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Abstract

This paper provides a perspective on the development of future district heating systems and technologies and 
their role in future smart energy systems. The reviewed papers elaborate on or otherwise contribute to the 
theoretical scientific understanding of how we can design and implement a suitable and least-cost 
transformation into a sustainable energy future. Focus is on the important role of the next generation of 
district heating and cooling technologies. The status of the scientific contributions demonstrates a high level 
of understanding of how to deal with the technical aspects. The primary current challenge seems to be the 
understanding of the implementation of these. 

Keywords: Smart Energy Systems, District Heating, District Cooling, Sustainable Energy, Renewable Energy.

1. Introduction

The analysis and planning of a world-wide transition towards an environmentally benign energy 
system are steadily gaining importance as the world faces difficulties in reaching the modest Paris 
goals for climate change mitigation. One area that has gained attention over the years is the heating 
sector and its integration into future smart energy systems. This is for instance the topic of a series of 
conferences titled International Conference on Smart Energy Systems and 4th Generation District 
Heating that has become an annual event in Denmark.

Globally, the current position of district heating and cooling shows how these technologies have 
strong potentials for being viable heating and cooling supply options in a future world. However, 
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more efforts are required for the identification, assessment, and implementation of these potentials 
with the aim to harvest the global benefits of district heating and cooling [1]. 

The development of 4th generation district heating (4GDH) [2] is essential to the implementation of 
Smart Energy Systems to fulfil national objectives of future low-carbon strategies[3]. With lower and 
more flexible distribution temperatures, 4th generation district heating can utilise renewable energy 
sources while meeting the requirements of low-energy buildings and energy conservation measures 
in the existing building stock[4]. Moreover, the concept of future district heating is closely connected 
to the potential for utilizing district cooling benefits [5]. 

The concept of Smart Energy Systems emphasizes the importance of applying a coherent and cross-
sectoral approach to finding the best solutions and how this also calls for the active inclusion of the 
heating and cooling sectors. The Smart Energy Systems concept is essential for 100% renewable 
energy systems to harvest storage synergies across energy sub-sectors and exploit low-value heat 
sources [6–8]. Also, as stressed in[9], the sectorial integration into smart energy systems enables the 
exploration of low-cost storage options, thus facilitating the integration of fluctuating renewable 
energy sources. 

The Smart Energy System concept represents a scientific shift in paradigms away from single-sector 
thinking to a coherent energy systems understanding of how to benefit from the integration of all 
sectors and infrastructures including future 4th generation district heating and cooling solutions [10–
12]. It is also a concept that transcends technical systems and calls for integrated coordination with 
governance systems[13] and ownership structures [14,15].

This perspective paper provides a status of current research with a view to identifying future 
research directions within the field. The starting point is mainly papers from the 3rd International 
Conference on Smart Energy Systems and 4th Generation District Heating, but the paper also 
extends beyond this conference. The status is structured in five sections on Transformation studies; 
Operation of district heating (DH) grids; 4DGH and building systems; 4GDH and waste heat 
sources, and District heating for balancing fluctuating renewables. Finally, section 7 creates an 
overview of further perspectives.

2. Transformation studies

This perspective paper starts with four papers regarding the transformation of current systems into 
future 4th generation district heating solutions with a focus on the district heating grid. These papers 
add to previous Smart Energy Systems and 4th Generation District Heating research[4,16,25–28,17–
24] by having a focus on transformation processes into low-temperature district heating both in the 
north and in the south.

In Methodology for evaluating the transition process dynamics towards 4th generation district 
heating systems [29], Volkova et al. review the barriers faced by existing district heating systems over 
the course of the transition process towards the 4th generation. Using a large-scale District Heating 
system in Tallinn (Estonia) as a case, supply and return temperatures, the share of renewable energy, 
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and network conditions demonstrated the highest potential for improvement and had the most notable 
impact on the transition process.

In the paper Pathway and Restriction in District Heating Systems Development Towards 4th 
Generation District Heating [30], Ziemele et al. analyse the indicators that describe the overall 
efficiency of the district heating system and restrictions for its transition towards a 4th generation 
district heating system using the case of Latvia. 

In Challenges and potentials for low-temperature district heating implementation in Norway [31], 
Nord et al. analyse the challenges in the transition to low-temperature district heating (LTDH) and 
estimate the increased competitiveness in low heat density areas using Trondheim in Norway as a 
case.

In the paper Technical and economic feasibility of sustainable heating and cooling supply options in 
southern European municipalities - A case study for Matosinhos, Portugal [32], Popovski et al. add 
to the abovementioned research of northern systems to a system located in the south in which district 
cooling is also relevant. The focus is to assess the cost-effectiveness of sustainable heat and cooling 
supply solutions under southern European conditions. 

Knies[33] investigates means for assessing appropriate heating supply systems in A spatial approach 
for future-oriented heat planning in urban areas and develops a framework for performing integrated 
energy planning for local areas.

3. Operation of DH grids

From looking at the transformation into 4th generation in the previous papers, the next papers take a 
focus on the operation of district heating grids and add to previous work with a similar focus [34–
38].

In Balancing Demand and Supply: Linking Neighborhood-level Building Load Calculations with 
Detailed District Energy Network Analysis Models [39], Letellier-Duchesne et al. describe a 
modelling workflow based on a new Rhinoceros-based plugin that combines an urban building energy 
model with a network topology optimization and a heat generation scenario model, thus bridging the 
gap between the planning phase and the design phase. 

Suryanarayana et al. address the issue of forecasting methods for heat load forecasting of district 
heating networks and presents two methods that gain significant improvements compared to the 
previous works in their paper Thermal load forecasting in district heating networks using deep 
learning and advanced feature selection methods [40]. 

Kauko et al. apply dynamic modelling to study the technical, energy and environmental impacts of 
including prosumers - customers who both consume and produce heat - in a local low-temperature 
DH grid in Dynamic modelling of local district heating grids with prosumers: A case study for 
Norway [41]. 

In A Theoretical Benchmark for Bypass Controllers in a Residential District Heating Network [42], 
Vandermeulen et al. compare two commonly used control strategies (manual control and thermostatic 
control) to a new theoretical benchmark that provides an upper boundary for the performance of 
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bypass controllers. This theoretical benchmark ensures a just-in-time delivery of warm water by 
taking into account time delays in the network. 

In Technical Assessment of Electric Heat Boosters in Low-Temperature District Heating based on 
Combined Heat and Power Analysis [43], Cai et al. provide a technical assessment of electric heat 
boosters (EHBs) in low-energy districts and demonstrate that lower supply temperatures and 
intelligent components can improve system efficiency and turn the district heating network into an 
integrated part of sustainable energy systems.

In Improving the performance of booster heat pumps using zeotropic Mixtures [44], Zühlsdorf et al. 
demonstrate an increase in the thermodynamic performance of a booster heat pump, which was 
achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was 
integrated in an ultra-low-temperature district heating network with a forward temperature of 40 °C 
to produce domestic hot water by heating part of the forward stream to 60 °C, while cooling the 
remaining part to the return temperature of 25 °C.  Previous work has also established positive effects 
on DH temperature levels and thus positive system effects of booster heat pumps. This includes 
Zvingilaite et al.’s Low temperature DH consumer unit with micro heat pump for DHW preparation 
[45] and Østergaard and Andersen’s two articles Booster heat pumps and central heat pumps in 
district heating [46] and Economic feasibility of booster heat pumps in heat pump-based district 
heating systems [47].

Best investigates the implication of temperature levels on district heating in systems in Economic 
comparison of low-temperature and ultra-low-temperature district heating for new building 
developments with low heat demand densities in Germany[48] describing how pipe flows, pumping 
and diameters (and thus investments) differ with temperature levels. Also with a close grid 
perspective, Schuchardt [49] investigates methods for assessing losses from district heating pipes.

4. 4GDH and building systems

From looking at the temperatures in the district heating grid in the previous section, this section adds 
to previous research [50–52] by taking a focus on the buildings including the radiators in the 
buildings. 

In  [53], Andric et al. evaluate the impact of global warming and building renovation measures on 
techno-economic parameters of district heating systems. Based on the case of St. Félix in France, 
results indicate that the decrease of heat demand proved to be most extensive after the first year of 
renovation (2020), decreasing by 52% compared to the reference value (2010). 

Ashfaq and Ianakiev investigate the hydraulic balance of the heating network as a pre-condition for 
the implementation of a low-temperature district heating (LTDH) network in Investigation of 
hydraulic imbalance for converting existing boiler based buildings to low temperature district 
heating [54]. Results show that the hydraulic imbalance is due to the absence of flow-limiters and 
balancing valves on the return pipe, and thermostatic radiator valves alone are unable to maintain the 
hydraulic balance in the heating network.

Schweiger et al. present a comprehensive comparison of so-called "multi-domain - open - general 
tools" (TRNSYS, Matlab Simulink, IDA ICE, Modelica), including buildings, HVAC systems, 
district heating and cooling systems and power distribution systems in District energy systems: 
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Modelling paradigms and general-purpose tools  [55]. One main conclusion is that object-oriented 
acausal modelling approaches allow rapid prototyping. While this approach is widely applied to 
limited problems, applications to large-scale and complex problems are still missing.

In Solar facade module for nearly zero energy building [56], Vanaga et al. address the topic of nearly 
zero energy buildings as efficiency measures including the utilisation of solar energy. Results show 
that the dynamics of heat flows and accumulation processes in the facade module are very complex 
due to highly changing outdoor and indoor conditions. 

In Multi-objective optimization algorithm coupled to EnergyPLAN software: the EPLANopt model 
[57], Prina et al. present the model EPLANopt, developed by Eurac Research, based on the 
deterministic simulation model EnergyPLAN[58,59] developed at Aalborg University coupled with 
a Multi-Objective Evolutionary Algorithm built on the Python library DEAP. In the test, particular 
attention is given to the analysis of energy efficiency of buildings. A curve representing the marginal 
costs of the different energy efficiency strategies versus the annual energy saving is applied to the 
model through an external Python script. Here the authors expand on previous optimization work by 
Mahbub et al.[60]

De Jaeger et al. present and develop GIS methodologies and tools to assess the feasibility of district 
energy systems as well as to design them in an optimal way in Impact of Building Geometry 
Description within District Energy Simulations [61]. It is concluded that GIS contain a significant 
amount of useful data, but the error that results from the deployed level of detail must be kept in mind 
when assessing the simulation results.

5. 4GDH and waste heat sources

Lower temperatures are key characteristics of 4GDH systems – not least due to the improved 
possibilities of exploiting waste heat sources. This section explores contemporary work on the use of 
industrial excess heat and solar power in district heating grids and systems emphasising the 
importance of low-temperature grids as well as the use of large-scale thermal storage. The 
contemporary work adds to previous work with the same focus [62–66]; however, here we focus on 
the use of solar thermal [67–69] including the use of Organic Rankine Cycle technologies  [70,71].

In Risk assessment of industrial excess heat recovery in district heating systems [72], Lygnerud and 
Werner address the recovery of industrial excess heat for use in district heating systems and conclude 
that only a small proportion of industrial heat recovery has been lost in Sweden because of terminated 
industrial activities. The risk premium of losing industrial heat recovery for this specific reason should 
be considered as being lower than often presumed in feasibility studies.

In Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating 
[73], Bühler et al. show that the temporal mismatch between excess heat and district heating demand 
and lack of demand, reduces the theoretical substitution potential by almost 30%. If heat storages are 
introduced, the total potential is reduced by only 10%. 

Köfinger et al. show that a strategic operation of the seasonal storage could increase the number of 
charging cycles and thereby increase significantly the revenues of the system in Simulation-based 
evaluation of large scale waste heat utilization in urban district heating networks: Optimized 
integration and operation of a seasonal storage [74]. This is mainly due to the combined utilization 
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of the storage in a seasonal approach to shift the waste heat from the summer to the winter period and 
use it as a short-term buffer.

In Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European 
countries [75], Leurent et al. evaluate and compare the potential cost savings and greenhouse gas 
(GHG) reduction of district heating (DH) systems using heat from nuclear combined heat and power 
plants (NCHP) in Europe and identify a large potential for extending DH networks for France and the 
United Kingdom despite the expected decrease in the heat demand due to building renovation. 

Pakere et al. compare several different scenarios for solar system design and identify different 
strengths and weaknesses in Solar power and heat production via photovoltaic thermal panels for 
district heating and industrial plant [76].

In Multi-criteria analysis of storages integration and operation solutions into the district heating 
network of Aarhus - a Simulation Case Study [77], Marguerite and Andresen assess possibilities of 
integration of centralised and decentralised storages in a district heating network with the objective 
to smooth the heat demand during peak hours (Peak-based strategy) or to reduce the operational costs 
of the DHN (Price-based strategy). 

6. District heating for balancing fluctuating renewables

Integration between sectors enables the utilisation of low-cost storage systems to balance fluctuating 
renewable electricity generation as explored by Lund et al.[9] The following papers focus on the 
potentials for using district heating systems in the balancing of renewable energy in the electricity 
grid. Contributions in previous 4GDH and smart energy system work have addressed the combination 
of CHP and heat pumps [78] and power-to-heat [79]. In the following, the focus is more on market 
design and integration.

In The Electricity Market in a Renewable Energy System [80], Djørup et al- investigate the effects of 
a cross-sectoral smart energy system concept on cost structures on electricity markets. It is concluded 
that the current electricity market structure is not able to financially sustain the amounts of wind 
power necessary for the transition to a 100% renewable energy system.

Sneum and Sandberg also approach the integration issue from an economic perspective in their article 
on Economic incentives for flexible district heating in the Nordic countries[81] finding among others 
that heat storage is a “no-regrets solution”.

Pablo et al. investigate the optimal operation of cogeneration plants combined with thermal storage 
in The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost 
of the power system [82]. The analysis indicates that the utilisation of CHP plants improves global 
efficiency and reduces the total cost of the system. Additionally, thermal storage increases the 
penetration of renewable energy.

Meesenburg et al. present a method to assess the impact of providing demand flexibility on the 
performance of the conversion system based on a dynamic exergoeconomic analysis in Dynamic 
exergoeconomic analysis of a heat pump system used for ancillary services in an integrated energy 
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system [83]. It is found that providing demand flexibility causes higher exergy destruction, mainly 
due to heat losses during storage and the need to reheat the fluid using an electric heater.

In Recycling construction and industrial landfill waste material for backfill in horizontal ground heat 
exchanger systems [84], Al-Ameen and Evans compare the temperature distribution development in 
different backfill materials. The tested materials include sand, basalt, brick, concrete, and metallic 
by-products including copper slag, aluminium slag, mill scale and iron ores. Results obtained from 
both experimental and numerical studies show that mill scale, copper slag and aluminium slag were 
the best backfill materials, where the thermal capacity of the horizontal ground heat exchangers 
(HGHE) system can be doubled.

Finally, one paper addresses the importance of research within district heating in general. In Synthesis 
of Recent Swedish District Heating Research [85], Sernhed et al perform a synthesis on the Swedish 
research frontier by assessing these recent research projects and define three future challenges for the 
Swedish district heating industry: future strategies to communicate the value of district heating, a 
vision for district heating beyond the transition to fossil free supply, and technology development for 
the efficient use of low-temperature heat sources.

7. Further perspectives

This paper has highlighted a number of contributions elaborating on or otherwise contributing to the 
theoretical scientific understanding of the development and design of future district heating systems 
and technologies. 

The highlights demonstrate how a transformation into low-temperature becomes essential for the 
technology to play its role in the future. A closer look on the use of industrial excess heat and solar 
power in district heating grids and systems emphasise the importance of low-temperature grids as 
well as the use of large-scale thermal storage. It is also highlighted how such a transformation calls 
for improvements in the operation of district heating grids as well as in the heating systems in the 
individual buildings. However, substantial benefits can be achieved in terms of lowering the grid 
losses, utilising more excess heat as well as using district heating systems in the balancing of 
renewable energy in the electricity grid.

Globally, district heating and cooling have a strong technical and economic potential, and represent 
a viable future heating and cooling supply option. However, more efforts are required for the 
identification, assessment, and implementation of these potentials with the aim to harvest the global 
benefits of district heating and cooling.

The status of the scientific contributions demonstrates a high level of understanding of how to deal 
with the technical aspects. The primary current challenge seems to be the understanding of the 
implementation, in which a local understanding of the concrete conditions as well as the legal 
framework is needed. 
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Highlights:

- a transformation into low-temperature becomes essential for future district heating
- high level of understanding of how to deal with the technical aspects
- primary current challenge seems to be the understanding of the implementation


