22 P23

P31 P32 P33

 (16)

where P11, . . . , and P33 are matrix P’s element. For a stable system, P should be a positive symmetric
matrix, e.g., Based on the definition of A in (10), and the definition of the Q and P presented in (11)
and (16), respectively, six equations with six variables, as shown in (17), should be solved.

2
L P13 − 2

0.5Td
P12 = 2a

1
0.5Td

P12 − 2
L P13 − 1

0.5Td
P22 +

1
L P23 = a

KiP11 +
KP

0.5Td
P12 − KP

L P13 − 1
0.5Td

P23 +
1
L P33 = a

2
0.5Td

P22 − 4
L P23 = 2a

KiP12 +
KP

0.5Td
P22 +

(
1

0.5Td
− KP

L

)
P23 − 2

L P33 = a

2KiP13 +
2KP

0.5Td
P23 − 2KP

L P33 = 2a

. (17)

By solving the equations in (17), P can be determined. Then, if P is positive definite, then the
system is stable. It can be seen from (17) that the values of the P’s element are dependent on the
proportional and integral gain of the current controller in addition to the time delay caused by the
converter and the system-impedance L. This means that P is dependent on the controller parameters
in addition to the grid impedance. The eigenvalues of every positive definite matrix have real parts.
By using this fact, the stability of the system will be determined. As long as the eigenvalues of the P
have positive real parts, the system is stable.

It is worth mentioning that if P is positive definite, then the Lyapunov function becomes positive
for all state vectors and hence the system is stable for all operating points. On the other hand, if P
is not positive definite, then the Lyapunov function may have a positive, negative, or zero value.
In case that the Lyapunov function is negative, then the system is unstable. With all this in mind,
in order to evaluate system stability eigenvalues of the P and the energy function may be monitored.
More detailed information is discussed in the results section.
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4. Simulation Results

In this section, simulation results of the stability assessment using the Lyapunov function method
for the grid-connected VSC is discussed. In this way, a grid-connected VSC as shown in Figure 3,
with a controller as shown in Figures 4 and 5 is developed in Matlab/Simulink in order to validate the
method developed in Section 3. The system parameters and configurations are illustrated in Table 2.

Table 2. System parameters for the grid-connected VSC.

System Parameters Value Explanation

L-filter 10 mH The VSC output includes only an L-filter.
Alternatively, an LCL filter may be used.

Vgrid 400 V (rms phase to phase) An ideal voltage source is used as the grid equivalent.
System Frequency 50 Hz -

Controlling system time delay 1.5 Ts Ts delay is caused by the computation process and 0.5 Ts is due to the PWM.
Ts 10−4 s The sampling frequency is chosen to be equal to 10 kHz.

To evaluate the stability of the system by using the Lyapunov-based method, the first step is to
choose an appropriate Q matrix, which should be positive definite. This can be done by using (15).
Here, a is considered to be equal to 1, as shown in (19).

Q =

 2 1 1
1 2 1
1 1 2

 . (18)

Next, the P will be determined by using (16) and (17). Then, by determining the eigenvalues of P,
the stability of the system can be evaluated. Considering system parameters introduced in Table 1,
by choosing Ki = 600 and KP increasing from zero to infinity, eigenvalues of P is illustrated in Figure 6.
As KP increases from zero to 133, the value of one of the eigenvalues of the P increases. After that,
by increasing KP from 134, one of the eigenvalues gets a large negative number. The absolute value
of one of the eigenvalues decreases by increasing KP from 134 to infinity, and it gets closer to the
imaginary axis. Considering the eigenvalues of P, it can be concluded the value of KP can be increased
until 133 in order to work in the stable mode. In addition, if the value of KP is negative, two out of
three eigenvalues of P, as shown in Figure 7, become negative.

0
P

K  133
P

K 134
P

K 
P

K  

Figure 6. Eigenvalues of the P matrix for positive values of KP and Ki = 600.
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0
P

K 100
P

K  

Figure 7. Eigenvalues of the P matrix for negative values of KP and Ki = 600.

Considering Figures 6 and 7, it can be concluded that the value of KP should be between 0 and 133
in order to keep the P positive definite, which leads to positive value of the energy function for all state
of the system. Moreover, as Q is positive definite, defined in (11), then the derivative of the energy
function with respect to the time is negative. This leads to a stable mode of the system. Furthermore,
as can be seen in Figure 7, by using negative proportional gain for the current controller, the real part
of the P matrix will become negative. This means that as the proportional gain of the current control
becomes negative, P matrix is not positive definite anymore, which explicates as the instability of
the system.

Considering the time-domain simulation of the energy function, simulated by Matlab/Simulink
tool, if it is positive and its derivative with respect to the time is negative, it cannot be concluded that
the system is stable. The reason is that even if P is not positive definite, the energy function may have
a positive value. On the other hand, if the energy function is negative, then the system is unstable.
The reason is that if the energy function is negative, then P is not positive definite, and it has at least
one eigenvalue with a negative real part. These are shown in Figures 8–10. In Figure 8, the system
works in its stable mode with KP = 20 and Ki = 600. At t = 2 s, the value of the KP changes into 40.
The energy function is still positive. Considering the P’s eigenvalues shown in Figure 6, the system will
maintain stable for all state conditions. With a step change in the reference current at t = 4 s, the energy
function will stay positive. Meanwhile, the current response to the step change in the reference for
the mentioned condition is illustrated in Figure 9. Figure 10 shows the energy function value of the
system with Id.ref = 50 A and change in KP from 70 to 140 at t = 2 s. The energy function value becomes
negative at t = 2 s, which means that the system works in its unstable mode.
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Figure 8. Lyapunov function of the grid-connected VSC considering different values of the KP and a
step change in the reference current at t = 4 s.
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Figure 9. The VSC’s output current response to the step change in current reference from 50 A to 75 A
at t = 4 s with KP = 40.
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Figure 10. The energy function of the system with Id.ref = 50 A and change in KP from 70 to 140 at t = 2 s.
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The simulation results of the current control response also show the instability in tracking the
reference current after changes the KP from 80 to 160, as shown in Figure 11. The instability will not
happen exactly at t = 2 s, which is due to the nonlinear behavior of the system and the time delay
caused by the PWM and sampling period. Although the instability in the output current of the VSC,
as shown in Figure 11, leads to a negative value for the Lyapunov function at t = 2.1198 s. In order to
focus more on the behavior of the Lyapunov function, only the energy function and the output current
of the VSC for the period from t = 2.117 s to 2.12 s is shown in Figure 11. This behavior of the system
can be predicted by monitoring the eigenvalues of P.
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Figure 11. The Lyapunov function and the VSC’s output current in d-axis and in the three-phases for a
step change in KP value from 80 to 160 at t = 2 s.

On the other hand, if a fault happens on the grid side, a voltage sag will typically appear. This can
be simulated by a step change on the grid-side voltage magnitude. In case that the system works in its
stable limits (Kp and Ki are set in their stable limits), the Lyapunov function will be positive, and the
output current will follow a step change in the reference current. Although the step change in voltage
reference will cause a change in the output current of the VSC, as there is no voltage controller in
the control system, the output current will be changed with a large time constant. This is shown in
Figure 12. A 50% voltage sag happens at t = 3 s and lasts for 1 s. Moreover, the current reference is
changed from 10 A to 15 A at t = 5 s. As it can be seen in Figure 13, a step change in the reference
current will be followed by the output current almost immediately, while the output current cannot
follow a step change in the voltage output voltage with the same time step.
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Figure 12. The Lyapunov function,the VSC’s output current in d-axis and in three-phase, and the
grid-side three-phase voltage value for voltage sag at t = 3 s for a period of 1 s and a step change in the
current reference from 10 A to 15 A at t = 5 s.
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Figure 13. The three-phase output current of the VSC response to the (a) 50% voltage sag in grid-side
voltage magnitude, and (b) step change in current reference from 10 A to 15 A.

5. Conclusions

In this paper, a parametric representation of the Lyapunov-based stability assessment is presented
in order to determine the stability margin of the grid-connected VSCs. To do so, a current control
presented in dq rotating frame including the time delay is considered as the system controller.
The matrix Lyapunov function is presented as the identifier of the stability status of the system.
It is shown that as long as the Lyapunov function is positive and its derivative with respect to the time
is negative, the system is stable. Unless, the system will converge into instability. Therefore, the system
stability boundary is independent of the Lyapunov function’s parameters. on the other hand, it is
shown that the stability boundary of the grid-connected VSC is dependent on the physical system
parameters, such as line impedance, in addition to the control system parameters.

As the systematic approach is proposed in order to evaluate the stability boundaries of the system,
therefore, this method is expandable to the evaluation of other control systems. By doing so, the energy
function of other control systems can be defined in the parametric form. Then it can be evaluated if the
system stability is dependent on the energy function or not. In this paper, it is shown that the stability
boundaries are independent of the energy function parameters.

On the other hand, although a systematic approach is developed in order to determine the
parametric energy function of the system in order to evaluate the stability of the system, the proposed
method suffers from some drawbacks. In the proposed method, only one VSC is considered as the
case study. in the real case, there can be some converters connected to the main grid. By expanding the
system size, the computation burden will become larger, which means that in order to evaluate the
system stability boundaries, more time is consumed. This is not appropriate for the transient stability
analysis. A recommendation to deal with this drawback is to use a reduced-order model of the system.
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