

Aalborg Universitet

Biomimetic aquaporin forward osmosis membrane for removal of frequently found pesticides from danish groundwater network
Nikbakht Fini, Mahdi; Madsen, Henrik Tækker; Muff, Jens
Publication date: 2018
Link to publication from Aalborg University
Citation for published version (APA): Nikbakht Fini, M., Madsen, H. T., & Muff, J. (2018). Biomimetic aquaporin forward osmosis membrane for removal of frequently found pesticides from danish groundwater network. Abstract from Nordic Filtration Symposium, Aalborg, Denmark.

General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

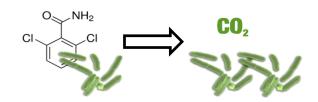
BIOMIMETIC AQUAPORIN FORWARD OSMOSIS MEMBRANE FOR REMOVAL OF FREQUENTLY FOUND PESTICIDES FROM DANISH GROUNDWATER NETWORK

MAHDI NIKBAKHT FINI, HENRIK TÆKKER MADSEN, JENS MUFF

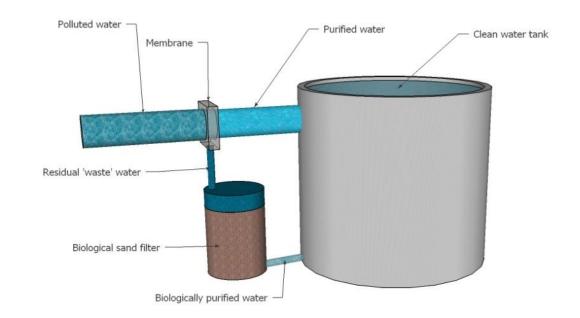
Introduction

Map of pesticide contamination

- •Found in 27% of active DW wells
- •> 0.1 μ g/L in 3.6%
- 130 wells were closed within 1993-2009


MEM2BIO Water teatment

Membrane separation:


- ~ 90% ultra pure water
- ~ 10% residual 'waste' water with high concentration of pollutants, carbon, minerals etc.

Biofilter:

Added specific pesticide degrader organisms to sand filters

Ellegaard-Jensen et al. 2017

Mineralization

Treated concentrate is mixed with permeate

Studied pesticides

1. BAM (2-6 Dichlorobenzamide)

MW: 190.028 g/mol

transformation product of Dichlobenil

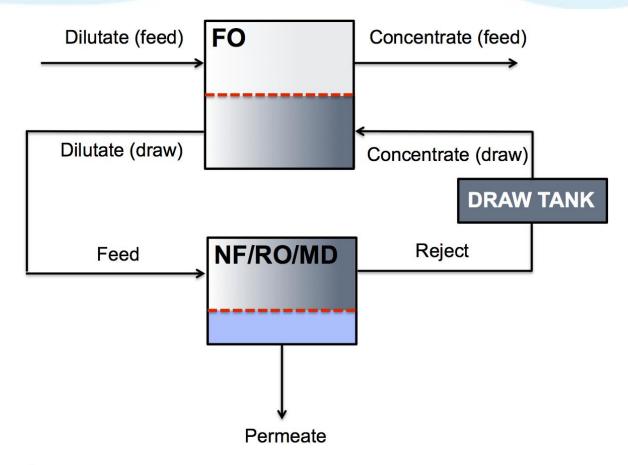
2. MCPA (2-methyl-4-chlorophenoxyacetic acid)

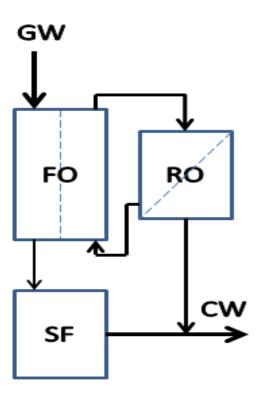
MW: 200.62 g/mol

3. MCPP (methylchlorophenoxypropionic acid)

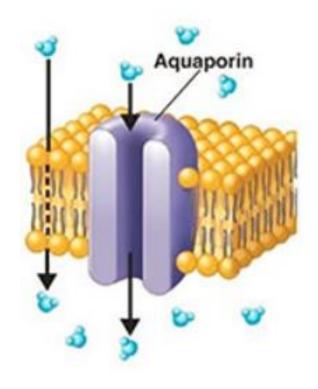
MW: 214.65 g/mol

In 2015, Found in 16% of sampled wells of which 9.4% was above 0.1 μ g/L.


Forward Osmosis


Advantages of FO process Less energy requirems Less risk of fouling/sca Pillutate Driven BY OSMOTIC PRESSURE PEED DRIVEN BY HYDRAULIC PRESSURE FEED DRIVEN BY HYDRAULIC PRESSURE PERMEATE

Use of FO in MEM2BIO project



Aquaporin FO membrane

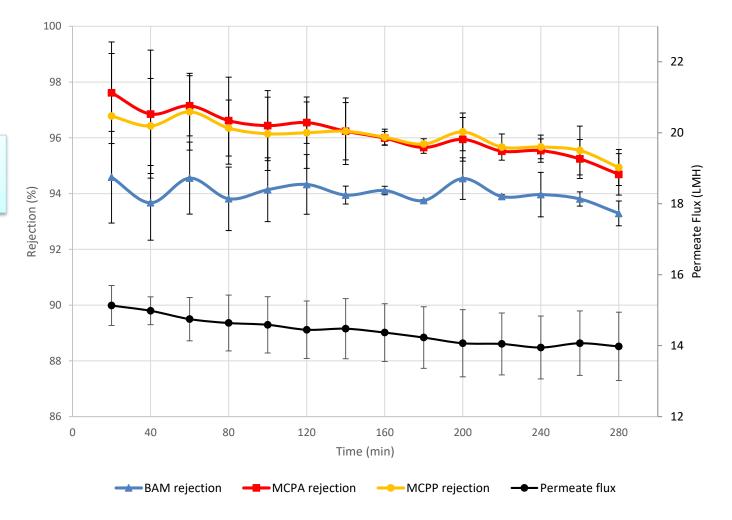
- Incorporated aquaporin proteins in the membrane
- Higher permeability compared to traditional FO membranes

34 cm²

 2.3 m^2

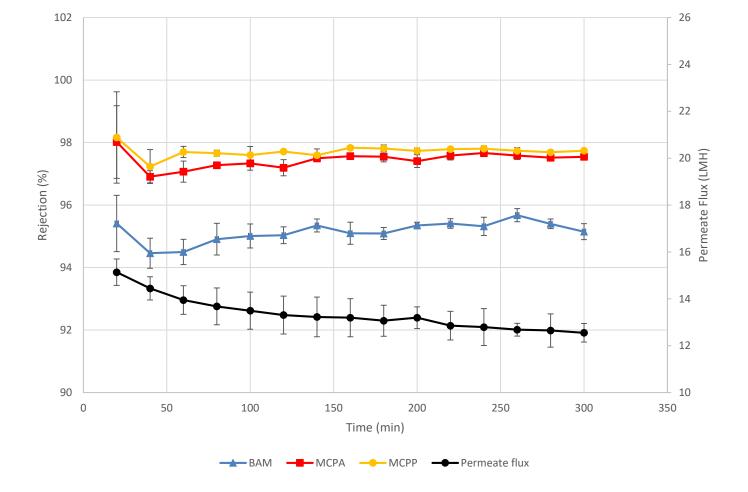
FO setups

Membrane characterization


Parameter	Value
NaCl rejection in RO (%)	99.4 ± 0.2
Pure water permeate flux (LMH)	15.2 ± 0.6
Reverse salt flux (g m ⁻² h ⁻¹)	5.6 ± 0.5 (1.7 ± 0.4 by HF)
Water permeability, A (L m ⁻² h ⁻¹ bar)	3.0 ± 0.2
Salt permeability, B (L m ⁻² h ⁻¹)	0.1 ± 0.03
Membrane structural parameter, S (μm)	305 ± 43
Contact angle (°)	28.6 ± 3.4
Zeta potential at pH=5.3 (mV)	- 21 ± 2

Pesticides rejection in pure water

- •Feed 2 L, 1 mg/L •Draw 200 mL, 1 M NaCl
- •Flat sheet membrane



Pesticides rejection in Varde water

Feed 2 L, 1 mg/LDraw 200 mL, 1 M NaClFlat sheet membrane

Pesticides rejection by different setups

	BAM (%)	MCPA (%)	MCPP (%)	Pure water permeate Flux (LMH)
Hollow fiber	98.1	98.6	98.9	15.8
Flat sheet	93.3	94.7	94.9	15.2
Small FO compartment	97.2	-	-	9.4

H. Madsen et. al., Journal of Membrane Science 476 (2015) 469-474

Future work

- Use of the other water samples from Kolding and Hvidovre.
- Use of the other draw solutes: Glucose and Sodium acetate
- Study of effect of recovery on the membrane performance.
- Production of concentrates for biological treatment using different draw solutes
- Comparison of RO and FO in terms of scaling propensity
- Combination of FO and RO as an integrated membrane process.

