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Abstract 

Objectives: As for stroke rehabilitation, brain-computer interfaces could potentially be used for inducing 

neural plasticity in patients with cerebral palsy by pairing movement intentions with relevant somatosensory 

feedback. Therefore, the aim of this study was to investigate if movement intentions from children with 

cerebral palsy can be detected from single-trial EEG. Moreover, different feature types and electrode setups 

were evaluated. 

Approach: Eight adolescents with cerebral palsy performed self-paced dorsiflexions of the ankle while nine 

channels of EEG were recorded. The EEG was divided into movement intention epochs and idle epochs. The 

data were pre-processed and temporal, spectral and template matching features were extracted and classified 

using a random forest classifier. The classification accuracy of the 2-class problem was used as an estimation 

of the detection performance. This analysis was repeated using a single EEG channel, a Large Laplacian 

filtered channel and nine channels.  

Results: A classification accuracy of ~70% was obtained using only a single channel. This increased to 

~80% for the Laplacian filtered data, while ~75% of the data were correctly classified when using nine 

channels. In general, the highest accuracies were obtained using temporal features or using all of them 

combined. 

Significance: The results indicate that it is possible to detect movement intentions in patients with cerebral 

palsy; this may be used in the development of a brain-computer interface for motor rehabilitation of patients 

with cerebral palsy.      

Keywords: Movement intention, Cerebral palsy, Brain-computer interface 
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1. Introduction 

Cerebral palsy is a condition caused by brain damaged in the early development of the brain which can lead 

to a variety of different impairments including motor impairments. As for stroke rehabilitation of motor 

impairments, the rehabilitation of motor impairments associated with cerebral palsy includes physiotherapy, 

ergo therapy, constraint-induced movement therapy and bimanual therapy as rehabilitation options [1]. Due 

to the heterogeneity of the injury, there is not a single rehabilitation that fits all patients with cerebral palsy; 

thus, there is an incentive to investigate new potential rehabilitation techniques. In a recent review [1], it has 

been discussed if the use of non-invasive brain stimulation can be used for inducing neural plasticity in 

cerebral palsy as it has been done in stroke populations or healthy participants. One of these techniques is 

paired associative stimulation where the motor cortex is timely activated through transcranial magnetic 

stimulation according to somatosensory afferent feedback elicited through electrical stimulation of a 

peripheral nerve [2]. A disadvantage of the paired associative stimulation is the use of transcranial magnetic 

stimulation which may be uncomfortable for the user and there is a small risk of inducing a seizure in users 

that are pre-disposed for epilepsy [3], which cerebral palsy patients are. Natural motor cortical activation is, 

however, possible to obtain by attempting to perform a movement thus there may not be a need for 

transcranial magnetic stimulation. In response to the motor cortical activation a movement-related cortical 

potential (MRCP) or event-related desynchronization/synchronization (ERD/ERS) can be observed in the 

EEG [4, 5]. To maximize the induction of neural plasticity, and potentially the motor learning effect [6], the 

somatosensory afferent feedback from electrical stimulation or passive movement (through an exoskeleton or 

robotic device) must arrive at the cortical level during maximal cortical activation which is immediately prior 

or during the attempted execution of movement [7-10]. This means that the intention to move must be 

predicted to allow sufficient time for activating e.g. electrical stimulation and for the somatosensory 

feedback to reach the cortical level. It is possible to obtain the correct timing for inducing plasticity by 

detecting either the MRCP or ERD, which has been done in a number of studies previously [11-14]. This is 

known as brain-computer interface (BCI). Little research has been done in patients with cerebral palsy, and 

the work that has been done has focused on restoring communication and a pilot randomized controlled trial 

for rehabilitation [15]. In these studies ERD [16, 17], steady-state visual evoked potentials [16], and P300 

have been used [18]. It was shown that patients with cerebral palsy had significant, but limited control of 

BCIs [16], but it is likely that their performance would increase with training since the use of these control 

signals require some training [19]. In these studies, the participants were adults with cerebral palsy, so it 

could be speculated that adolescents may have more difficulty in controlling such BCIs that require training 

to be functional. In this study, the aim is to investigate if movement intentions can be detected from single-

trial EEG with a latency (using only EEG signals prior the movement onset), so it can be used for inducing 

neural plasticity [7]. Different electrode setups are used: 1) single channel, 2) a linear combination of nine 

channels, and 3) nine separate channels. Moreover, it is investigated how the detection performance is 
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affected by including brain signals after the movement onset. Lastly, the importance of different feature 

types is estimated to determine whether the MRCP, band power estimates or both contribute to the 

movement intention detection.                      

2. Methods 

2.1. Participants 

Eight adolescents with cerebral palsy were recruited from Railway General Hospital in Rawalpindi, Pakistan. 

Railway General Hospital is a teaching hospital run by Riphah International University, Islamabad, Pakistan. 

The patient specifications are summarized in Table 1. All the experimental procedures were in accordance 

with the Declaration of Helsinki and approved by the local ethical committee of Riphah International 

University (approval no: ref# Riphah/RCRS/REC/000121/20012016). Apart from the adolescents, 

permission was obtained from the parents and the caregivers. 

Table 1: Specifications of the participants. ‘GMFCS’: Gross Motor Function Classification System. 

Gender Age Type GMFCS 

Male 16 Hemiplegia (left side) Level II 

Male 15 Diplegia (both legs) Level I 

Female 11 Diplegia (both legs) Level II 

Male 15 Diplegia (both legs) Level II 

Male 13 Diplegia (both legs) Level III 

Male 15 Diplegia (both legs) Level II 

Male 17 Diplegia (both legs) Level III 

Male 16 Diplegia (both legs) Level V 

  

2.2. Experimental setup 

The participant was seated in a comfortable chair and instructed in performing fast dorsiflexions of the ankle 

joint. During the movements the participant was asked to minimize blinking and sit as still as possible. Each 

dorsiflexion was separated by ~10 seconds, and the participant performed as many movements as possible 

within 15 minutes. On average 65±18 (range: 41-93) movements were performed per participant. The 

participant was free to move at will, but verbal instructions were given to separate two consecutive 

movements with at least 5 seconds.  

2.2.1. EEG 

Nine channels of continuous EEG (EEG amplifiers, Nuamps Express, Neuroscan) were recorded from F3, 

Fz, F4, C3, Cz, C4, P3, Pz, and P4 according to the International 10-20 system (32 Channel Quick-Cap, 

Page 4 of 15AUTHOR SUBMITTED MANUSCRIPT - JNE-102441.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



5 
 

Neuroscan). The EEG was sampled at 1000 Hz and referenced to the right ear lobe and grounded at the 

forehead. During the experiment the impedance of the electrodes was below 5 kΩ. 

2.2.2. Surface EMG 

One bipolar channel of EMG was recorded using the same system as for the EEG. Two surface EMG 

electrodes were placed on the belly of tibialis anterior (AMBU self-adhesive EMG electrodes). The EMG 

was recorded for synchronization purposes when dividing the continuous EEG into epochs.   

2.3. Data analysis 

2.3.1. EMG onset detection 

The EMG was bandpass filtered from 10-200 Hz and notch filtered from 49-51 Hz with a 4th order 

Butterworth filter after which it was rectified (see Figure 1). For each participant a threshold corresponding 

to 10% of the maximal EMG amplitude was plotted to determine the EMG onsets [14]. All EMG onsets were 

visually inspected to account for potential errors in the EMG onset detection. 

 

Figure 1: EMG onset detection. The threshold was selected as 10% of the maximal EMG activity. 

2.3.2. Pre-processing and feature extraction 

Initially, the EEG was bandpass filtered from 0.1-45 Hz with a 4th order zero phase shift Butterworth filter. 

Based on the extracted EMG onsets the continuous EEG was divided into epochs; 4 seconds prior to 4 

second after the EMG onset. All the epochs were baseline corrected using the mean value of data from 4 to 2 

seconds prior the EMG onset; this value was subtracted from the entire epoch. The epochs were further 

divided into two types of epochs: 1) idle activity, and 2) movement preparation/execution. The idle activity 

was defined as data from 4 to 2 seconds prior the EMG onset, and the movement preparation/execution was 

defined as 2 seconds prior the EMG onset until the EMG onset and then in 0.25 s increments after the EMG 
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onset (until +2 to +4 seconds with respect to the EMG onset). To account for artefact contamination, epochs 

with amplitudes exceeding 150 µV were rejected from further analysis. 

Three types of features were extracted from each channel: 1) mean amplitudes, 2) absolute band power, and 

3) template matching. Prior the extraction of the amplitude and template matching features, the epochs were 

bandpass filtered from 0.1-5 Hz. The mean amplitudes were extracted in four 0.5 second non-overlapping 

time windows. In the 2 second epoch, the data were bandpass filtered with a 4th order zero phase shift 

Butterworth filter in 2 Hz non-overlapping bins from 8-30 Hz. The filtered data were squared and the 

average across the 2 seconds was calculated. A template of the movement epochs was extracted from the 

averaged epochs for each channel for each participant i.e. up to 9 templates. The template was extracted from 

-1.5 to 0.5 s with respect to the EMG onset (see e.g. Fig. 2). The template matching feature was obtained by 

calculating the cross correlation between the template and the epochs without a time lag which led to a 

maximum of 9 features per epoch.  

This processing was repeated in three scenarios: 1) single channel (Cz), 2) Large Laplacian montage around 

Cz, and 3) nine separate channels.       

2.3.3. Classification and feature analysis 

Following the feature extraction, a random forest classifier [20] was used to classify the two types of epochs 

using leave-one-out cross-validation where one epoch was used for testing and the remaining epochs were 

used for training the classifier. 500 trees were used to train the classifier. The classification was performed 

on the features extracted from each time window (e.g. -1.75 to 0.25 seconds with respect to the EMG onset). 

In each time window it was repeated four times using: 1) only amplitude features, 2) absolute band power 

features, 3) template matching, and 4) all features combined. Thus 4 classifiers were constructed for each of 

the 17 time windows for each of the channel setup scenarios. All the analyses were performed using 

MATLAB version 2016b. 

2.4. Statistics 

The classification accuracies were averaged across the 17 time windows. A 2-way repeated measures 

analysis of variance was performed on the averaged values with “channel setup” (3 levels: 1 channel, 1 

spatially filtered channel, and 9 channels) and “Feature” (4 levels: All features, amplitude, band power, and 

template) as factors. The Greenhouse-Geisser correction was applied when the assumption of sphericity was 

violated. Significant test statistics were followed up with a Bonferroni post hoc test to avoid multiple 

comparisons. Significant test statistics were assumed when P<0.05.  

3. Results 

The results are summarized in Table 2 and Figures 2-6. The participant ID in Table 1 corresponds to the 

participant ID in Figures 2 and 3. 
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Table 2: Representation about data that were recorded from each participant. The number of epochs was the same in all time windows. 

Participant Total number of 

movements 

Number of rejected 

epochs 

Time between 

movements (s) 

1 93 1 10±1 

2 66 0 9±2 

3 41 19 10±2 

4 67 3 11±2 

5 90 8 9±2 

6 60 0 12±2 

7 54 0 11±2 

8 52 2 12±3 

 

 

Figure 2: MRCP averages from each participant from Cz. In the middle, the grand average across participants is shown. The EMG onset is at 0 

seconds. The scaling of the axes is the same for all graphs except for subject 3. 
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Figure 3: Single-sided amplitude spectrum using fast Fourier transform for each subject using the Cz electrode. This was calculated for each trial and 

then the average is shown for the mu and beta frequency range.  

From Figure 2 it is seen that adolescents with cerebral palsy can produce MRCPs that can be visually 

observed in the EEG. It should be noted that there are differences in the amplitudes of the peak of maximal 

negativity, and that the characteristic MRCP shape is not equally prominent in all participants (participant 1 

and 2). Moreover, the peak of maximal activity is occurring ~0.5 seconds after the EMG onset. In Figure 3, 

the power spectral density for each participant is shown. In general, the power was lower for the movement 

preparation/execution epochs compared to the idle epochs, but there is no peak for specific frequencies for 

the individual participants.  

Using only a single channel (Figure 4) classification accuracies of ~65-75% were obtained when using all the 

features. It is seen in the figure that the classification accuracies are higher when using the amplitude features 

compared to the template matching and band power features. It should also be noted that there is no trend of 

increasing classification accuracies when more data after EMG onset are included in the analysis, except 

after 3 seconds after the EMG onset where the classification accuracies start to decrease. Also, the standard 

error is relatively high which indicates that is a considerable amount of inter-subject variability.   
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Figure 4: Classification accuracies obtained for a single channel (Cz) when using different types of features extracted from different time segments 

with respect to the EMG onset. The values are reported as mean ± standard error across participants. 

In Figure 5 the results are presented when applying a Large Laplacian montage around Cz. The classification 

accuracies increased compared to those obtained using a single channel. The classification accuracies 

increased to 75-80% when using all features or the amplitude features alone. For the template matching and 

band power features the classification accuracies are around 50-60%. Once again there is no trend of 

increasing classification accuracies when more data after the EMG onset are included in the analysis, and 

classification accuracies start to decrease after 1.5 seconds after the EMG onset. The standard error is still 

relatively high.   
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Figure 5: Classification accuracies obtained for a Large Laplacian montage around Cz when using different types of features extracted from different 

time segments with respect to the EMG onset. The values are reported as mean ± standard error across participants. 

Lastly, the classification accuracies were obtained when extracting features from each of the nine channels 

individually. The results are summarized in Figure 6. The classification accuracies are comparable to those 

obtained using a Large Laplacian montage. The classification accuracies when using all features and the 

amplitude features were 75-85%. For the template matching the classification accuracies are higher 

compared to the two other scenarios with accuracies up to 65%. The band power features are associated with 

the lowest classification accuracies. Once more there is no trend of increasing classification accuracies when 

more data after the EMG onset are included in the analysis, at least when using all features or the amplitude 

features, and the classification accuracies start to decrease 2 seconds after the EMG onset. The standard error 

is still relatively high. The statistical analysis revealed a significant effect of electrode setup (F(2,14)=40.10; 

P<0.01) and features (F(3,21)=186.82.41; P<0.01). There was no interaction between the two factors 

(F(2.62,18.33)=1.41; P=0.27). The post hoc analysis showed that the classification accuracies associated with 

each feature comparison were different, and that the spatially filtered channel around Cz and all nine 

electrodes were associated with higher classification accuracies compared to the use of a single channel. 
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Figure 6: Classification accuracies obtained for nine channels when using different types of features extracted from different time segments with 

respect to the EMG onset. The values are reported as mean ± standard error across participants. 

  

4. Discussion 

Classification accuracies when discriminating between idle activity and movement-related activity were in 

the range of 75-85%. The highest classification accuracies were obtained when using a Large Laplacian 

montage around Cz or nine separate channels based on amplitude features or all the features combined. 

Moreover, no tendencies were observed as more data (up to 2 seconds) after the EMG onset were included in 

the analysis. 

4.1. Movement intention/execution detection 

In this study the classification accuracies were used as an estimation of movement intention/execution 

detection. The performance of the classifier was similar to what has been reported for healthy participants 

and stroke patients [12, 21], but it should be noted that in the current study the epochs were extracted with a 

priori knowledge of the EMG onset, which means that it is likely that the online detection performance will 

decrease. Moreover, the actual chance level was not 50%, but in the range of 60-65% [22]. It was expected 

that the classification accuracies would decrease a bit more than they did in the analysis windows 2 s after 

the EMG onset. However, this can be due to a late peak negativity and rebound phase which are included in 

the 2 second wide analysis windows. It should also be noted that the standard errors are quite high (~5 

percentage points). The results showed that spatial filtering could be a useful pre-processing step when 

detecting movement intentions in this patient group. This has also been indicated previously in healthy 

participants and stroke patients [21, 23]. One potential explanation of the improved detection performance 
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could be that the spatial filter corrects the blurred image of the underlying brain activity due to volume 

conduction [24]. In future studies it could be relevant to investigate other types of spatial filters or denoising 

using independent component analysis [23]. However, the Large Laplacian montage has been shown to be a 

robust choice of spatial filter, and with the fixed coefficients it does not require extensive calibration to 

determine the filter coefficients [14, 21]. In the results it was seen that it was possible to detect the 

movement-related activity using only a single electrode. This could have implications for the usability of 

such a BCI system since the setup time will be extremely short and the user will not require a wash of the 

hair after each use, but with the improvements in the EEG recording systems and electrode design (e.g. dry 

electrodes) it may not be necessary to limit the setup to a single electrode overlying Cz (the cortical 

representation of the foot). Using more electrodes will improve the detection performance which may be an 

important factor for the use of the system to be taken up by patients and clinicians. By using more electrodes, 

it will also be possible to account for or individualize the decoder to specific cortical reorganization due to 

the injury or effect of rehabilitation. Lastly, it was shown that a stable detection performance was obtained 

despite the inclusion of more data after the EMG onset. This is a bit surprising based on the signal 

morphology in Figure 2 where more discriminative information can be obtained around the point of maximal 

negativity (which occurs ~0.5 seconds after the EMG onset), but it has been reported previously that high 

classification accuracies can be obtained with detection latencies up to 200 ms prior the movement onset [14, 

21, 23, 25]. If the use of an MRCP-based BCI is intended for control purposes then it could be relevant to 

include residual EMG activity to construct a hybrid BCI unless there is too much spasticity [1, 26]. For 

neuromodulation, by inducing Hebbian-associated plasticity, the movement intentions should be detected 

using data prior the EMG onset, so it is timely correlated with somatosensory feedback from an assisted 

movement [7]. It was shown that the detection performance was in the range of what has been reported to 

induce neural plasticity [9, 10].   

4.2. Feature importance 

The features based on the mean amplitude were consistently the most discriminative ones compared to 

spectral features; this was also shown in another study where movement intentions were detected using 

temporal and spectral features [11]. However, it has also been indicated in a large body of work that spectral 

features in terms of ERD/ERS are useful for detecting movement-related activity from the EEG [13, 27, 28]. 

It has also been shown in patients with cerebral palsy that they can produce ERD/ERS patterns [16, 29, 30]. 

However, this was not reflected in the absolute band power in the current study which is indicated in Figure 

3. A potential reason for this could be the fact that real movements were executed, although a modulation of 

the mu and beta power should be produced, without conscious preparation of the forthcoming movement. By 

training the participants to carefully plan the executed or imagined movement and maintain the contraction it 

could be speculated that a stronger modulation of the mu and beta rhythms can be observed. From a signal 

processing point of view, the discrimination between idle activity and movement-related activity could be 
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optimized using other types of spatial filtering such as common spatial pattern spatial filtering which 

maximizes the variance between two classes. The disadvantages of using this approach is that the 

morphology of the MRCP may be altered. Moreover, an even finer spectral and spatial (more electrodes) 

resolution could be used as well, but such an approach could potentially boost the detection performance 

[13], but the calibration time of the BCI would increase.  

4.3. Limitations 

A limitation of the current study was that the epochs were extracted with a priori knowledge about the EMG 

onset; thus, there is a need to validate the findings in an online BCI system to get an indication of its 

potential use in the rehabilitation of patients with cerebral palsy. It was previously shown that limited BCI 

control could be obtained in the first BCI session [16], and that the performance likely would increase due to 

a training effect when the user familiarized with the system [17]. When using an MRCP-based BCI system it 

is likely that the users do not require any training to use the BCI system since they will be asked to attempt to 

perform movements and a reasonably high detection performance can be obtained without any prior training 

of the user or system [31, 32]. All the patients in this study had residual EMG, so the findings should be 

validated in a larger number of patients with different levels of impairments e.g. patients with a high degree 

of spasticity or no residual EMG.         

5. Conclusion 

In this study it was demonstrated that adolescents with cerebral palsy can produce MRCPs and that it is 

possibly to discriminate between movement intention/execution and idle activity from single-trial EEG. 

Moreover, it was shown that detection can be performed using a single EEG channel, but spatial filtering is 

useful for enhancing the detection performance. These results could be relevant for BCI-based rehabilitation 

of patients with cerebral palsy. 
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