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Abstract— In this paper, an alternative realization method of 
droop control and virtual impedance for paralleled converters in 
DC microgrids is proposed as complement to the existing method. 
The major feature of the proposed realization is that the virtual 
impedance behavior is realized by using current reference 
together with a properly designed low-pass filter. Therefore, it 
will inherently get rid of the noise problem in real-world 
measurement, which is critical when realizing inductive virtual 
components. In addition to that, the impact of low-pass filter 
used in the proposed method on the dynamic performance is also 
comparatively studied. To validate the proposed method, 
simulations and experiments are carried out. The results show 
that the proposed method can be fully compatible with existing 
methods. Moreover, the low-pass filter is proven to be optional, 
however, with a specially designed low-pass filter, the transient 
response of the system can be modified significantly. 

Keywords—DC microgrids, virtual impedance, droop control, 
transient response, stability. 

I. INTRODUCTION  
DC microgrids (MGs) are drawing great attention due to 

their convenience and high efficiency in integrating renewable 
energy sources, energy storage systems and modern electronic 
loads, especially in off-grid or islanded applications [1], [2]. 
Power converters are playing a key role in DC microgrids, 
providing mandatory interface between different kinds of 
energy sources and the DC distribution network. To coordinate 
these converters, droop control, especially virtual resistance 
based voltage droop control method is the most commonly 
used solution as primary-level solution. At the same time, 
different kinds of virtual impedance design has been proposed 
and widely adopted in stability enhancement [3-5], dynamic 
power management [6-9], and to improve transient response of 
the system [10-11]. However, both virtual resistance based 
droop controller or virtual impedance control method have to 
face the noise problem of real-world sensor, especially those 
using inductive virtual component which requires differentiator 
to realize.  

In this paper, an alternative realization method of droop 
control and virtual impedance for paralleled converters in DC 
microgrids is proposed. The major feature of the new proposal 
is that the virtual component is realize by using estimated 

current instead of real current. Therefore, the measurement 
noise will not be able to affect the system directly. As a result, 
the proposed can get rid of the noise problem, which is a 
major concern when using inductive virtual impedance.  

In the new proposal, one of the key component is the low-
pass filter used to emulate the behavior of inner-current loop. 
It the cutting frequency of the filer is set properly, the new 
proposal will provide equal performance compared to the 
conventional realization. To better analyze the proposed 
method, the impact of the low-pass filter on the dynamic 
performance is also comparatively studied. Both cases with 
higher or lower cutting frequency has been analyzed. The 
results prove that the low-pass filter can be optional, however, 
with specially designed low-pass filter, the performance of the 
system can be modified greatly and surpass the conventional 
realization method. 

II. PRINCIPLE OF RPOSPOSED REALIZATION 
For both virtual impedance control and voltage droop 

control, a universal control architecture can be illustrated as 
shown in Fig.1.  
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(a) Control diagram of virtual impedance/voltage droop controller 
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(b) Bloch diagram of virtual impedance/voltage droop controller 

Fig. 1. Generalized control architecture of virtual impedance/voltage droop 
control method: (a) control diagram; (b) block diagram. 



 
For this dual-loop-controller based control architecture, the 

inner-loop (i.e. current loop) is always much faster when 
compare to the outer-loop (i.e. voltage loop). For this reason, 
the behavior of inner current loop can be simplified to be a 
first-order delay, with time constant determined by its control 

bandwidth, when analyzing the behavior of this dual-loop 
system. Nevertheless, on the basis of the same assumption, 
according to the control theory, an equivalent alternative of 
Fig. 1(b) can be derived, which is illustrated in Fig. 2(a). 
Correspondingly, the control architecture can be illustrated in 
Fig. 2(b). As the behavior of the high-bandwidth inner current 
loop is assumed to be similar to a first-order delay with time 
constant determined by the control bandwidth, a single low-
pass filter can be used to emulate its behavior. Discussion on 
the low-pass filer and its design will be presented in the next 
section of this paper. 

In this way, the droop control and virtual impedance 
method can be achieved using current reference instead of the 
output current. Thus, with the proposed method, the impact of 
noise and current ripple in the measurement will be inherently 
prevented. 

To validate the proposed method, study case DC microgrid 
composed by two paralleled DC/DC converters is simulated 
using PLECS. The parameters used for these simulations can 
be found in Table I. The simulation results are shown in Fig. 3 
and Fig. 4. For comparison, a state-space based average-value 
model of the study case controlled by conventional droop 
control (detailed in [12]) is also included in the simulation as a 
average-value reference due to its good accuracy. 
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(a) DC bus voltage and output currents of converters 
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(b) Enlarged transient response of converters 

Fig. 3.   Simulation results using conventional droop control method. 
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(a) Derived equivalent alternative block diagram 
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(b) Derived equivalent alternative control diagram 

Fig. 2.  Derived equivalent alternative realization of virtual impedance/ 
voltage droop control method: (a) block diagram; (b) control diagram. 
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(a) DC bus voltage and output currents of converters 
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(b) Enlarged transient response of converters 

Fig. 4.   Simulation results using proposed alternative droop method. 



 
 

The simulation results show that the transient response of 
conventional realization and proposed method has only 
neglectable difference. Although the difference is very small, 
it is still noteworthy that the transient voltage drop due to load 
increasing is slightly smaller with the proposed method when 
compared with conventional methods. 
 

III. IMPACT OF LOW-PASS FILTER 
 

A noteworthy point of the proposed alternative virtual 
impedance method is using low-pass filter to emulate the delay 
effect of the current loop, and therefore providing an equivalent 
to the conventional methods. However, it is also considerable 
that the inner current loop will have a sufficiently high control 
bandwidth (usually up to several hundred hertz). As a result, 
the low-pass filter used in the proposed method need to have a 
high cutting frequency, which will make the low-pass filter 
itself very close to unity gain. At the same, time, the effect of 
using other time constant remains unknown. For this reason, 
the impact of low-pass filter with different time constant design 
on the proposed method is analyzed in this section. 

To analyze the behavior of the dual-loop based control 
system shown in Fig.1(b) and Fig.2(a), the author assumes that 
the inner current loop is well-designed with sufficiently high 
bandwidth, which make it possible to simplify it as a first-
order inertial component with time constant τc=1/ωc, where 
ωc stands for the control bandwidth of inner current loop. 
With this assumption, the behavior of conventional droop 
controlled DC/DC converter can be formulated as: 
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where the general-case controller (PI based voltage/current 
control loop) is considered as Gv(s) and the transfer function 

of voltage controller and close-loop transfer function of 
current loop are considered as Gcc(s), as detailed in (3): 
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At the same time, the behavior of proposed control method 
can be formulated as: 
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In this case, the virtual impedance that the proposed 
method added to the system will be: 
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while the conventional method will always add exactly Zv(s) 
to the system. 

As indicated in (5) and (6), with time constant different 
from τc, an additional impedance will appear. On the one hand, 
if the low-pass filter has cutting frequency higher than the 
control bandwidth ωc (i.e. τLPF<τc), the last term of (6) will be 
positive, as a result, additional higher-order (usually 
inductive) virtual component will be performed. On the 
contrary, if the cutting frequency is lower than the control 
bandwidth ωc (i.e. τLPF>τc), the additional impedance will tend 
to perform negative virtual component that will cancel some 
of the intrinsic impedance. 

In this paper, two most representative cases are simulated 
on the basis of the simulation model used in the previous 
section: (a) the case that low-pass filter is not used (i.e. τLPF=0), 
and (b) the case that cutting frequency is set according to 
cancel the zero of PI controller (i.e. τLPF=1/α). The simulation 
results are shown in Fig.5 and Fig.6. In addition to that, the 
same state-space model used in previous section is also 
included as the average value reference, and therefore helping 
judging the performances. It is also noteworthy that the 
average-value model stands for the conventional droop control 
method, which means the difference between switching model 
and average-value model, as shown in Fig. 5, and Fig. 6, is 
comparison between simulated study case using new proposal 
and conventional droop control method. 

 

TABLE I.  PARAMETERS OF SIMULATED STUDY CASES 

Description of the Parameter Symbol Value 
Basic Voltage Reference Vref 115 V 

Source Voltage Ei 230 V, 230 V 

Inductance of Buck Converters Li 8mH, 

Stary Resistance of inductors, ri 0.1 Ω 

Switching Frequency fsw 10 kHz 

Virtual Resistances  Rvi 0.5 Ω 

Total Capacitance in DC Bus C 3.3 mF 

Voltage PI Controller Kpvi, Kivi 1, 50 

Current Controller Kpci,Kici 0.05, 1 

Load Change PLoad 2kW/step 

 



 
From both simulation, it can be observed that the proposed 

realization method (with or without using low-pass filter) is 
fully compliable with more conventional realization. It proves 
that the low-pass filter used in the proposed method is optional. 
In addition to that, in Fig. 5, the simulation results show that 
even without the low-pass filter to emulate the delay behavior 
of inner current loop, the dynamic response of the proposed 
method is still comparable to the conventional methods. This 
is because the control bandwidth of inner current loop is 
sufficiently high so that the time constants (both τc and τLPF) 
will be relatively small value (usually very close to zero). 
Therefore, the impact of removing the low-pass filter, i.e. the 
additional impedance effect suggested by (6), is very limited 
and almost neglectable. On the other hand, in Fig. 6, the 
simulation results show that with a proper designed low-pass 
filter, the new proposal can surpass the conventional method 
in terms of transient response of the system. Nevertheless, it is 
important to point that the simulated study case shown in 
Fig.6 is not the limitation of selecting time constant for low-
pass filter of the new proposal, larger time constant can be still 
used to obtain even more competitive performance.  
 

IV. EXPERIMENTAL VALIDATION AND COMPARISON 
 
To validate the proposed method in real-world applications, 

several experiments have been carried out using our DC 
microgrid experimental setup which is equipped with four 
individual DC/DC converters operating in Buck mode (as 
shown in Fig.7). In this paper, two of four DC/DC converters 
are used. The key parameters used in these experiments are 
listed in Table I. A dSpace RTI1006 is used for control, data 
acquisition, and monitoring the setup during the experiments. 
Four scenarios are tested, including:  

(1) both converter #1 and converter #2 are controlled by 
conventional droop method;  

(2) converter #1 is controlled by proposed method with 
time constant design of τLPF=0, converter#2 is controlled by 
conventional droop method; 

(3) converter #1 is controlled by proposed method with 
time constant design of τLPF=1/α, converter #2 is controlled by 
conventional droop method;  

(4) both converters are controlled using proposed method 
with time constant design of τLPF=1/α . 
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(a) Bus voltage and output currents of converters 
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(b) Enlarged transient response of converters 

Fig. 5.   Simulation results using proposed method without using low-
pass filter. 

Switching Model
Average Model

 
(a) Bus voltage and output currents of converters 
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(b) Enlarged transient response of converters 

Fig. 6.   Simulation results using proposed method together with 
special designed time constant. 



 
 
The experimental results of these four scenarios are shown 

by Fig. 8-11, respectively. 
 

By comparing the experimental results shown in Fig. 8 and 
Fig. 9, it can be observed that the transient voltage drop is 
1.8V in Fig.8, while the transient voltage drop in response to 
the same load change is 2.0V in Fig.9. It consists with the 
simulation results shown in Fig. 5 that the proposed method 
without low-pass filter will work, but the performance will be 
slightly worse than the conventional droop method. One step 
further, it can also be found in Fig. 9 that the output current of 
converter #1 shows additional delay when compared to the 
output current of converter #2. It indicates that the additional 
impedance effect suggested by (6) in the previous analysis 
does exist. Nevertheless, it proves that even without using 
low-pass filter, which, to the author’s opinion, is a typical case 
of improper time constant setting, the new proposal will still 
work and being able to provide acceptable performance 
compared to the conventional method. 

On the other hand, it can be found in Fig. 10 that the 
transient voltage drop is reduced to 1.0V if a properly 
designed low-pass filter is adopted in the proposed method, 
which has surpassed the performance of conventional droop 

TABLE II.  PARAMETERS OF EXPERIMENTAL TESTBED 

Description of the Parameter Symbol Value 
Voltage Reference Vref 120 V 

Source Voltage Ei 240 V, 240 V 

Inductance of Buck Converters Li 8.6 mH, 

Stary Resistance of inductors, ri 0.1 Ω 

Switching Frequency fsw 10 kHz 

Virtual Resistances  Rvi 1 Ω 

Total Capacitance in DC Bus C 3.3 mF 

Voltage PI Controller Kpvi, Kivi 1, 50 

Current Controller Kpci,Kici 0.05, 1 

Resistive Load RLoad 30 Ω 
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Fig. 8.   The experimental results of scenario (1): both converters are 

controlled by conventional droop method. 
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Fig. 10.   The experimental results of scenario (3): converter #1 is 

controlled by proposed method with LPF setting τLPF=1/α=0.02s. 
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Fig. 9.   The experimental results of scenario (2): converter #1 is 

controlled by proposed method with LPF setting τLPF=0. 
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Fig. 11.   The experimental results of scenario (4): both converters are 

controlled by proposed method with LPF setting τLPF=1/α=0.02s. 

 



method. At the same time, the output current of converter #1 
shows reduced delay effect when compared to the output of 
converter #2 where conventional droop method is used. In 
addition to that, the experimental results shown in Fig. 11 has 
further demonstrated that the proposed method, with a proper 
filter design, will provide better performance in transient 
response and equal power sharing capability in the steady 
states. 

 

V. CONCLUSION AND FUTURE WORKS 
In this paper, an alternative realization method of droop 

control and virtual impedance method is proposed for 
paralleled converters in DC microgrids. The significant feature 
of the new proposal is to use estimated current constructed by 
current reference and emulated delay (using low-pass filter) 
instead of real current in the conventional realization. The 
mechanism and principle of the new proposal is detailed. In 
addition to that, the impact of low-pass filter used in the new 
proposal is comprehensively studied. As a conclusion, the 
filter can be optional, however, with properly designed filter, 
the new proposal can offer better performance compared to 
conventional droop method. 

The major benefit of the new proposal can be summarized 
as following: 

(1) The new proposal can greatly improve immunity to 
measurement noise, providing more possibilities in 
virtual impedance design. 

(2) With specially designed low-pass filter, the proposed 
method can offer new opportunities to improve the 
system transient response. 

(3) The new proposal is proven to be fully compatible with 
conventional method, which opens possibilities to 
combine the new proposal and conventional method to 
form more flexible solution for virtual impedance 
design. 
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