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Abstract: The problem studied in this paper is a cyclic job-shop problem with multiple Automated Guided 

Vehicles (AGVs). Job batches, which follow specific production routes, are processed, in the order of their 

operations, on multiple machines with standard processing times, and the fleet of AGVs perform the 

transportation operations of moving these job batches between the workstations. In this system, part sets 

of items are produced at fixed time intervals (takts). In the adopted model of the system, one can distinguish 

a layer of station-to-station transport, which is a network of local loops connecting subsets of workstations 

serviced cyclically by dedicated AGVs, and a layer of repetitive production flows which comprise job 

batches following a given set of production routes. The relationship between the elements of the structure 

of the system being modelled and its potential behavior is described by a system of integer equations. The 

resulting solutions enable the fast evaluation of production flow parameters including part sets, takt time, 

as well as repetitive-flow balancing aimed at maximization of the rate of system resource utilization. The 

high efficiency of the proposed approach, enabling the online prototyping of the production flow, is a 

consequence of omitting the time-consuming calculation of the sequencings of jobs within a cycle. 

Keywords: cyclic robotic job shop, repetitive-flow balancing, takt time, flow time 



1. INTRODUCTION 

The planning and organization of multi-item repetitive flow 

production is one of the most difficult production problems, 

but at the same time it is a problem that is rarely studied. Cyclic 

job-shop problems, which are a unique and relatively little 

investigated subclass of job sequencing problems [20] – as 

well as the problems of production leveling and flow line 

balancing – [2, 19] are good examples here. These issues have 

seen rapidly growing interest both on the part of practitioners 

and theorists, mainly because of their great practical 

significance and the difficulty of constructing effective 

algorithms for solving them. It is noteworthy that the NP-

completeness and/or strong NP-harness of the simplest 

versions of the mentioned classes of problems limit the scope 

of the application of exact algorithms to small-sized instances 

only [24].Given this background, the present study is an 

attempt to collate two perspectives: the basic (academic) 

perspective, focused on finding optimal solutions, in particular 

with respect to the minimization of the makespan (completion 

time); and the applied (production- and manufacturing- 

oriented) perspective, which concentrates on flow-time as the 

response time to user requests for job execution [10, 15, 23]. 

An observation that these two perspectives diverge is made in 

[3], which emphasizes the multi-objective character of the 

problems under consideration. The author of that study notes 

that since the makespan is the maximum value of the 

completion time of all jobs, and flow-time is the sum of the 

completion times of all jobs, hence the minimization of 

makespan results in the maximization of flow-time. Another 

example of this discrepancy is given in Section 3, which 

discusses a case in which an organization of production flow 

that guarantees minimal flow time makes it impossible to 

achieve a minimum takt time. The two foci of this example are 

repetitive flow, in which a batch (a set) of items is produced at 

fixed time intervals (takt times), and its generalization, based 

on the concept of heijunka (production leveling). Production 

leveling is usually understood as a form of cyclic scheduling 

and is defined as “the distribution of production volume and 

mix evenly over time” [23]. In the case under consideration, 

flow time is understood as a period required for completing a 

specific job or a defined amount of work, i.e., the amount of 

time equal to the time it takes to finish one unit of product. If 

there is more than one path through the process, the flow time 

is equivalent to the length of the longest path. In turn, by takt 

time, we mean the desired time between the units of production 

output, synchronized to customer demand. 

In further parts of this work, it is assumed that in the multi-

machine cyclic production system considered, any element 

from a fixed batch (mix) passes in a predefined technological 

sequence through machines along a given technological route. 

The system consists of 𝑚𝑚 workstations (machines with unitary 

throughput) designated as 𝑅𝑅 =  {𝑅𝑅1, … , 𝑅𝑅𝑘𝑘, … , 𝑅𝑅𝑚𝑚}. The 

system is designed to cyclically (repetitively) perform n jobs 

(production processes) given by the set 𝑊𝑊 =
(𝑊𝑊1, … 𝑊𝑊𝑖𝑖, … 𝑊𝑊𝑛𝑛). A set of jobs performed in a single cycle is 

called a Part Set (𝑃𝑃𝑃𝑃). 𝑃𝑃𝑃𝑃 items are processed one after another 
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in a cyclic manner, providing a batch of jobs (a part set) in 

quantities appropriate for each cycle. That is because the 

processes must be able to be scaled to takt time, or the rate of 

customer demand. 

All the job batches are processed in order of their operations 

on multiple machines with standard processing times, and the 

fleet of AGVs perform transportation operations between the 

workstations. The goal is to find an AGV fleet assignment for 

transportation operations and a sequencing of the AGVs’ 

moves that can minimize production takt time, i.e., the time 

after which the next mix (part set) of the same elements can be 

produced (maximizing the throughput rate), and ensure a 

balanced flow (repetitive-flow balancing). Here, production 

flow balancing is used to mean “leveling work content” 

between all resources. Throughput rate (flow rate), in turn, is 

understood as the number of flow units passing through the 

production (manufacturing) process per unit in time.  

In the declarative model of the production system considered 

in this study, one can distinguish a layer of station-to-station 

transport, which is a network of local loops connecting subsets 

of workstations serviced cyclically by dedicated AGVs, and a 

layer of repetitive production flows, which comprises 

sequences of operations, executed as part of the processes of 

moving/processing job batches, following a given set of 

production routes. The model, which implements a set of 

integer equations describing the behavior of the system being 

modelled, can be used to determine the set of permissible 

solutions characterizing the batch sizes of the PSs produced 

under the specific constraints imposed by the structure and 

organization of the technical appliance used (AGVs, 

workstations, intermediate storage facility, load/unload 

devices, and so on). In summary, this model allows one to 

determine the permissible size of 𝑃𝑃𝑃𝑃 batches and the takt times 

which determine the production completion times for those 

batches, as well as scenarios that allow repetitive flow-

balancing aimed at leveling the production and increasing the 

rate of resource utilization. In particular, in situations in which 

the parameters of the production system) characterizing its 

machinery and technical layout (including operation times, 

buffer capacity, and so on) as well as the production and 

transportation routes are known, this model makes it possible 

to seek answers to the following questions:  What batches of 

𝑃𝑃𝑃𝑃s can be produced at what takt times in a system with a 

given structure and a given organization of the technical 

appliances used within it? (And in particular: What cyclic 

schedules can result in the production of feasible [in terms of 

composition and batch sizes of component products] PSs?) 

What execution times of technological and transport 

operations, and what capacity of intermediate storage buffers 

guarantee the production of specified compositions of 𝑃𝑃𝑃𝑃s 

completed at the given takt time? 

In this context, the present work is a continuation of previous 

research on production flow balancing [7] and the robust 

scheduling of multi-item cyclic production [5, 8]. The novelty 

of this work is based on the formulation and analysis of a 

model of integer equations, a model that enables one to depart 

from the analysis of events represented in a Gantt chart (by 

omitting the calculation of the timings and sequences of jobs 

within a takt time), thus allowing a radical reduction in the size 

of the search space of permissible solutions.    

The remainder of this paper is organized as follows: Section 2 

provides a brief overview of the related research. Section 3 

presents a model of considered batch flow production system 

and a dedicated for it constraint satisfaction problem. Section 

4 provides computational experiments illustrating the 

proposed approach to PS batches cycle time scheduling and 

repetitive-flow balancing. Finally, Section 5 offers some 

concluding remarks. 

2. RELATED WORK 

Numerous papers address the issue of optimization of cyclic 

scheduling problems, such as the Basic Cyclic Scheduling 

Problem (BCSP) [16, 20] and its extensions associated with 

scheduling in production job-shops (so-called Job-shop 

Problems): the general Cyclic Job-shop Problem [4], the 

Cyclic Flow-shop Problem [9, 20], and the Cyclic Open-shop 

Problem [18]. With the exception of BCSP, all the problems 

listed above belong to the class of NP-hard problems, which 

means their solution requires the use of Artificial Intelligence 

methods [12, 14, 19, 20, 22]. The widely-recognized 

advantages of cyclic scheduling include, in particular, more 

efficient material handling, better station utilization, and 

simpler shop floor control, which however all come at the cost 

of schedule inflexibility, which means cyclic schedules are 

difficult to modify, and overallocation can cause a whole 

schedule to fail. Also, cyclic scheduling is not very suitable for 

systems with both periodic and aperiodic jobs. A special place 

in this context is occupied by studies on models oriented 

towards cyclic production methods in which a set of units is 

produced at fixed time intervals [11, 21]. The optimization of 

a process usually amounts to minimizing the cycle period or 

ensuring that a certain (usually Minimum) Part Set (MPS) of 

products is manufactured [1]. An alternative to this 

predominant, academic approach, is a paradigm based on the 

concept of heijunka, requiring that a base period referred to as 

EPEI (Every Part Every Interval) be determined, in which the 

whole mix of products has to be produced [23]. The core idea 

of the principle of production leveling is the heijunka box. It is 

a cyclic production schedule divided into a grid of boxes in 

which the columns represent a specific period of time and the 

rows represent product types. Attention is especially paid to 

the cyclic job-shop scheduling problem with multiple AGVs, 

which is recognized as being an effective way of processing 

various manufacturing and transportation processes, including 

those where setup and transportation times are relevant [20, 

13, 10, 18]. In this context, a special interest should be taken 

in studies devoted to frameworks combining path routing and 

AGV fleet scheduling, which provide an integrated and unified 

approach to the modelling and design of cyclic production 

flow schedules ensuring efficient material handling, better 

workstation utilization, and simpler shop floor control [20]. 

The models and the methods developed on this basis, which 

are used in solving cyclic scheduling problems, include 

operational research techniques, such as branch-and-bound 

search or mixed-integer programming [24], or artificial 

intelligence techniques, such as constraints programming [5, 

24], tabu search [14] and ant colony [12]. An alternative 

approach is offered by methods based on Max-plus algebra. 

The formalism of this algebra can be used to model and 

analyze a production system within the linear framework, 
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allowing, for example, the use of Petri nets to simulate system 

behavior. The major advantage of this framework is that it 

eliminates the need to formulate scheduling problems as non-

linear optimization problems [5, 7, 8]. Its main drawback, 

however, is that it has limited potential use for the analysis of 

production flows in models that do not take into account the 

structures responsible for material handling. From this point of 

view, the approach presented in this study, in which both 

production flows and the accompanying transport operations 

between pairs of workstations are modelled by a set of 

linear/nonlinear integer equations, may also bring interesting 

research options. Models of this type allow for the quick 

determination of the basic parameters (takt time, size of part 

sets, etc.) of permissible production flow variants in a cyclic 

job-shop problem with multiple AGVs. The advantage of the 

approach discussed here, however, comes at the cost of a lack 

of solutions determining the sequencing and timing of the 

particular jobs performed within a takt time period. 

3. MODELLING 

3.1. Motivating Example 

Given below is a multi-item batch flow production system 

composed of five stations 𝑅𝑅 =  {𝑅𝑅1, … , 𝑅𝑅5}, as shown in Fig. 

1. This system cyclically performs two jobs related to the 

execution of two production processes: 𝑊𝑊 = (𝑊𝑊1, 𝑊𝑊2). The 

processes are executed along the following routes: 𝑊𝑊1 =
(𝑅𝑅1, 𝑅𝑅3, 𝑅𝑅5), 𝑊𝑊2 = (𝑅𝑅2, 𝑅𝑅1, 𝑅𝑅4, 𝑅𝑅5). The execution times 𝑡𝑡𝑖𝑖,𝑗𝑗 of 

workstation operations 𝑂𝑂𝑖𝑖,𝑗𝑗 (𝑗𝑗-th operation executed along the 

technological route of 𝑖𝑖-th product) marked in Fig. 1 are given 

in Table 1. A system of equations describing the steady state 

of the flow production of two products is shown below [7]: 

𝑇𝑇𝑇𝑇 = max {𝑡𝑡𝑡𝑡1 … 𝑡𝑡𝑡𝑡5}; 

𝑡𝑡1,1 ⋅ 𝑏𝑏1 + 𝑡𝑡2,2 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡1;  𝑡𝑡2,1 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡2; 𝑡𝑡1,2 ⋅ 𝑏𝑏1 = 𝑡𝑡𝑡𝑡3;  

𝑡𝑡2,3 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡4; 𝑡𝑡1,3 ⋅ 𝑏𝑏1 + 𝑡𝑡2,4 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡5;  (1) 

where: 𝑡𝑡𝑡𝑡𝑘𝑘 – resource occupation time 𝑅𝑅𝑘𝑘, 𝑡𝑡𝑖𝑖,𝑗𝑗 – time of j-th 

operation of job 𝑊𝑊𝑖𝑖,  𝑏𝑏𝑖𝑖 –   batch size for 𝑊𝑊𝑖𝑖. 
It is easy to see that when operation times are assumed to have 

integer values, the model considered (1) forms a system of 

integer equations. The set of solutions of this system includes: 

𝑏𝑏1 = 𝑏𝑏1
(1) = 1, 𝑏𝑏2 = 𝑏𝑏2

(1) = 1, 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇(1) = 7; 𝑏𝑏1
(2) = 2, 

𝑏𝑏2
(2) = 2, 𝑇𝑇𝑇𝑇(2) = 14; ... ; 𝑏𝑏1

(𝑐𝑐) = 𝑐𝑐 ⋅ 𝑏𝑏1
(1) = 𝑐𝑐; 𝑏𝑏2

(𝑐𝑐) = 𝑐𝑐 ⋅
𝑏𝑏2

(1) = 𝑐𝑐, 𝑐𝑐 ∈ ℕ, 𝑇𝑇𝑇𝑇(𝑐𝑐) = 𝑐𝑐 ⋅ 𝑇𝑇𝑇𝑇(1) = 𝑐𝑐 ⋅ 7.  Each of the 

potential solutions of the system of equations includes a so-

called part set, for example: 𝑇𝑇𝑃𝑃(1) =  (1  , 1), produced during 

one takt period 𝑇𝑇𝑇𝑇(1) = 7. In the case discussed here, each job 

is performed once during one takt period. 

Given the above part set 𝑇𝑇𝑃𝑃(1), a schedule (understood as a set 

of starting times of job operations) in which takt period 𝑇𝑇𝑇𝑇(1) 
can be feasibly obtained is one of the permissible solutions of 

the following system of inequalities.  

𝑥𝑥1,1(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘 − 1) + 𝑡𝑡1,1;  𝑥𝑥1,2(𝑘𝑘) ≥ 𝑥𝑥1,2(𝑘𝑘 − 1) + 𝑡𝑡1,2; 

𝑥𝑥1,2(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘) + 𝑡𝑡1,2;   𝑥𝑥1,3(𝑘𝑘) ≥ 𝑥𝑥1,3(𝑘𝑘 − 1) + 𝑡𝑡1,3; 

𝑥𝑥1,3(𝑘𝑘) ≥ 𝑥𝑥1,2(𝑘𝑘) + 𝑡𝑡1,2;  𝑥𝑥2,1(𝑘𝑘) ≥ 𝑥𝑥2,1(𝑘𝑘 − 1) + 𝑡𝑡2,1; 

(𝑥𝑥1,1(𝑘𝑘) ≥ 𝑥𝑥2,2(𝑘𝑘) + 𝑡𝑡2,2) ∨ (𝑥𝑥2,2(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘) + 𝑡𝑡1,1) 

𝑥𝑥1,1(𝑘𝑘) ≥ 𝑥𝑥2,2(𝑘𝑘 − 1) + 𝑡𝑡2,2; 𝑥𝑥2,2(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘 − 1) + 𝑡𝑡1,1 

(𝑥𝑥1,3(𝑘𝑘) ≥ 𝑥𝑥2,4(𝑘𝑘) + 𝑡𝑡2,4) ∨ (𝑥𝑥2,4(𝑘𝑘) ≥ 𝑥𝑥1,3(𝑘𝑘) + 𝑡𝑡1,3) 

𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘) = 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘 − 1) + 𝑇𝑇𝑇𝑇(1), 𝑖𝑖 = 1,2;  𝑗𝑗 = 1 … 4 

where:  𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘) – starting time of 𝑗𝑗-th operation of job 𝑊𝑊𝑖𝑖 in 𝑘𝑘-

th cycle, 𝑇𝑇𝑇𝑇(1) –  takt time for part set 𝑇𝑇𝑃𝑃(1), 𝑡𝑡𝑖𝑖,𝑗𝑗 – time of 𝑗𝑗-th 

operation of job 𝑊𝑊𝑖𝑖 (given in Table 1). 

 
Fig. 1. Structure of a multi-item batch flow production system    

Table 1 Workstation operation times 𝑡𝑡𝑖𝑖,𝑗𝑗  

 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 

𝑊𝑊1 𝑡𝑡1,1 = 3  𝑡𝑡1,2 = 6  𝑡𝑡1,3 = 4 

𝑊𝑊2 𝑡𝑡2,2 = 4 𝑡𝑡2,1 = 4  𝑡𝑡2,3 = 3 𝑡𝑡2,4 = 3 

 

These inequalities describe sequence relations between the job 

operations 𝑊𝑊1 and 𝑊𝑊2 in the system of Fig.1. By finding 

solutions which satisfy the inequalities, one can determine 

operation starting times that will result in flow production 

(with takt time 𝑇𝑇𝑇𝑇(1)) of the given part sets 𝑇𝑇𝑃𝑃(1). The jobs are 

performed on the assumption that: (1) each station can perform 

at most one operation per unit of time, (2) each operation can 

be performed on at most one station per unit of time, and (3) 

operations may not be interrupted during their execution. 

Examples of two achievable schedules are shown in Figs. 2 

and 3. Fig. 2 shows a schedule that guarantees a minimum 

production rate 𝑇𝑇𝑇𝑇(1) = 7 at flow times 𝐹𝐹𝑇𝑇1
(1) = 13 (for job 

𝑊𝑊1) and 𝐹𝐹𝑇𝑇2
(1) = 17 (for job 𝑊𝑊2). Fig.3, on the other hand, 

shows a schedule with a longer takt time (𝑇𝑇𝑇𝑇(1) = 8) but a 

shorter flow time of job 𝑊𝑊2:  𝐹𝐹𝑇𝑇2
(1) = 16 (value 𝐹𝐹𝑇𝑇1

(1)
 is 

unchanged). It should also be noted that in the first case there 

are two bottlenecks 𝑅𝑅1 and 𝑅𝑅5, and in the second one, there are 

two critical processes (i.e., processes in which component 

operations are executed without downtime). Of course, the 

workstations are more fully utilized in the first case. It is worth 

noting that changes in production flow caused by increasing 

the batch size to integer multiples of batch size 𝑇𝑇𝑃𝑃(1) do not 

affect the utilization rate of the system resources. Increased 

batch size leads to longer waiting times for the pickup/delivery 

of successive batches at non-bottleneck workstations, as 

illustrated in Fig. 4. This means that by changing the size of 

production batches while keeping the bottleneck of the system 

unchanged, one can increase the availability of other non-

bottleneck workstations. The surplus availability of 

workstations obtained in this way makes it possible to produce 

an additional range of products.      

3.2. Model formulation  

Fig. 5 shows the structure of a multi-item batch flow 

production system (Fig. 5c) in which two layers have been 

distinguished: the production flow layer (Fig. 5a) and the layer 

of transport and storage of production batches (Fig. 5b).   

𝑅𝑅3 𝑅𝑅5 

𝑅𝑅2 𝑅𝑅4 

𝑂𝑂1,1 𝑂𝑂1,2 𝑂𝑂1,3 

𝑂𝑂2,1 
𝑂𝑂2,2 

𝑂𝑂2,3 
𝑂𝑂2,4 

𝑊𝑊1 

𝑊𝑊2 

𝑅𝑅𝑘𝑘 

𝑊𝑊1 
𝑊𝑊2 
𝑂𝑂𝑖𝑖,𝑗𝑗 - 𝑗𝑗-th - operation of product 𝑊𝑊𝑖𝑖 

Legend: 

𝑅𝑅1 

 -workstation  𝑅𝑅𝑘𝑘 
 - jobs routes 𝑊𝑊1, 𝑊𝑊2 
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allowing, for example, the use of Petri nets to simulate system 

behavior. The major advantage of this framework is that it 

eliminates the need to formulate scheduling problems as non-

linear optimization problems [5, 7, 8]. Its main drawback, 

however, is that it has limited potential use for the analysis of 

production flows in models that do not take into account the 

structures responsible for material handling. From this point of 

view, the approach presented in this study, in which both 

production flows and the accompanying transport operations 

between pairs of workstations are modelled by a set of 

linear/nonlinear integer equations, may also bring interesting 

research options. Models of this type allow for the quick 

determination of the basic parameters (takt time, size of part 

sets, etc.) of permissible production flow variants in a cyclic 

job-shop problem with multiple AGVs. The advantage of the 

approach discussed here, however, comes at the cost of a lack 

of solutions determining the sequencing and timing of the 

particular jobs performed within a takt time period. 

3. MODELLING 

3.1. Motivating Example 

Given below is a multi-item batch flow production system 

composed of five stations 𝑅𝑅 =  {𝑅𝑅1, … , 𝑅𝑅5}, as shown in Fig. 

1. This system cyclically performs two jobs related to the 

execution of two production processes: 𝑊𝑊 = (𝑊𝑊1, 𝑊𝑊2). The 

processes are executed along the following routes: 𝑊𝑊1 =
(𝑅𝑅1, 𝑅𝑅3, 𝑅𝑅5), 𝑊𝑊2 = (𝑅𝑅2, 𝑅𝑅1, 𝑅𝑅4, 𝑅𝑅5). The execution times 𝑡𝑡𝑖𝑖,𝑗𝑗 of 

workstation operations 𝑂𝑂𝑖𝑖,𝑗𝑗 (𝑗𝑗-th operation executed along the 

technological route of 𝑖𝑖-th product) marked in Fig. 1 are given 

in Table 1. A system of equations describing the steady state 

of the flow production of two products is shown below [7]: 

𝑇𝑇𝑇𝑇 = max {𝑡𝑡𝑡𝑡1 … 𝑡𝑡𝑡𝑡5}; 

𝑡𝑡1,1 ⋅ 𝑏𝑏1 + 𝑡𝑡2,2 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡1;  𝑡𝑡2,1 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡2; 𝑡𝑡1,2 ⋅ 𝑏𝑏1 = 𝑡𝑡𝑡𝑡3;  

𝑡𝑡2,3 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡4; 𝑡𝑡1,3 ⋅ 𝑏𝑏1 + 𝑡𝑡2,4 ⋅ 𝑏𝑏2 = 𝑡𝑡𝑡𝑡5;  (1) 

where: 𝑡𝑡𝑡𝑡𝑘𝑘 – resource occupation time 𝑅𝑅𝑘𝑘, 𝑡𝑡𝑖𝑖,𝑗𝑗 – time of j-th 

operation of job 𝑊𝑊𝑖𝑖,  𝑏𝑏𝑖𝑖 –   batch size for 𝑊𝑊𝑖𝑖. 
It is easy to see that when operation times are assumed to have 

integer values, the model considered (1) forms a system of 

integer equations. The set of solutions of this system includes: 

𝑏𝑏1 = 𝑏𝑏1
(1) = 1, 𝑏𝑏2 = 𝑏𝑏2

(1) = 1, 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇(1) = 7; 𝑏𝑏1
(2) = 2, 

𝑏𝑏2
(2) = 2, 𝑇𝑇𝑇𝑇(2) = 14; ... ; 𝑏𝑏1

(𝑐𝑐) = 𝑐𝑐 ⋅ 𝑏𝑏1
(1) = 𝑐𝑐; 𝑏𝑏2

(𝑐𝑐) = 𝑐𝑐 ⋅
𝑏𝑏2

(1) = 𝑐𝑐, 𝑐𝑐 ∈ ℕ, 𝑇𝑇𝑇𝑇(𝑐𝑐) = 𝑐𝑐 ⋅ 𝑇𝑇𝑇𝑇(1) = 𝑐𝑐 ⋅ 7.  Each of the 

potential solutions of the system of equations includes a so-

called part set, for example: 𝑇𝑇𝑃𝑃(1) =  (1  , 1), produced during 

one takt period 𝑇𝑇𝑇𝑇(1) = 7. In the case discussed here, each job 

is performed once during one takt period. 

Given the above part set 𝑇𝑇𝑃𝑃(1), a schedule (understood as a set 

of starting times of job operations) in which takt period 𝑇𝑇𝑇𝑇(1) 
can be feasibly obtained is one of the permissible solutions of 

the following system of inequalities.  

𝑥𝑥1,1(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘 − 1) + 𝑡𝑡1,1;  𝑥𝑥1,2(𝑘𝑘) ≥ 𝑥𝑥1,2(𝑘𝑘 − 1) + 𝑡𝑡1,2; 

𝑥𝑥1,2(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘) + 𝑡𝑡1,2;   𝑥𝑥1,3(𝑘𝑘) ≥ 𝑥𝑥1,3(𝑘𝑘 − 1) + 𝑡𝑡1,3; 

𝑥𝑥1,3(𝑘𝑘) ≥ 𝑥𝑥1,2(𝑘𝑘) + 𝑡𝑡1,2;  𝑥𝑥2,1(𝑘𝑘) ≥ 𝑥𝑥2,1(𝑘𝑘 − 1) + 𝑡𝑡2,1; 

(𝑥𝑥1,1(𝑘𝑘) ≥ 𝑥𝑥2,2(𝑘𝑘) + 𝑡𝑡2,2) ∨ (𝑥𝑥2,2(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘) + 𝑡𝑡1,1) 

𝑥𝑥1,1(𝑘𝑘) ≥ 𝑥𝑥2,2(𝑘𝑘 − 1) + 𝑡𝑡2,2; 𝑥𝑥2,2(𝑘𝑘) ≥ 𝑥𝑥1,1(𝑘𝑘 − 1) + 𝑡𝑡1,1 

(𝑥𝑥1,3(𝑘𝑘) ≥ 𝑥𝑥2,4(𝑘𝑘) + 𝑡𝑡2,4) ∨ (𝑥𝑥2,4(𝑘𝑘) ≥ 𝑥𝑥1,3(𝑘𝑘) + 𝑡𝑡1,3) 

𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘) = 𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘 − 1) + 𝑇𝑇𝑇𝑇(1), 𝑖𝑖 = 1,2;  𝑗𝑗 = 1 … 4 

where:  𝑥𝑥𝑖𝑖,𝑗𝑗(𝑘𝑘) – starting time of 𝑗𝑗-th operation of job 𝑊𝑊𝑖𝑖 in 𝑘𝑘-

th cycle, 𝑇𝑇𝑇𝑇(1) –  takt time for part set 𝑇𝑇𝑃𝑃(1), 𝑡𝑡𝑖𝑖,𝑗𝑗 – time of 𝑗𝑗-th 

operation of job 𝑊𝑊𝑖𝑖 (given in Table 1). 

 
Fig. 1. Structure of a multi-item batch flow production system    

Table 1 Workstation operation times 𝑡𝑡𝑖𝑖,𝑗𝑗  

 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 

𝑊𝑊1 𝑡𝑡1,1 = 3  𝑡𝑡1,2 = 6  𝑡𝑡1,3 = 4 

𝑊𝑊2 𝑡𝑡2,2 = 4 𝑡𝑡2,1 = 4  𝑡𝑡2,3 = 3 𝑡𝑡2,4 = 3 

 

These inequalities describe sequence relations between the job 

operations 𝑊𝑊1 and 𝑊𝑊2 in the system of Fig.1. By finding 

solutions which satisfy the inequalities, one can determine 

operation starting times that will result in flow production 

(with takt time 𝑇𝑇𝑇𝑇(1)) of the given part sets 𝑇𝑇𝑃𝑃(1). The jobs are 

performed on the assumption that: (1) each station can perform 

at most one operation per unit of time, (2) each operation can 

be performed on at most one station per unit of time, and (3) 

operations may not be interrupted during their execution. 

Examples of two achievable schedules are shown in Figs. 2 

and 3. Fig. 2 shows a schedule that guarantees a minimum 

production rate 𝑇𝑇𝑇𝑇(1) = 7 at flow times 𝐹𝐹𝑇𝑇1
(1) = 13 (for job 

𝑊𝑊1) and 𝐹𝐹𝑇𝑇2
(1) = 17 (for job 𝑊𝑊2). Fig.3, on the other hand, 

shows a schedule with a longer takt time (𝑇𝑇𝑇𝑇(1) = 8) but a 

shorter flow time of job 𝑊𝑊2:  𝐹𝐹𝑇𝑇2
(1) = 16 (value 𝐹𝐹𝑇𝑇1

(1)
 is 

unchanged). It should also be noted that in the first case there 

are two bottlenecks 𝑅𝑅1 and 𝑅𝑅5, and in the second one, there are 

two critical processes (i.e., processes in which component 

operations are executed without downtime). Of course, the 

workstations are more fully utilized in the first case. It is worth 

noting that changes in production flow caused by increasing 

the batch size to integer multiples of batch size 𝑇𝑇𝑃𝑃(1) do not 

affect the utilization rate of the system resources. Increased 

batch size leads to longer waiting times for the pickup/delivery 

of successive batches at non-bottleneck workstations, as 

illustrated in Fig. 4. This means that by changing the size of 

production batches while keeping the bottleneck of the system 

unchanged, one can increase the availability of other non-

bottleneck workstations. The surplus availability of 

workstations obtained in this way makes it possible to produce 

an additional range of products.      

3.2. Model formulation  

Fig. 5 shows the structure of a multi-item batch flow 

production system (Fig. 5c) in which two layers have been 

distinguished: the production flow layer (Fig. 5a) and the layer 

of transport and storage of production batches (Fig. 5b).   

𝑅𝑅3 𝑅𝑅5 

𝑅𝑅2 𝑅𝑅4 

𝑂𝑂1,1 𝑂𝑂1,2 𝑂𝑂1,3 

𝑂𝑂2,1 
𝑂𝑂2,2 

𝑂𝑂2,3 
𝑂𝑂2,4 

𝑊𝑊1 

𝑊𝑊2 

𝑅𝑅𝑘𝑘 

𝑊𝑊1 
𝑊𝑊2 
𝑂𝑂𝑖𝑖,𝑗𝑗 - 𝑗𝑗-th - operation of product 𝑊𝑊𝑖𝑖 

Legend: 

𝑅𝑅1 

 -workstation  𝑅𝑅𝑘𝑘 
 - jobs routes 𝑊𝑊1, 𝑊𝑊2 
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Fig. 2. Gantt diagram illustrating the execution of process operations 

for flow production of part set 𝑃𝑃𝑃𝑃(1) = (1,1)  with 𝑇𝑇𝑃𝑃(1) = 7  u. t.  

 
Fig. 3. Gantt diagram illustrating the execution of process operations 

for flow production of part set 𝑃𝑃𝑃𝑃(1) = (1,1) with 𝑇𝑇𝑃𝑃(1) = 8 

 
Fig. 4. Gantt diagram illustrating how process operations are executed 

in flow production of part set 𝑃𝑃𝑃𝑃(2) = (2,2), with production takt 

time 𝑇𝑇𝑃𝑃(2) = 14 u.t. 

 

Items are transported between workstations by AGVs 

periodically servicing the selected workstations, i.e., 

neighboring workstations linked via local cyclic transportation 

routes. This means that the production capacity of the system 

(i.e., the size of the production batches and the value of the 

production takt time) are further limited by the capacity of the 

available transport subsystem.    

Assuming that the adopted mechanism of synchronization of 

the AGVs does not allow for resource conflicts leading to 

deadlocks and/or starvation, and assuming that the transport 

operations and the related loading/unloading operations are 

carried out at a takt time governed by the production system’s 

bottleneck, the model of this system is determined by the 

following parameters:    

Sets:  

𝑅𝑅: the set of resources  (workstations), indexed by 𝑘𝑘,  

𝑊𝑊:  the set of jobs, (products of multimodal processes) 

indexed by 𝑖𝑖, 

𝑃𝑃: the set of transportation means e.g. AGVs (local 

processes), indexed by 𝑗𝑗, 

𝑄𝑄𝑘𝑘:   the set of jobs using resource 𝑘𝑘. 

 

 

 

 
Fig. 5. A multi-item batch flow production system: a) production flow 

layer, b) transport layer, c) structure encompassing both the transport 

and the production flow layers    

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
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57% 
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100% 

Resource 

utilization  

𝑇𝑇𝑃𝑃(1) = 7 

𝐹𝐹𝑇𝑇2
(1) = 17 

Legend: 
- execution of  operations of  process 𝑊𝑊1 
- execution of  operations of  process 𝑊𝑊2 

- completion of production of product 𝑊𝑊1 
- completion of production of product 𝑊𝑊2 

- start of production of product 𝑊𝑊1 - start of production of product 𝑊𝑊2 
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c) 

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

1469



1438 G. K. Bocewicz et al. / IFAC PapersOnLine 51-11 (2018) 1434–1441 

 

     

 

Parameters:  

𝑚𝑚:   number of resources, 

𝑛𝑛:  number of products manufactured,  

𝑅𝑅𝑘𝑘:  resource 𝑘𝑘, 

𝑊𝑊𝑖𝑖:  job 𝑖𝑖, 
𝑞𝑞𝑘𝑘:    number of jobs using resource 𝑘𝑘, 𝑞𝑞𝑘𝑘 = |𝑄𝑄𝑘𝑘|, 
𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘: operation time for one item of product 𝑊𝑊𝑖𝑖 on resource 

𝑅𝑅𝑘𝑘, 

Δ𝑡𝑡:  travel time between workstations, 

𝑡𝑡𝑡𝑡:  loading/unloading time,  

𝑡𝑡𝑖𝑖𝑘𝑘:  time of transport operations executed on resource  𝑅𝑅𝑘𝑘, 

𝑇𝑇: period of local process executions, 𝑇𝑇 ≤ 𝑡𝑡𝑖𝑖𝑘𝑘, 

𝑇𝑇𝑇𝑇∗: maximum value of production takt time 𝑇𝑇𝑇𝑇 

 

Variables: 

𝑇𝑇𝑃𝑃:  sequence of batch sizes of part set 𝑇𝑇𝑃𝑃 =
 (𝑏𝑏1, … , 𝑏𝑏𝑖𝑖, … , 𝑏𝑏𝑛𝑛); to simplify the notation, it was 

assumed that 𝑇𝑇𝑃𝑃 stands for 𝑇𝑇𝑃𝑃(1) (i.e. the sequence of 

batch sizes produced once in a production cycle), 

𝑏𝑏𝑖𝑖:  size of production batch of product 𝑊𝑊𝑖𝑖, 𝑏𝑏𝑖𝑖 ∈ ℕ0 = ℕ ∪
{0} (𝑏𝑏𝑖𝑖 = 0 means that job 𝑊𝑊𝑖𝑖 is not being executed), 

value of 𝑏𝑏𝑖𝑖 determines also the capacity of intermediate 

storage buffers.  

𝑇𝑇𝑇𝑇:  production takt time of 𝑇𝑇𝑃𝑃; to make the notation 

simpler, it was assumed that 𝑇𝑇𝑇𝑇 means 𝑇𝑇𝑇𝑇(1) (i.e. the 

production takt time for part set 𝑇𝑇𝑃𝑃(1)), 
𝑡𝑡𝑡𝑡𝑘𝑘:  resource occupation time 𝑅𝑅𝑘𝑘, if the following condition 

is satisfied for resource 𝑅𝑅𝑘𝑘: ∀𝑅𝑅𝑐𝑐 ∈ 𝑅𝑅 : 𝑡𝑡𝑡𝑡𝑐𝑐 ≤ 𝑡𝑡𝑡𝑡𝑘𝑘, then 

resource 𝑅𝑅𝑘𝑘 is called the system’s bottleneck) , 

𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘:   workstation processing time for batch (𝑏𝑏𝑖𝑖) of product 

 𝑊𝑊𝑖𝑖, on resource 𝑅𝑅𝑘𝑘. 

The relationships among the above variables are described by 

the following constraints:  

 Takt time 𝑇𝑇𝑇𝑇 of a system is determined by the bottleneck - 

resource 𝑅𝑅𝑘𝑘 with the longest occupation time 𝑡𝑡𝑡𝑡𝑘𝑘,   

 𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑡𝑡𝑡𝑡1, … , 𝑡𝑡𝑡𝑡𝑘𝑘, … , 𝑡𝑡𝑡𝑡𝑚𝑚}  ,   (1) 
where: 𝑡𝑡𝑡𝑡𝑘𝑘 – resource occupation time 𝑅𝑅𝑘𝑘 representing the 

sum of times 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 and 𝑡𝑡𝑖𝑖𝑘𝑘: times of operations related to the 

processing of products of set 𝑄𝑄𝑘𝑘 (i.e. the set of products using 

resource 𝑅𝑅𝑘𝑘); times of operations associated with delivering 

and picking up products to and from resource 𝑅𝑅𝑘𝑘: 

 𝑡𝑡𝑡𝑡𝑘𝑘 = ∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘𝑖𝑖∈𝑄𝑄𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑘𝑘  .   (2) 

 Workstation processing time 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 for a batch of product 𝑊𝑊𝑖𝑖 
on resource 𝑅𝑅𝑘𝑘: 

   𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 = 𝑏𝑏𝑖𝑖 ⋅ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘     (3) 

 Transport operation time 𝑡𝑡𝑖𝑖𝑘𝑘 (delivery/pickup and 

loading/unloading of product) on resource 𝑅𝑅𝑘𝑘: 

  𝑡𝑡𝑖𝑖𝑘𝑘 = 𝑞𝑞𝑘𝑘 ⋅ (2𝑡𝑡𝑢𝑢𝑢𝑢 + Δ𝑡𝑡)    (4) 

Times 𝑡𝑡𝑡𝑡𝑘𝑘,   𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 and 𝑡𝑡𝑖𝑖𝑘𝑘 are shown in Fig. 6.  

The periodic flow of production which is governed by the takt 

time of completion of the successive part set batches (the 

production flow layer, Fig. 5a) is of course determined by the 

period of the system of simultaneously executed local cyclic 

processes (the transport layer Fig. 5b). 

 
Fig. 6. Execution of operations at workstation 𝑅𝑅𝑘𝑘, including transport 

operations (batch delivery and pickup operations)  

In a system with a transport structure in which the transport of 

products takes place after the production stage has been 

completed and in which the movement of the AGVs is 

collision- and deadlock-free (as in Figure 5), the following 

condition is satisfied:   

  𝑚𝑚𝑡𝑡𝑚𝑚{𝑇𝑇𝑇𝑇, 𝑇𝑇} = 0, for = 1 … 𝑚𝑚 .  (5) 

According to this condition, production takt time 𝑇𝑇𝑇𝑇 is a 

multiple of the period 𝑇𝑇 of AGVs, during which products are 

delivered to workstations. The satisfaction of this condition 

enables the synchronization of simultaneous deliveries to 

multiple workstations – as illustrated in Figure 7.  

 
Fig. 7. a) An elementary substructure of structure from Fig. 4, and b) 

its convoluted representation 

For the purposes of this work, it is assumed that the times of 

the particular station-to-station transport operations and the 

accompanying loading/unloading activities, which are 

components of the production cycle, are fixed (independent of 

the size of part set batches), and that their aggregate share in 

the transport stage does not exceed 20% of the takt time of the 

production stage when production is executed on the system’s 

bottleneck. The cyclic, deadlock-free and starvation-free 

execution of concurrently flowing local periodic transport and 

delivery/pickup processes creates conditions which determine 

the admissible initial allocation of AGVs and a set of priority 

rules which resolve resource conflicts (synchronize the order 

of access of the AGVs to shared resources). The method of 

determining such sufficient conditions, based on the concept 

of convoluting the elementary substructure of the local-

transport network, is presented in article [6]. For example, in 

the network shown in Fig. 5b, one can identify the elementary 

substructure of the form shown in Fig. 7a and 7b, and the 

corresponding convoluted form as presented in Fig. 7c, to 

determine the initial allocation in which AGVs allocated to 

𝑏𝑏𝑖𝑖 = 1 

𝑏𝑏𝑗𝑗 = 2 

𝑅𝑅𝑘𝑘 
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𝑡𝑡𝑖𝑖𝑘𝑘 𝑡𝑡𝑡𝑡𝑗𝑗,𝑘𝑘 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 

Operation of job 𝑊𝑊𝑖𝑖  

Pickup of  a batch of products  𝑊𝑊𝑗𝑗  
𝑅𝑅𝑘𝑘 

transport stage  production stage 

𝑇𝑇𝑇𝑇 

Operation of job 𝑊𝑊𝑗𝑗  

Delivery of  a batch of products to workstation  𝑊𝑊𝑗𝑗   

and pickup of a batch of products from workstation 𝑊𝑊𝑖𝑖  

𝑅𝑅1 

𝜎𝜎3 = (𝑇𝑇𝑏𝑏, 𝑇𝑇𝑎𝑎)  
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𝑇𝑇𝑏𝑏 
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𝑅𝑅3 

𝑅𝑅1 𝑅𝑅2 
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Parameters:  

𝑚𝑚:   number of resources, 

𝑛𝑛:  number of products manufactured,  

𝑅𝑅𝑘𝑘:  resource 𝑘𝑘, 

𝑊𝑊𝑖𝑖:  job 𝑖𝑖, 
𝑞𝑞𝑘𝑘:    number of jobs using resource 𝑘𝑘, 𝑞𝑞𝑘𝑘 = |𝑄𝑄𝑘𝑘|, 
𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘: operation time for one item of product 𝑊𝑊𝑖𝑖 on resource 

𝑅𝑅𝑘𝑘, 

Δ𝑡𝑡:  travel time between workstations, 

𝑡𝑡𝑡𝑡:  loading/unloading time,  

𝑡𝑡𝑖𝑖𝑘𝑘:  time of transport operations executed on resource  𝑅𝑅𝑘𝑘, 

𝑇𝑇: period of local process executions, 𝑇𝑇 ≤ 𝑡𝑡𝑖𝑖𝑘𝑘, 

𝑇𝑇𝑇𝑇∗: maximum value of production takt time 𝑇𝑇𝑇𝑇 

 

Variables: 

𝑇𝑇𝑃𝑃:  sequence of batch sizes of part set 𝑇𝑇𝑃𝑃 =
 (𝑏𝑏1, … , 𝑏𝑏𝑖𝑖, … , 𝑏𝑏𝑛𝑛); to simplify the notation, it was 

assumed that 𝑇𝑇𝑃𝑃 stands for 𝑇𝑇𝑃𝑃(1) (i.e. the sequence of 

batch sizes produced once in a production cycle), 

𝑏𝑏𝑖𝑖:  size of production batch of product 𝑊𝑊𝑖𝑖, 𝑏𝑏𝑖𝑖 ∈ ℕ0 = ℕ ∪
{0} (𝑏𝑏𝑖𝑖 = 0 means that job 𝑊𝑊𝑖𝑖 is not being executed), 

value of 𝑏𝑏𝑖𝑖 determines also the capacity of intermediate 

storage buffers.  

𝑇𝑇𝑇𝑇:  production takt time of 𝑇𝑇𝑃𝑃; to make the notation 

simpler, it was assumed that 𝑇𝑇𝑇𝑇 means 𝑇𝑇𝑇𝑇(1) (i.e. the 

production takt time for part set 𝑇𝑇𝑃𝑃(1)), 
𝑡𝑡𝑡𝑡𝑘𝑘:  resource occupation time 𝑅𝑅𝑘𝑘, if the following condition 

is satisfied for resource 𝑅𝑅𝑘𝑘: ∀𝑅𝑅𝑐𝑐 ∈ 𝑅𝑅 : 𝑡𝑡𝑡𝑡𝑐𝑐 ≤ 𝑡𝑡𝑡𝑡𝑘𝑘, then 

resource 𝑅𝑅𝑘𝑘 is called the system’s bottleneck) , 

𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘:   workstation processing time for batch (𝑏𝑏𝑖𝑖) of product 

 𝑊𝑊𝑖𝑖, on resource 𝑅𝑅𝑘𝑘. 

The relationships among the above variables are described by 

the following constraints:  

 Takt time 𝑇𝑇𝑇𝑇 of a system is determined by the bottleneck - 

resource 𝑅𝑅𝑘𝑘 with the longest occupation time 𝑡𝑡𝑡𝑡𝑘𝑘,   

 𝑇𝑇𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑡𝑡𝑡𝑡1, … , 𝑡𝑡𝑡𝑡𝑘𝑘, … , 𝑡𝑡𝑡𝑡𝑚𝑚}  ,   (1) 
where: 𝑡𝑡𝑡𝑡𝑘𝑘 – resource occupation time 𝑅𝑅𝑘𝑘 representing the 

sum of times 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 and 𝑡𝑡𝑖𝑖𝑘𝑘: times of operations related to the 

processing of products of set 𝑄𝑄𝑘𝑘 (i.e. the set of products using 

resource 𝑅𝑅𝑘𝑘); times of operations associated with delivering 

and picking up products to and from resource 𝑅𝑅𝑘𝑘: 

 𝑡𝑡𝑡𝑡𝑘𝑘 = ∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘𝑖𝑖∈𝑄𝑄𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑘𝑘  .   (2) 

 Workstation processing time 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 for a batch of product 𝑊𝑊𝑖𝑖 
on resource 𝑅𝑅𝑘𝑘: 

   𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 = 𝑏𝑏𝑖𝑖 ⋅ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘     (3) 

 Transport operation time 𝑡𝑡𝑖𝑖𝑘𝑘 (delivery/pickup and 

loading/unloading of product) on resource 𝑅𝑅𝑘𝑘: 

  𝑡𝑡𝑖𝑖𝑘𝑘 = 𝑞𝑞𝑘𝑘 ⋅ (2𝑡𝑡𝑢𝑢𝑢𝑢 + Δ𝑡𝑡)    (4) 

Times 𝑡𝑡𝑡𝑡𝑘𝑘,   𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 and 𝑡𝑡𝑖𝑖𝑘𝑘 are shown in Fig. 6.  

The periodic flow of production which is governed by the takt 

time of completion of the successive part set batches (the 

production flow layer, Fig. 5a) is of course determined by the 

period of the system of simultaneously executed local cyclic 

processes (the transport layer Fig. 5b). 

 
Fig. 6. Execution of operations at workstation 𝑅𝑅𝑘𝑘, including transport 

operations (batch delivery and pickup operations)  

In a system with a transport structure in which the transport of 

products takes place after the production stage has been 

completed and in which the movement of the AGVs is 

collision- and deadlock-free (as in Figure 5), the following 

condition is satisfied:   

  𝑚𝑚𝑡𝑡𝑚𝑚{𝑇𝑇𝑇𝑇, 𝑇𝑇} = 0, for = 1 … 𝑚𝑚 .  (5) 

According to this condition, production takt time 𝑇𝑇𝑇𝑇 is a 

multiple of the period 𝑇𝑇 of AGVs, during which products are 

delivered to workstations. The satisfaction of this condition 

enables the synchronization of simultaneous deliveries to 

multiple workstations – as illustrated in Figure 7.  

 
Fig. 7. a) An elementary substructure of structure from Fig. 4, and b) 

its convoluted representation 

For the purposes of this work, it is assumed that the times of 

the particular station-to-station transport operations and the 

accompanying loading/unloading activities, which are 

components of the production cycle, are fixed (independent of 

the size of part set batches), and that their aggregate share in 

the transport stage does not exceed 20% of the takt time of the 

production stage when production is executed on the system’s 

bottleneck. The cyclic, deadlock-free and starvation-free 

execution of concurrently flowing local periodic transport and 

delivery/pickup processes creates conditions which determine 

the admissible initial allocation of AGVs and a set of priority 

rules which resolve resource conflicts (synchronize the order 

of access of the AGVs to shared resources). The method of 

determining such sufficient conditions, based on the concept 

of convoluting the elementary substructure of the local-

transport network, is presented in article [6]. For example, in 

the network shown in Fig. 5b, one can identify the elementary 

substructure of the form shown in Fig. 7a and 7b, and the 

corresponding convoluted form as presented in Fig. 7c, to 

determine the initial allocation in which AGVs allocated to 

𝑏𝑏𝑖𝑖 = 1 

𝑏𝑏𝑗𝑗 = 2 

𝑅𝑅𝑘𝑘 

Δ𝑡𝑡 𝑡𝑡𝑡𝑡 
𝑡𝑡𝑖𝑖𝑘𝑘 𝑡𝑡𝑡𝑡𝑗𝑗,𝑘𝑘 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 
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𝑅𝑅𝑘𝑘 

transport stage  production stage 

𝑇𝑇𝑇𝑇 
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and pickup of a batch of products from workstation 𝑊𝑊𝑖𝑖  
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𝜎𝜎3 = (𝑇𝑇𝑏𝑏, 𝑇𝑇𝑎𝑎)  

Initial allocation of AGVs 
𝑇𝑇𝑏𝑏 

𝑇𝑇𝑎𝑎  
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transport sectors (as in Fig. 7c) will perform their operations at 

production workstations following the dispatching priority 

rules: 𝜎𝜎1 = (𝑃𝑃𝑐𝑐, 𝑃𝑃𝑏𝑏, 𝑃𝑃𝑎𝑎), 𝜎𝜎2 = (𝑃𝑃𝑎𝑎, 𝑃𝑃𝑑𝑑, 𝑃𝑃𝑐𝑐), 𝜎𝜎3 = (𝑃𝑃𝑏𝑏, 𝑃𝑃𝑎𝑎, 𝑃𝑃𝑑𝑑), 
and 𝜎𝜎4 = (𝑃𝑃𝑑𝑑, 𝑃𝑃𝑐𝑐, 𝑃𝑃𝑏𝑏) where:  𝜎𝜎𝑘𝑘 is a dispatching priority rule 

that specifies the order of access of the processes to 𝑅𝑅𝑘𝑘. 

 
Fig.8 Flow of production batches between workstations in the 

system from Fig. 5  

The cyclic nature of the processes occurring in the transport 

and production flow layers (Fig. 5c) is also illustrated in Fig. 

8. Focusing on the elementary, repetitive structures of the 

production flow network and the network of local transport 

processes, this figure shows 8 successive phases of 

simultaneously executed operations of station-to-station 

transport. Due to limited space, further considerations are 

confined to the production flow layer. Assuming that the 

appropriate conditions guaranteeing a deadlock- and 

starvation-free execution of transportation operations 

performed by the fleet of AGVs are satisfied, the formulation 

of the following problem is considered. 

3.4. The Constraint Satisfaction Problem    

Consider the multi-item batch flow production system shown 

in Fig. 5, which has a regular structure and 

parameters 𝑇𝑇𝑃𝑃 ∗,  𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘, Δ𝑡𝑡, 𝑡𝑡𝑢𝑢𝑢𝑢, 𝑄𝑄𝑘𝑘, 𝑞𝑞𝑘𝑘, 𝑖𝑖 = 1. . . 𝑛𝑛; 𝑘𝑘 = 1. . . 𝑚𝑚. 

The behavior and structure of the system is described by the 

set of constraints (1)–(5). The goal is to find an answer to the 

following question: Does a non-empty set of 𝑃𝑃𝑃𝑃s exist that can 

be produced with takt times 𝑇𝑇𝑃𝑃 ≤  𝑇𝑇𝑃𝑃 ∗ 
 
? 

𝐶𝐶 =

{
  
 

  
 𝑇𝑇𝑃𝑃 = max{𝑡𝑡𝑡𝑡1, … , 𝑡𝑡𝑡𝑡𝑘𝑘, … , 𝑡𝑡𝑡𝑡𝑚𝑚} , 𝑘𝑘 =  1…𝑚𝑚     
 𝑡𝑡𝑡𝑡𝑘𝑘 = ∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘𝑖𝑖∈𝑄𝑄𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑘𝑘 , 𝑖𝑖 = 1…𝑛𝑛, 𝑘𝑘 =  1…𝑚𝑚
𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 = 𝑏𝑏𝑖𝑖 ⋅ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑘𝑘 ,   𝑖𝑖 = 1…𝑛𝑛, 𝑘𝑘 =  1…𝑚𝑚           
𝑡𝑡𝑖𝑖𝑘𝑘 = 𝑞𝑞𝑘𝑘 ⋅ (2𝑡𝑡𝑡𝑡 + Δ𝑡𝑡), 𝑖𝑖 = 1…𝑛𝑛, 𝑘𝑘 =  1…𝑚𝑚 
𝑚𝑚𝑡𝑡𝑚𝑚{𝑇𝑇𝑃𝑃, 𝑇𝑇} = 0, 𝑘𝑘 =  1…𝑚𝑚                                 
𝑇𝑇𝑃𝑃 ≤  𝑇𝑇𝑃𝑃 ∗                                                                 

 (11) 

In other words, the goal is to find sets of the form = {𝑏𝑏𝑖𝑖 | 𝑖𝑖 =
1. . . 𝑛𝑛} , the elements of which form sequences of permissible 

batch sizes of mix 𝑃𝑃𝑃𝑃 =  (𝑏𝑏1, … , 𝑏𝑏𝑖𝑖, … , 𝑏𝑏𝑛𝑛). . To solve the 

above decidability problem, it is enough to solve an 

appropriate corresponding 𝐶𝐶𝑃𝑃 problem. 

  𝐶𝐶𝑃𝑃 =  (𝐵𝐵, 𝐷𝐷, 𝐶𝐶)  ,   (12) 
where 𝐵𝐵 =  {𝑏𝑏𝑖𝑖 | 𝑖𝑖 = 1. . . 𝑛𝑛} is a set of decision variables 

(batch sizes of  𝑃𝑃𝑃𝑃), 𝐷𝐷 =  {𝑚𝑚𝑖𝑖 | 𝑖𝑖 = 1. . . 𝑛𝑛, } is a set of domains 

of variables 𝑏𝑏𝑖𝑖, and 𝐶𝐶 is a set of constraints (11). 

It is worth noting that the solutions obtained for the different 

values of 𝑇𝑇𝑃𝑃 ∗  make it possible to consider feasible variants of 

production flow balancing. In particular, they allow one to 

determine different batch sizes of part sets produced in the 

given takt time, to evaluate the rate of system resource 

utilization and to estimate the possibility of starting additional 

production. Also note that the fact that mix 𝑃𝑃𝑃𝑃(𝑐𝑐) for 𝑐𝑐 >  1 is 

a multiple of mix 𝑃𝑃𝑃𝑃(1) can be exploited to determine takt time 

𝑇𝑇𝑃𝑃(𝑐𝑐)  from the following relationship:  

  𝑇𝑇𝑃𝑃(𝑐𝑐)  = 𝑐𝑐 ⋅ 𝑇𝑇𝑃𝑃(1) + 𝑡𝑡𝑖𝑖𝑘𝑘 ⋅ (1 − 𝑐𝑐) + 𝛿𝛿,   (13) 

where  𝑐𝑐 ∈ ℕ, a multiple of batch size of mix 𝑇𝑇𝑃𝑃(1), 𝛿𝛿 ∈ ℕ,  
𝛿𝛿 < (𝑡𝑡𝑖𝑖𝑘𝑘 + Δ𝑡𝑡) – a correction taking into account constraint 

𝑚𝑚𝑡𝑡𝑚𝑚{𝑇𝑇𝑃𝑃(𝑐𝑐), 𝑇𝑇} = 0. 

4. COMPUTATIONAL EXPERIMENTS 

Given here is a system such as the one shown in Fig. 5, in 

which six jobs (𝑊𝑊1–𝑊𝑊6) are executed; workstation operation 

times 𝑡𝑡𝑖𝑖,𝑗𝑗 for these jobs are given in Table 2. Product batches 

are transported by 15 industrial trucks (𝑃𝑃1–𝑃𝑃15). It is assumed 

that station-to-station transport cycle times Δ𝑡𝑡 and 

loading/unloading times 𝑡𝑡𝑢𝑢𝑢𝑢 equal 1, i.e. Δ𝑡𝑡 = 𝑡𝑡𝑢𝑢𝑢𝑢 = 1 unit of 

time (u.t.). Each resource 𝑅𝑅𝑘𝑘 is used to execute two 

workstation operations (two production routes intersect at each 

workstation) and therefore the number of jobs using resource 

𝑘𝑘 is 𝑞𝑞𝑘𝑘 = 2. This means that the duration of transport 

operations for each station is 𝑡𝑡𝑖𝑖𝑘𝑘 = 5 u. t and period 𝑇𝑇 = 8 

(see Fig. 8). The goal is to find an answer to the following 

question: Does there exist, for such a system, a non-empty set 

of 𝑃𝑃𝑃𝑃s (part sets) that can be produced in takt times of 

𝑇𝑇𝑃𝑃 ≤  35   u.t.? To answer this question, it is necessary to solve 

𝐶𝐶𝑃𝑃 problem (12), for which the set of constraints 𝐶𝐶 takes the 

form:      

8𝑏𝑏4 + 4𝑏𝑏1 + 5 = 𝑡𝑡𝑡𝑡1; 6𝑏𝑏4 + 2𝑏𝑏2 + 5 = 𝑡𝑡𝑡𝑡2; 4𝑏𝑏4 +
6𝑏𝑏3 + 5 = 𝑡𝑡𝑡𝑡3; 6𝑏𝑏5 + 8𝑏𝑏1 + 5 = 𝑡𝑡𝑡𝑡4; 10𝑏𝑏5 + 3𝑏𝑏2 +
5 = 𝑡𝑡𝑡𝑡5; 4𝑏𝑏5 + 7𝑏𝑏3 + 5 = 𝑡𝑡𝑡𝑡6; 4𝑏𝑏6 + 5𝑏𝑏1 + 5 = 𝑡𝑡𝑡𝑡7; 

6𝑏𝑏6 + 4𝑏𝑏2 + 5 = 𝑡𝑡𝑡𝑡8; 4𝑏𝑏6 + 8𝑏𝑏3 + 5 = 𝑡𝑡𝑡𝑡9;  
𝑚𝑚𝑡𝑡𝑚𝑚{𝑇𝑇𝑃𝑃, 8} = 0; 𝑇𝑇𝑃𝑃 = max {𝑡𝑡𝑡𝑡1, … , 𝑡𝑡𝑡𝑡9}, 𝑇𝑇𝑃𝑃 ≤ 35 u. t. 

A solution that satisfies the above set of constraints is a set of 

sequences 𝑃𝑃𝑃𝑃 =  (𝑏𝑏1, … , 𝑏𝑏6) of production batch sizes (for 

jobs 𝑊𝑊1–𝑊𝑊6) which can be manufactured in the system of 

Fig. 5 in a cyclic manner at takt time 𝑇𝑇𝑃𝑃 of less than 30 u.t. 

The problem considered was implemented and solved in the 

constraint programming environment OzMozart (Windows 

10, Intel Core Duo2 3.00 GHz, 4 GB RAM). The set of all 

permissible solutions includes 239 part sets, of which only 20 

ensure that all of the jobs are involved in the production (in 

other cases at least one of the jobs is not executed i.e. there 
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exists a batch with a size of zero: 𝑏𝑏𝑖𝑖 = 0). The first permissible 

solution (obtained in less than 1 second) has the form: 𝑃𝑃𝑃𝑃 =
(1,1,3,1,1,1). The resulting mix guarantees a smooth flow of 

production at a takt time of 𝑇𝑇𝑃𝑃 = 32 u.t. With production 

planned in this way, the Average Resource Utilization (ARU) 

is 49% (that means each resource is idle for a half production 

cycle - for simplification, we assume that all resources are 

equally important). In this context, it is only natural to ask 

another question: Is there, among all the permissible solutions, 

a solution which allows us to increase the utilization of the 

system’s resources ARU by increasing the size of the batches 

of selected groups of products when the production takt time 

remains unchanged? 

Table 2. Workstation operation times 𝑡𝑡𝑖𝑖,𝑗𝑗 [t.u.] 

 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 𝑅𝑅6 𝑅𝑅7 𝑅𝑅8 𝑅𝑅9 

𝑊𝑊1
 𝑡𝑡1,3 = 4    𝑡𝑡1,2 = 8   𝑡𝑡1,1 = 5   

𝑊𝑊2  𝑡𝑡2,3 = 2   𝑡𝑡2,2 = 3   𝑡𝑡2,3 = 4  

𝑊𝑊3
 

  𝑡𝑡3,3 = 6   𝑡𝑡2,3 = 7   𝑡𝑡2,3 = 8 

𝑊𝑊4 𝑡𝑡4,1 = 8  𝑡𝑡4,2 = 6 𝑡𝑡4,3 = 4        

𝑊𝑊5
 

   𝑡𝑡5,1 = 8 𝑡𝑡5,2 = 6 𝑡𝑡5,3 = 4    

𝑊𝑊6       𝑡𝑡6,1 = 8 𝑡𝑡6,2 = 6 𝑡𝑡6,3 = 4 

 

To answer this question, it suffices to determine the successive 

solutions to CS problem (12). As it turns out, such a mix exists 

among the solutions to the CS problem: 𝑃𝑃𝑃𝑃 = (2,5,3,2,1,1). 

This mix is characterized by a larger production batch size of 

jobs 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊4 (change in the values of:  𝑏𝑏1 from 1 to 2, 𝑏𝑏2 

from 1 to 5 and 𝑏𝑏4 from 1 to 2). As before, the production takt 

time is 28 u.t., but the rate of workstation utilization has 

increased to 74%. In other words, the production flow 

parameters were improved as a result of increasing the 

utilization of the work stations servicing job 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊4 

(workstations 𝑅𝑅1-𝑅𝑅5, 𝑅𝑅7, 𝑅𝑅8). The set of all 20 permissible 

solutions is presented in Table 3. The mixes listed in Table 3 

guarantee the same takt time 𝑇𝑇𝑃𝑃 = 32 u. t, but differ in the 

workstation utilization rates. The obtained set of solutions 

provides a basis for determining the production takt time 𝑇𝑇𝑃𝑃(c) 
for successive part sets 𝑃𝑃𝑃𝑃(𝑐𝑐) with c-fold production batch 

sizes. Limiting the further considerations to mix 𝑃𝑃𝑃𝑃(1) =
(2,5,3,2,1,1), we can ask the following question: What 

production takt time 𝑇𝑇𝑃𝑃(c) and what workstation utilization 

rate is achievable for part sets 𝑃𝑃𝑃𝑃(𝑐𝑐)? 

Relationship (13) makes it possible to determine production 

takt time 𝑇𝑇𝑃𝑃(c) on the basis of production takt time 𝑇𝑇𝑃𝑃(1). For 

example, the production takt time determined by mix (𝑐𝑐 = 2): 

𝑃𝑃𝑃𝑃(2) = (4,10,6,4,1,1) is equal to 𝑇𝑇𝑃𝑃(2) = 64 u.t. and the 

resource utilization rate is 74%. In turn, when mix 𝑃𝑃𝑃𝑃(1) is 

produced three times in one production batch: 𝑃𝑃𝑃𝑃(3) =
(6,15,9,6,3,3), the production takt time is 𝑇𝑇𝑃𝑃(3) = 88 u.t. and 

the resource utilization rate is 81%. 

To recapitulate, it can be seen that with the increase in batch 

size (i.e., for batch sizes which are 𝑐𝑐-fold multiples of the batch 

size of 𝑃𝑃𝑃𝑃(1)), the utilization rate of production workstations 

and the production takt time determining the completion time 

of part set 𝑃𝑃𝑃𝑃(𝑐𝑐) also increase. These observations are 

illustrated in Fig. 9. The results of the experiments, on the one 

hand, confirm the promise of the new approach proposed in 

this study, which offers solutions alternative to the scheduling 

methods commonly used in cyclic job-shop problem. On the 

other hand, the results also encourage further in-depth study of 

issues such as the irregular, non-monotonous increase in the 

rate of utilization of the system's resources (see Fig. 9 a). 

Table 3 A set of permissible solutions that guarantee the flow of 

production at takt time 𝑇𝑇𝑃𝑃 = 32 u. t (the mixes described in the 

example are highlighted in orange) 

 Mixes of  PS Resource loading with workstation operations 

[u.t.] 

 

No. 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 𝑅𝑅6 𝑅𝑅7 𝑅𝑅8 𝑅𝑅9 mean 

1 

 
1 

 

1 

 

3 

 

1 

 

1 

 

1 

 

12 8 22 14 13 27 9 10 27 
49% 

38% 25% 69% 44% 41% 84% 28% 31% 84% 

2 

 
1 

 

2 

 

3 

 

1 

 

1 

 

1 

 

12 10 22 14 16 27 9 14 27 
52% 

38% 31% 69% 44% 50% 84% 28% 44% 84% 

3 

 
1 

 

3 

 

3 

 

1 

 

1 

 

1 

 

12 12 22 14 19 27 9 18 27 
56% 

38% 38% 69% 44% 59% 84% 28% 56% 84% 

4 

 
1 

 

4 

 

3 

 

1 

 

1 

 

1 

 

12 14 22 14 22 27 9 22 27 
59% 

38% 44% 69% 44% 69% 84% 28% 69% 84% 

5 

 
1 

 

1 

 

3 

 

2 

 

1 

 

1 

 

20 14 26 14 13 27 9 10 27 
56% 

63% 44% 81% 44% 41% 84% 28% 31% 84% 

6 

 
1 

 

2 

 

3 

 

2 

 

1 

 

1 

 

20 16 26 14 16 27 9 14 27 
59% 

63% 50% 81% 44% 50% 84% 28% 44% 84% 

7 

 
1 

 

3 

 

3 

 

2 

 

1 

 

1 

 

20 18 26 14 19 27 9 18 27 
62% 

63% 56% 81% 44% 59% 84% 28% 56% 84% 

8 

 
1 

 

4 

 

3 

 

2 

 

1 

 

1 

 

20 20 26 14 22 27 9 22 27 
65% 

63% 63% 81% 44% 69% 84% 28% 69% 84% 

9 

 
1 

 

5 

 

3 

 

1 

 

1 

 

1 

 

12 16 22 14 25 27 9 26 27 
62% 

38% 50% 69% 44% 78% 84% 28% 81% 84% 

10 

 
1 

 

5 

 

3 

 

2 

 

1 

 

1 

 

20 22 26 14 25 27 9 26 27 
68% 

63% 69% 81% 44% 78% 84% 28% 81% 84% 
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3 

 

1 

 

1 

 

1 

 

16 8 22 22 13 27 14 10 27 
55% 

50% 25% 69% 69% 41% 84% 44% 31% 84% 

12 

 
2 

 

2 

 

3 

 

1 

 

1 

 

1 

 

16 10 22 22 16 27 14 14 27 
58% 

50% 31% 69% 69% 50% 84% 44% 44% 84% 

13 

 
2 

 

3 

 

3 

 

1 

 

1 

 

1 

 

16 12 22 22 19 27 14 18 27 
61% 

50% 38% 69% 69% 59% 84% 44% 56% 84% 

14 

 
2 

 

4 

 

3 

 

1 

 

1 

 

1 

 

16 14 22 22 22 27 14 22 27 
65% 

50% 44% 69% 69% 69% 84% 44% 69% 84% 

15 
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5 

 

3 

 

1 

 

1 

 

1 

 

16 16 22 22 25 27 14 26 27 
68% 

50% 50% 69% 69% 78% 84% 44% 81% 84% 

16 

 
2 

 

1 

 

3 

 

2 

 

1 

 

1 

 

24 14 26 22 13 27 14 10 27 
61% 

75% 44% 81% 69% 41% 84% 44% 31% 84% 
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3 

 

2 

 

1 

 

1 

 

24 16 26 22 16 27 14 14 27 
65% 

75% 50% 81% 69% 50% 84% 44% 44% 84% 
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3 

 

2 

 

1 

 

1 

 

24 18 26 22 19 27 14 18 27 
68% 

75% 56% 81% 69% 59% 84% 44% 56% 84% 
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4 

 

3 

 

2 

 

1 

 

1 

 

24 20 26 22 22 27 14 22 27 
71% 

75% 63% 81% 69% 69% 84% 44% 69% 84% 

20 
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2 

 

1 

 

1 

 

24 22 26 22 25 27 14 26 27 
74% 

75% 69% 81% 69% 78% 84% 44% 81% 84% 

 
Fig. 9 a) ARU and b) production takt time 𝑇𝑇𝑃𝑃(𝑐𝑐) for c-fold 

multiples of batch size of part set 𝑃𝑃𝑃𝑃(1). 
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exists a batch with a size of zero: 𝑏𝑏𝑖𝑖 = 0). The first permissible 

solution (obtained in less than 1 second) has the form: 𝑃𝑃𝑃𝑃 =
(1,1,3,1,1,1). The resulting mix guarantees a smooth flow of 

production at a takt time of 𝑇𝑇𝑃𝑃 = 32 u.t. With production 

planned in this way, the Average Resource Utilization (ARU) 

is 49% (that means each resource is idle for a half production 

cycle - for simplification, we assume that all resources are 

equally important). In this context, it is only natural to ask 

another question: Is there, among all the permissible solutions, 

a solution which allows us to increase the utilization of the 

system’s resources ARU by increasing the size of the batches 

of selected groups of products when the production takt time 

remains unchanged? 

Table 2. Workstation operation times 𝑡𝑡𝑖𝑖,𝑗𝑗 [t.u.] 

 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 𝑅𝑅6 𝑅𝑅7 𝑅𝑅8 𝑅𝑅9 

𝑊𝑊1
 𝑡𝑡1,3 = 4    𝑡𝑡1,2 = 8   𝑡𝑡1,1 = 5   

𝑊𝑊2  𝑡𝑡2,3 = 2   𝑡𝑡2,2 = 3   𝑡𝑡2,3 = 4  

𝑊𝑊3
 

  𝑡𝑡3,3 = 6   𝑡𝑡2,3 = 7   𝑡𝑡2,3 = 8 

𝑊𝑊4 𝑡𝑡4,1 = 8  𝑡𝑡4,2 = 6 𝑡𝑡4,3 = 4        

𝑊𝑊5
 

   𝑡𝑡5,1 = 8 𝑡𝑡5,2 = 6 𝑡𝑡5,3 = 4    

𝑊𝑊6       𝑡𝑡6,1 = 8 𝑡𝑡6,2 = 6 𝑡𝑡6,3 = 4 

 

To answer this question, it suffices to determine the successive 

solutions to CS problem (12). As it turns out, such a mix exists 

among the solutions to the CS problem: 𝑃𝑃𝑃𝑃 = (2,5,3,2,1,1). 

This mix is characterized by a larger production batch size of 

jobs 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊4 (change in the values of:  𝑏𝑏1 from 1 to 2, 𝑏𝑏2 

from 1 to 5 and 𝑏𝑏4 from 1 to 2). As before, the production takt 

time is 28 u.t., but the rate of workstation utilization has 

increased to 74%. In other words, the production flow 

parameters were improved as a result of increasing the 

utilization of the work stations servicing job 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊4 

(workstations 𝑅𝑅1-𝑅𝑅5, 𝑅𝑅7, 𝑅𝑅8). The set of all 20 permissible 

solutions is presented in Table 3. The mixes listed in Table 3 

guarantee the same takt time 𝑇𝑇𝑃𝑃 = 32 u. t, but differ in the 

workstation utilization rates. The obtained set of solutions 

provides a basis for determining the production takt time 𝑇𝑇𝑃𝑃(c) 
for successive part sets 𝑃𝑃𝑃𝑃(𝑐𝑐) with c-fold production batch 

sizes. Limiting the further considerations to mix 𝑃𝑃𝑃𝑃(1) =
(2,5,3,2,1,1), we can ask the following question: What 

production takt time 𝑇𝑇𝑃𝑃(c) and what workstation utilization 

rate is achievable for part sets 𝑃𝑃𝑃𝑃(𝑐𝑐)? 

Relationship (13) makes it possible to determine production 

takt time 𝑇𝑇𝑃𝑃(c) on the basis of production takt time 𝑇𝑇𝑃𝑃(1). For 

example, the production takt time determined by mix (𝑐𝑐 = 2): 

𝑃𝑃𝑃𝑃(2) = (4,10,6,4,1,1) is equal to 𝑇𝑇𝑃𝑃(2) = 64 u.t. and the 

resource utilization rate is 74%. In turn, when mix 𝑃𝑃𝑃𝑃(1) is 

produced three times in one production batch: 𝑃𝑃𝑃𝑃(3) =
(6,15,9,6,3,3), the production takt time is 𝑇𝑇𝑃𝑃(3) = 88 u.t. and 

the resource utilization rate is 81%. 

To recapitulate, it can be seen that with the increase in batch 

size (i.e., for batch sizes which are 𝑐𝑐-fold multiples of the batch 

size of 𝑃𝑃𝑃𝑃(1)), the utilization rate of production workstations 

and the production takt time determining the completion time 

of part set 𝑃𝑃𝑃𝑃(𝑐𝑐) also increase. These observations are 

illustrated in Fig. 9. The results of the experiments, on the one 

hand, confirm the promise of the new approach proposed in 

this study, which offers solutions alternative to the scheduling 

methods commonly used in cyclic job-shop problem. On the 

other hand, the results also encourage further in-depth study of 

issues such as the irregular, non-monotonous increase in the 

rate of utilization of the system's resources (see Fig. 9 a). 

Table 3 A set of permissible solutions that guarantee the flow of 

production at takt time 𝑇𝑇𝑃𝑃 = 32 u. t (the mixes described in the 

example are highlighted in orange) 

 Mixes of  PS Resource loading with workstation operations 

[u.t.] 

 

No. 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 𝑅𝑅6 𝑅𝑅7 𝑅𝑅8 𝑅𝑅9 mean 

1 

 
1 

 

1 

 

3 

 

1 

 

1 

 

1 

 

12 8 22 14 13 27 9 10 27 
49% 

38% 25% 69% 44% 41% 84% 28% 31% 84% 

2 

 
1 

 

2 

 

3 

 

1 

 

1 

 

1 

 

12 10 22 14 16 27 9 14 27 
52% 

38% 31% 69% 44% 50% 84% 28% 44% 84% 

3 

 
1 

 

3 

 

3 

 

1 

 

1 

 

1 

 

12 12 22 14 19 27 9 18 27 
56% 

38% 38% 69% 44% 59% 84% 28% 56% 84% 

4 

 
1 

 

4 

 

3 

 

1 

 

1 

 

1 

 

12 14 22 14 22 27 9 22 27 
59% 

38% 44% 69% 44% 69% 84% 28% 69% 84% 

5 

 
1 

 

1 

 

3 

 

2 

 

1 

 

1 

 

20 14 26 14 13 27 9 10 27 
56% 

63% 44% 81% 44% 41% 84% 28% 31% 84% 

6 

 
1 

 

2 

 

3 

 

2 

 

1 

 

1 

 

20 16 26 14 16 27 9 14 27 
59% 

63% 50% 81% 44% 50% 84% 28% 44% 84% 

7 

 
1 

 

3 

 

3 

 

2 

 

1 

 

1 

 

20 18 26 14 19 27 9 18 27 
62% 

63% 56% 81% 44% 59% 84% 28% 56% 84% 

8 

 
1 

 

4 

 

3 

 

2 

 

1 

 

1 

 

20 20 26 14 22 27 9 22 27 
65% 

63% 63% 81% 44% 69% 84% 28% 69% 84% 

9 

 
1 

 

5 

 

3 

 

1 

 

1 

 

1 

 

12 16 22 14 25 27 9 26 27 
62% 

38% 50% 69% 44% 78% 84% 28% 81% 84% 

10 

 
1 

 

5 

 

3 

 

2 

 

1 

 

1 

 

20 22 26 14 25 27 9 26 27 
68% 

63% 69% 81% 44% 78% 84% 28% 81% 84% 
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3 

 

1 

 

1 

 

1 

 

16 8 22 22 13 27 14 10 27 
55% 

50% 25% 69% 69% 41% 84% 44% 31% 84% 
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2 

 

3 

 

1 

 

1 

 

1 

 

16 10 22 22 16 27 14 14 27 
58% 

50% 31% 69% 69% 50% 84% 44% 44% 84% 

13 
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3 

 

3 

 

1 

 

1 

 

1 

 

16 12 22 22 19 27 14 18 27 
61% 

50% 38% 69% 69% 59% 84% 44% 56% 84% 

14 
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3 

 

1 

 

1 

 

1 

 

16 14 22 22 22 27 14 22 27 
65% 

50% 44% 69% 69% 69% 84% 44% 69% 84% 
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1 

 

1 

 

16 16 22 22 25 27 14 26 27 
68% 

50% 50% 69% 69% 78% 84% 44% 81% 84% 

16 
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1 

 

24 14 26 22 13 27 14 10 27 
61% 

75% 44% 81% 69% 41% 84% 44% 31% 84% 
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2 

 

2 

 

3 
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24 16 26 22 16 27 14 14 27 
65% 

75% 50% 81% 69% 50% 84% 44% 44% 84% 
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24 18 26 22 19 27 14 18 27 
68% 

75% 56% 81% 69% 59% 84% 44% 56% 84% 
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24 20 26 22 22 27 14 22 27 
71% 

75% 63% 81% 69% 69% 84% 44% 69% 84% 
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24 22 26 22 25 27 14 26 27 
74% 

75% 69% 81% 69% 78% 84% 44% 81% 84% 

 
Fig. 9 a) ARU and b) production takt time 𝑇𝑇𝑃𝑃(𝑐𝑐) for c-fold 

multiples of batch size of part set 𝑃𝑃𝑃𝑃(1). 
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5. CONCLUDING REMARKS  

The approach presented in this study implicitly assumes that 

all of the operation times specifying production flows are 

integers. In that context, an implementation of the integer 

equations to modelling and providing variant solutions for part 

sets cycle time scheduling and repetitive-flow balancing seems 

to be justified. The model proposed in this study allows the 

bottom-up or top-down organization of production flow by 

integrating the level of station-to-station transport and the level 

of flows of batches of different (simultaneously manufactured) 

products. In the first case, the calculated production takt time 

determines the cycle of the local transport system. In the 

second case, the period of cyclically moving AGVs determines 

the takt time. In this model, which incorporates the concept of 

the levelling of the flow of the production processes, and is 

also based on the observation that a system’s bottleneck 

determines its production flow takt time, the number of 

admissible part set batches processed within a given takt time 

as well as a system’s resource utilization rate can be easily 

calculated. Moreover, the declarative character of the model 

enables the utilization of commercially available software 

tools, such as CPLEX/ECLiPSe/Gurobi, etc., and their easy 

supplementation and/or enlargement, depending on the 

specific context.  Future research should be focused on finding 

sufficient conditions that would ensure the consistency of the 

set of integer equations which comprise an analytical model of 

a production flow configuration, while integrating the level of 

station-to-station transport with the level of flow of batches of 

different products. Apart from the research perspective 

presented in this article, other directions of study worth 

mentioning are those aimed at investigating the conditions that 

would allow one to reschedule cyclic production according to 

customers’ changeable demands. The changes in demands 

may regard both delivery dates and the quantities of the 

batches ordered by customers. Other interesting areas of 

investigation for the future relate to the smooth transition 

between two successive cyclic steady states. 
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