

Aalborg Universitet

Liquidus temperatures of stone wool compositions

Zheng, Qiuju; Solvang, Mette; Yue, Yuanzheng

Publication date: 2018

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Zheng, Q., Solvang, M., & Yue, Y. (2018). Liquidus temperatures of stone wool compositions. 32. Abstract from ICG Annual Meeting 2018, Yokohama, Japan.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Liquidus temperatures of stone wool compositions

Q. J. Zheng^{a,b}, M. Solvang^c, Y. Z. Yue^{a,b}

^aDepartment of Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark ^bSchool of Materials Science and Engineering, Qilu University of Technology, 250353 Jinan, China ^cROCKWOOL International A/S, Hovedgaden 584 2640 Hedehusene, Denmark <u>qlzhengqj@163.com</u>

Abstract:

 T_1 is a thermodynamic temperature, which is of scientific and technical importance. Theoretically, the liquidus temperature (T_1) is defined as the high temperature limit, at which no crystals can survive. However, practically it is challenging to determine T_1 of a glass-forming composition, in particular, of multi-component systems. The experimentally determined T_1 values often deviate from those predicted from the Lindeman model. It is known that the structurally ordered domains could exist even above experimentally determined T_1 . Various methods have been applied to determine T_1 in glass science and industry. The offset point (T_{offset}) of the DSC melting peak is regarded as the temperature at which the last crystal vanishes. The extrapolated T_{offset} value can be defined as calorimetric T_1 . We investigate the liquidus temperature of some stone wool compositions. We found that when the temperature is above the practical calorimetric T_1 , the crystal structure is partly remembered by the liquid, or the ordered crystal-like structure still exists, although the crystals disappear. This is evidenced by the fact that the position of the crystallization peak shifts to higher temperature (T_{max}) reaches a certain value, not only crystals, but also the remembered crystal structure is eliminated. This T_{max} could be defined as the thermodynamic T_1 .

References

- 1. Y.Z. Yue, Q.J. Zheng, Fiber spinnability of glass melts, Int. J. Appl. Glass Sci. 8 (2017) 37-47.
- 2. Y.Z. Yue, Experimental evidence for the existence of an ordered structure in a silicate liquid above its liquidus temperature, *J. Non-Cryst. Solids* 345-346 (2004) 523-527.
- 3. N. Lönnroth, Y.Z. Yue, Crystallization behavior and structural order of iron-containing aluminosilicate liquids, *Phys. Chem. Glasses* 46 (2005) 315-319.