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Abstract: Industries are incorporating robots into assembly lines due to their greater flexibility and 

reduced costs. Most of the reported studies did not consider scheduling of tasks or the sequence-

dependent setup times in an assembly line, which cannot be neglected in a real-world scenario. This 

paper presents a study on robotic assembly line balancing, with the aim of minimizing cycle time by 

considering sequence-dependent setup times. A mathematical model for the problem is formulated 

and CPLEX solver is utilized to solve small-sized problems. A recently developed metaheuristic 

Migrating Birds Optimization (MBO) algorithm and set of metaheuristics have been implemented 

to solve the problem. Three different scenarios are tested (with no setup time, and low and high 

setup times). The comparative experimental study demonstrates that the performance of the MBO 

algorithm is superior for the tested datasets. The outcomes of this study can help production 

managers improve their production system in order to perform the assembly tasks with high levels 

of efficiency and quality.   

Keywords: Assembly line balancing; robotic assembly line; sequence-dependent setup times; 

metaheuristics 

 

1. Introduction  
Assembly lines have been extensively used in the consumer electronics and automobile industries 

for the assembly of different products [1, 2]. Due to increasing human labor costs and customers’ 

mounting demands for a variety of products, industries are utilizing robots in assembly lines in 

order to improve production flexibility and product quality [3]. Robotic assembly line balancing 

(RALB) problems have been receiving increased attention in the last few years. RALB is defined as 

assigning a set of tasks to workstations in balanced form by allocating the best robot to each task at 

each workstation. Some contributions on RALB focus on type I robotic assembly line balancing 

(RALB-I) problems to minimize the number of workstations, while type II robotic assembly line 

balancing (RALB-II) problems are concerned with the optimization of cycle time [4]. Simple 
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assembly line balancing problems are classified as NP-hard; the RALB problem considered in this 

research is also categorized under NP-hard due to the added complexities [5, 6].  

Rubinovitz and Bukchin [7] introduce the RALB problem with the aim of minimizing the 

number of workstations (RALB-I); later Rubinovitz et al. [8] apply the branch and bound method to 

solve the same problem. Due to computational complexity, researchers have started to use heuristics 

[9] and metaheuristic algorithms to solve problems of this nature; e.g. Levitin et al. [3] utilize a 

genetic algorithm to solve the RALB-II problem, where it is assumed that all robot types are 

available without any limitations. Gao et al. [5] were the first to present the mathematical model for 

RALB-II with slight differences from the assumption in Levitin et al. [3]. It is assumed that the 

available robot types are predetermined and only one robot is available for each type. They 

incorporate an improved genetic algorithm with local search to solve the identified problem. 

Yoosefelahi et al. [10] present a RALB problem with multiple objectives, using three versions of 

multi-objective evolution strategies. Nilakantan et al. [4] utilize a set of bio-inspired algorithms 

(particle swarm optimization and cuckoo search algorithms) to solve the same RALB-II problem 

reported in Levitin et al. [3] and provide better solutions for the benchmark problems. Most of the 

abovementioned literature focuses on type I and type II RALB problems. Due to an increased 

awareness of energy conservation, Mukund Nilakantan et al. [11] were the first to deliver a 

contribution focusing on minimizing energy consumption in straight robotic assembly lines by 

using particle swarm optimization based on the assumptions in Levitin et al. [3]. Most of the 

literature focuses on straight robotic assembly lines and considers only single product assembly; 

however, recently, many contributions are being reported for different assembly line configurations 

and different product assemblies (mixed model). Çil et al. [12] solve a mixed-model RALB-II 

problem and utilize beam search to minimize cycle time. Rabbani et al. [13] solve a multi-objective 

mixed-model RALB-II problem by using a multi-objective genetic algorithm and particle swarm 

optimization. Çil et al. [14] report multi-objective optimization using a goal programming technique. 

Several objectives such as minimizing cycle time, number of workstations and robot cost are 

considered and tested in a case study. Çil et al. [15] were the first to propose a study on parallel 

robotic assembly line balancing problems, with the aim of minimizing cycle time. To solve the 

proposed problem, they utilize beam search approaches and compare them to other types of robotic 

assembly lines. Li et al. [16] were the first to propose simultaneously balancing and sequencing 

robotic mixed-model assembly lines. They propose a mixed-integer programming model to 

minimize makespan and utilize a CPLEX solver for solving small-sized problems, making use of 
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two metaheuristics: a restarted simulated annealing algorithm and a co-evolutionary algorithm, to 

address this NP-hard problem. Nilakantan et al. [17] optimize carbon footprint and line efficiency 

simultaneously and utilize a multi-objective co-operative co-evolutionary algorithm. These types of 

problems are naturally suited to being solved by implementing metaheuristics, as can be seen from 

the solution strategies utilized in the literature listed above. 

In most of the contributions, setup time is not given much attention and it is assumed that the 

setup times are either negligible or can be included in the task processing time. However, given 

today’s advanced and flexible manufacturing systems, it is important that the various resources are 

utilized efficiently and that setup times are treated separately from processing times, allowing the 

assembly operations to be performed simultaneously, thus improving resource utilization. There are 

two types of setup time: sequence-independent and sequence-dependent [18]. Sequence-

independent setup time considers the setup time for the current task, regardless of the preceding 

task. In the case of sequence-dependent setup time, setup time depends on both the current task and 

the preceding task. Özcan and Toklu [19] report that some consideration of sequence-dependent 

setup times is necessary for assembly lines. The first study which explores sequence-dependent 

setup times was performed by Andres et al. [20], who term the problem: General assembly line 

balancing problem with setups. They utilize eight different heuristic rules and a GRASP algorithm 

to solve this problem. Scholl et al. [21]  propose a problem similar to that of Andres et al. [20], 

where sequence-dependent task time increments are introduced, along with several versions of a 

mixed-integer program, and various solutions to the problem are proposed. Yolmeh and Kianfar 

[22] propose solving assembly line balancing and scheduling problems with setup times (SUALBP) 

and utilize a hybrid genetic algorithm to solve them. The problem aims to assign and schedule tasks 

for each station. The operators and parameters involved are selected using designs of experiments.  

Yolmeh and Kianfar compared the solution obtained with the published solutions, and found that 

the proposed algorithm outperformed the reported solutions. Scholl et al. [23] propose a 

mathematical model for the assembly line balancing problem and scheduling problem which 

considers sequence-dependent setup times and propose a toolbox comprising a set of heuristic 

methods to test the proposed problem. Extensive computational studies demonstrate that proposed 

heuristics dominate former approaches in terms of solution quality and computation times.  

 Akpinar and Baykasoğlu [24] propose a model for solving mixed model assembly line 

balancing problems which utilizes setup times and applies multiple colony hybrid bee algorithms. 

They tested this model on a set of datasets and reported the superiority of their method compared to 
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others in the literature. Seyed-Alagheband et al. [25] investigate the problem of balancing and 

sequencing tasks in an assembly line using sequence-dependent setup times with the aim of 

minimizing cycle time. They develop a mathematical model and propose a simulated annealing 

algorithm to solve the problem. Hamta et al. [26] propose a multi-objective assembly line balancing 

problem with flexible operation times, sequence-dependent setup times and learning effect. Three 

objectives are simultaneously optimized and they utilize particle swarm optimization algorithms 

with a variable neighborhood search to solve the problem.  

To the best of the authors’ knowledge, no contributions have been published which deal with 

straight robotic assembly lines with sequence-dependent setup times, aside from one recent paper 

by Aghajani et al. [27] on two-sided assembly lines. In this study, a new mixed-integer 

programming model is proposed for type II robotic mixed-model two-sided assembly line 

balancing. In the case of robotic assembly lines, it is essential to consider sequence-dependent setup 

times, since tasks might require some setup changes to the tools/robotic arms in order for the 

allocated tasks to be properly executed in the workstations. If a task is to be executed in the same 

workstation directly before another task, the preceding task may influence the following task 

because a setup/tool change might be necessary, and this setup time must be considered when 

calculating the end time of the task. Moreover, if a task is assigned to the workstation as the final 

task, a setup/tool change may be required before the first task assigned to that workstation can be 

carried out, since the tasks are performed cyclically [19]. 

Building on the significance and relevance of the above study to sequence-dependent setup 

times in robotic assembly lines, this study presents several contributions, as follows: 

(1) A mixed-integer linear programming model is developed to solve robotic assembly line 

balancing problems using sequence-dependent setup times and with the aim of minimizing cycle 

times (type II RALB-S). Small-sized problems are solved using the CPLEX optimization 

package. Datasets are generated for creating problem instances in robotic assembly lines with 

setup times. 

(2) A newly developed Migrating Birds Optimization (MBO) algorithm is employed to 

tackle large-sized problems within an acceptable CPU time. MBO was selected due to its 

superior performance in solving problems of a similar nature [28, 29] and this is the first attempt 

to apply MBO to solve type II RALB with sequence-dependent setup times. 

(3) A comprehensive comparative study is conducted to test the performance of the 

proposed algorithm. A set of well-known metaheuristic algorithms are selected and re-
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implemented to solve the proposed problem; from the computational study, it can be seen that 

the proposed MBO performs better for the majority of problem instances. Since it is an NP-hard 

problem, it is necessary to test it with different metaheuristics, perform a comparative study, and 

find the best performing metaheuristic.  

The remainder of the paper is organized as follows: Section 2 presents the mathematical model 

and the problem assumptions. Section 3 presents a detailed methodology along with an illustrated 

example. Section 4 presents detailed comparative computational study analysis. Finally, the 

conclusion and future research directions are provided in Section 5.  

2. Mathematical model formulation 
This section first describes the problem and the problem assumptions, before presenting a 

mathematical model of the problem.  

2.1 Problem description 

Based on conclusions from the literature review, this paper will focus on proposing algorithms and 

approaches for solving type II robotic assembly line balancing problems with setup times. This 

paper tackles the problem by aiming to minimize the cycle time and integrate setup times into the 

cycle time. The assumptions listed here are based on the studies of Gao et al. [5] and Andres et al. 

[20]. It should be noted that Scholl et al. [23] categorize the setup times into two types: forward 

setup and backward setup. Forward setup refers to a situation where task j is operated directly after 

task i is completed in the same cycle. Backward setup occurs when task i is the last one operated at 

the workpiece in cycle p and the worker has to move on to the next workpiece to complete a task 

which is to be assembled in cycle p+1. In this study, only forward setup times are considered based 

on the work reported in Aghajani et al. [27], which is the only paper published to date which 

considers setup times in robotic assembly lines. Based on the authors’ knowledge, the positions of 

robot and products are always fixed and hence no backward setup time is observed in automobile 

factories. Therefore, in this study, of robotic assembly lines with setup times, only forward setup 

times are considered.  The following assumptions are considered in this study.  

1) This study considers a robotic assembly line where a single product is assembled. 

2) The task processing times of the robots, the sequence-dependent setup times matrix and the 

precedence relationships are known deterministically.  

3) The processing times and setup times of robots are independent of the workstation at which 

tasks are processed.  
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4) A straight robotic assembly line layout is considered. In this layout, workstations are 

arranged in a straight line.  

5) A maximum of one robot can be allocated to each workstation.  

6) The number of available robots is greater than or equal to the number of workstations. 

7) Material handling, loading and unloading times are considered negligible or can be 

considered to be included in the processing time of the tasks.  

In the considered robotic assembly line there is a set of workstations, and each of these 

workstations has a robot allocated to it. If there are Nt tasks and Ns workstations, the available Nr 

robots will be allocated to these Ns workstations to perform the allocated Nt tasks. The considered 

RALB problem aims to assign Nt tasks to Ns workstations and allocate the Nr robots with the 

objective of minimizing cycle time, where the cycle time includes the sequence-dependent setup 

times. There are two main sub-problems that are optimized simultaneously: assignment of tasks and 

allocation of robots. A task will be executed only if all preceding tasks have been completed and a 

robot has been allocated to the workstation to perform the allocated tasks. Figure 1 shows a sample 

layout of a robotic assembly line; the assembly line consists of 4 workstations and 11 tasks. Tasks 

are allocated to the workstations in a balanced manner and a best-fit robot is assigned to perform the 

allocated tasks.  

 

Figure 1. Balanced robotic assembly line  

 

2.2 Mathematical Model – Mixed Integer Programming Model 

The notations used in the mathematical formulations are given as follows: 

 Indices 

i, j: Index of tasks. 

k: Index of workstations. 
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p: Index of position inside the schedule of a workstation. 

r: Index of robots. 

𝐼: Set of tasks and I = *1, 2,⋯ , 𝑖,⋯ ,𝑁𝑡+, where Nt is the number of tasks.  

K: Set of workstations and K = *1, 2,⋯ , 𝑘,⋯ ,𝑁𝑘+ where Nk is the number of workstations. 

R: Set of robots and R= *1, 2,⋯ , 𝑟,⋯ ,𝑁𝑟+ where Nr is the number of available robots. 

 Parameters 

tir : Operation time of task i by robot r.  

PTi: Set of tasks, all of which precede task i.  

Nmk: Maximum number of tasks that can be assigned to workstation k. 

N
max

: Maximum number of tasks that can be assigned to any workstation. 𝑁𝑚𝑎𝑥 = max𝑘*𝑁𝑚𝑘+. 

sijr: Setup time when task j is performed just after task i at the same workstation operated by robot r.  

ψ : A very large positive number. 

 Decision Variables 

CT: Cycle time. 

xirkp: Binary variable. xirj is equal to 1 when task i is operated by robot r at station k in position p of 

its schedule. 

yirk: Binary variable. yirk is equal to 1 when task i is the last one operated by robot r in the sequence 

of tasks assigned to workstation k.  

zijrk: Binary variable. zijrk is equal to 1 when task i is performed immediately before task j is operated 

by robot r at the workstation k in the same or in the next cycle. 

wrk: Binary variable. wrk is equal to 1 when robot r is allocated to station k. 

 

The model presented below is developed based on the mathematical model presented in Andres et 

al. [20]. 

Minimize CT                                                                          (1)    

Subject to: 

∑ ∑ ∑ x𝑖𝑟𝑘𝑝
𝑁𝑚𝑘
𝑝=1𝑘∈𝐾𝑟∈𝑅 =1  ∀i ∈ I                                                          (2) 

∑ 𝑤𝑟𝑘𝑘∈𝐾 ≤ 1  ∀𝑟 ∈ 𝑅                                                                 (3) 

∑ ∑ 𝑤𝑟𝑘𝑘∈𝐾𝑟∈𝑅 = 𝑁𝑘                                                                                      (4) 

∑ x𝑖𝑟𝑘𝑝𝑖∈𝐼 ≤1  ∀r∈R, k∈K, p=1,⋯ , 𝑁𝑚𝑘                                                (5) 

∑ xirk,p+1𝑖∈𝐼 ≤∑ xirkp𝑖∈𝐼   ∀r∈R, k∈K, p=1,⋯ ,𝑁𝑚𝑘 − 1                                        (6) 
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∑ ∑ ∑ (𝑁𝑚𝑎𝑥 ∙ (𝑘 − 1) + 𝑝) ∙ xirkp
𝑁𝑚𝑘
𝑝=1𝑘∈𝐾𝑟∈𝑅 ≤∑ ∑ ∑ (𝑁𝑚𝑎𝑥 ∙ (𝑘 − 1) + 𝑝) ∙

𝑁𝑚𝑘
𝑝=1𝑘∈𝐾𝑟∈𝑅

xjrkp  ∀(𝑖,j)|𝑖 ∈ 𝑃𝑇𝑗       (7)  

∑ ∑ ∑ 𝑡𝑖𝑟 ∙ xirkp
𝑁𝑚𝑘
𝑝=1𝑟∈𝑅𝑖∈𝐼 + ∑ ∑ ∑ 𝑠𝑖𝑗𝑟 ∙ zijrk𝑟∈𝑅j∈I|(𝑖≠𝑗)  𝑖∈𝐼 ≤ 𝐶𝑇  ∀𝑘 ∈ 𝐾                (8) 

xirkp + xjrk,p+1 ≤ 1 + 𝑧𝑖𝑗𝑟𝑘  ∀r∈R, k∈K, p=1,⋯ ,𝑁𝑚𝑘 − 1, ∀(𝑖,j)|(i≠j)⋀(j ∉ 𝑃𝑇𝑖)                (9) 

xirkp − ∑ xjrk,p+1∀j∈I|(𝑖≠𝑗)∧(j ∉𝑃𝑇𝑖)
≤ 𝑦𝑖𝑟𝑘  ∀i∈I, r∈R, k∈K, i≠j, p=1,⋯ , 𝑁𝑚𝑘 − 1          (10) 

𝑦𝑖𝑟𝑘 + xjrk1 ≤ 1 + 𝑧𝑖𝑗𝑟𝑘  ∀r∈R, k∈K, i≠j, i ∉ 𝑃𝑇𝑗                                        (11) 

∑ xirkp𝑖∈𝐼 ≤ψ⋅𝑤𝑟𝑘  ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾, p=1,⋯ ,𝑁𝑚𝑘                                        (12)   

The objective function (1) aims to minimize the cycle time. Constraint (2) implies that each 

task must be operated by only one robot and must be assigned to only one position at only one 

workstation. Constraint (3) and constraint (4) ensures that each workstation is allocated a robot and 

the number of utilized robots is equal to the number of workstations. Constraint (5) implies that, in 

each position at each workstation, there should be no more than one task allocated to robot r. 

Constraint (6) ensures that the tasks are assigned by increasing positions in the schedule of every 

workstation by robot r. Constraint (7) addresses precedence constraints, which constrain the task 

assignment on both the positions inside the same workstation and between different workstations. 

Constraint (8) ensures that the global time in each workstation, including task durations and setup 

times, is less than or equal to cycle time. Constraints (9-11) restrict the value of zijrk. Specifically, 

Constraint (9) denotes that the variable zijrk  is 1 when task i is allocated to position p and task k is 

allocated to position p+1 in the schedule of workstation k. Constraints (10-11) denote that the 

variable yirk is 1 when task i is the last one operated by robot r in the sequence of tasks assigned to 

workstation k, and the variable 𝑧𝑖𝑗𝑟𝑘 is 1 when task j is assigned to the first position and task i to the 

last position in the schedule of workstation k. Constraint (12) ensures that tasks found at the same 

workstation are operated by the same robot.  

 

3. Proposed Migrating Birds Optimization Algorithm 
The Migrating Birds Optimization algorithm is a recently developed metaheuristic approach, based 

on the V-shaped flight formation of migrating birds, a strategy that has been proven to be effective 

in conserving energy while flying long distances during migration [30]. It is believed that each bird 

flies at a specific angle and distance relative to the lead bird. The lead bird in the flock expends the 

most energy while the other birds follow the flying pattern of the lead bird. MBO is an algorithm 

that includes a neighboring search technique. The algorithm starts with a set of initial solutions, 
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which are improved at each step. There are four main steps and four parameters in MBO. After the 

initial solutions are generated, the subsequent steps are performed iteratively until the termination 

criteria are met: leader improvement, block improvement and leader replacement. In the loop, 

improvement of the leader is attempted by generating and evaluating k neighbor solutions. If the 

improvement is obtained, the best neighbor solution after evaluation of all neighbor solutions 

replaces the current leader. In addition to the abovementioned step, other potential individuals are 

also improved using the x unused best neighbor solutions that are in the front and also its neighbor 

(k-x) solutions, and this procedure is the block improvement stage of the algorithm. The sharing of 

neighbor solutions of other individuals helps promote communication between the individuals and 

also facilitates the evolution of the whole population. This is referred to as the benefit mechanism 

[31]. Leader improvement and block improvement are executed consecutively m times and then the 

leader replacement procedure is carried out where the leading individual is moved to the end and 

the best of the next individuals will be made the leader.  

Recently, MBO has shown its superior performance in solving combinatorial problems such as 

quadratic assignment problems [30] and flow shop scheduling problems [32]. Despite this, attempts 

to use the algorithm to solve assembly line balancing problems have been minimal. This study aims 

to show why MBO should be used to improve robotic assembly line balancing. The following 

sections describe how the metaheuristic algorithm is implemented to solve the considered problem.  

 

3.1 Encoding and Decoding 

This study uses the encoding procedure reported in Gao et al. [5], where both task permutation and 

robot allocation are utilized. Based on the example presented in Figure 1, one possible encoding is 

illustrated in Figure 2. In the task permutation, the tasks in the first positions have higher priority 

and are allocated first. For instance, tasks 1, 2 and 3 are in the first positions and hence they are 

allocated to the first workstation, as can be seen in Figure 1.  In the robot assignment procedure, the 

robots are allocated to workstations in a sequence. For instance, robot 3, robot 2, robot 1 and robot 4 

are allocated to workstation 1, workstation 2, workstation 3 and workstation 4.  

 

Task permutation 1 3 2 4 5 6 7 9 8 10 11

Robot allocation 3 2 1 4
 

Figure 2. Encoding scheme 
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As two vectors are utilized in the encoding scheme, this study develops its decoding procedure 

based on Gao et al. [5], and utilizes the iterative mechanism for two-sided assembly lines used in Li 

et al. [33]. The decoding procedure is presented in detail below. In this procedure, robot allocation 

is firstly determined by the robot allocation vector, following which the workstation is assigned 

with as many as possible tasks in the former positions of the task permutation. 

 

Algorithm: Decoding Procedure 
 Input: Task permutation, robot allocation and instance 

Start 

1. Evaluate the initial cycle time 

2. Open a new workstation 

3. Plan the allocation of tasks 

4. Assign the allocated robot to the current workstation. 

5. Select the tasks satisfying precedence constraint and cycle time constraint.  

6. If  a situation with no assignable tasks exists 

a. Open a new workstation 

b. Or else 

c. Execute the previous step (delete the task) 

7. End if  

8. Allot the task in the former position of the task permutation to the current workstation 

9. Update the remaining capacity of the current workstation  

10. If all tasks have been allotted 

11. Terminate the decoding procedure 

12. Otherwise 

13. Open a new workstation  

14. End if 

15. Stop 
Output: The corresponding cycle time achieved and the detailed task and robot assignment 

 

In the proposed approach, the initial cycle time is set to a large 

value,𝐶𝑇 = 2 ∙ ∑ ∑ 𝑡𝑖𝑟𝑟∈𝑅𝑖∈𝐼 (𝑁𝑟 ∙ 𝑁𝑠)⁄ , where Nr is the number of available robots and Ns is the 

number of workstations. Assigning a large value ensures that all the problems will be able to obtain 

a good feasible solution. The procedure updates the initial cycle time when a new best cycle time is 

obtained using 𝐶𝑇 = 𝐶𝑇𝐵𝑒𝑠𝑡 − 1. Once the new best cycle time is achieved, all the individuals in the 

solution are re-decoded using this new CT and their fitness values are updated. The initial cycle 

time in the algorithm evolution is updated using the following procedure.  

Setting the initial cycle time to a large value ensures the discovery of a feasible solution in a 

faster computational time by gradually decreasing achieved cycle time. This method is referred to as 

an iterative mechanism in Li et al. [33], who used this procedure for type II two-sided assembly line 

balancing problems. Using the same initial cycle time for all individuals in the solution, it preserves 

minor improvements made to individuals. However, in the procedure reported in Mukund,  

Nilakantan and Ponnambalam [34], the initial cycle time is incremented gradually from a small 

value until a feasible solution is obtained. This naturally increases the computational time; however, 
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the proposed method is computationally faster because it executes the decoding scheme only once.  

 Algorithm: Cycle Time Update 

Step 1. Set the initial cycle time as 𝐶𝑇 = 2 ∙ ∑ ∑ 𝑡𝑖𝑟𝑟∈𝑅𝑖∈𝐼 (𝑁𝑟 ∙ 𝑁𝑠)⁄   

Step 2. Obtain the solutions using CT as cycle time   

Step 3. If a new best cycle time is achieved, CT is updated to 𝐶𝑇 = 𝐶𝑇𝐵𝑒𝑠𝑡 − 1 and all the      

                    individuals are re-decoded using this new CT as cycle time  

Step 4. Obtain the solutions in each iteration using CT as the initial cycle time  

Step 5. If the algorithm is still running, go to the 3rd step 

 

3.2 MBO Methodology 

This study presents a modified MBO algorithm with specifically chosen improvements. The 

algorithm of the proposed MBO is illustrated in this section. In the standard MBO algorithm, there 

are four steps, starting with block initialization (population initialization) and followed by three 

steps (leader improvement, block improvement and leader replacement) which constitute a loop, 

and this loop is terminated when one predetermined termination criterion is satisfied. The procedure 

followed in this study is similar; however, several improvements have been made to adapt the 

procedure to the problem.  

The improvements made are as follows: if the leader improvement or block improvement 

procedure shows an improvement, the incumbent individual is directly replaced with a new 

neighbor solution. Even when the same fitness value is achieved, the incumbent individual is 

replaced with the new neighbor solution. The fitness of the neighbor solution is set to a very large 

positive value if it shares the same fitness as the incumbent individual. The ideas behind these 

improvements are as follows: replacing the incumbent individual immediately after the 

improvement achieved helps to search for more areas that are promising and helps avoid 

unnecessary searching around a poor individual. Replacing the incumbent individual with a new 

neighbor with an equivalent fitness value means there could be many solutions, as many individuals 

could share the same fitness value. By implementing this modification, it is possible to explore 

more solutions, enhancing the exploration to some extent. The fitness of the neighbor solution that 

shares the same fitness value as the incumbent one is set to a very large positive value. This value 

assignment is done to avoid premature convergence of the proposed algorithm. The value set in this 

paper is 10,000. If this is not incorporated after a few iterations, all the individuals will have the 

same fitness value.  
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Algorithm: Procedure of Modified MBO 
Input: Algorithm parameters and one instance (task operation times and precedence relations)  
1. Generate initial individuals randomly;                                                   % Initialization 
2. While (Termination criterion is not met) do 

3.     For i=1 to m do 
4.                For j=1 to k do                                                                        % Leader improvement 
5.                     Generate a neighbor solution for the leader solution 
6.                        Replace the current leader solution with the neighbor solution when the same               

                       or better fitness is achieved.  
7.              End for 
8.                  Replace the current leader solution when same or better fitness value is achieved  

                 with best individual from the neighbor solutions.    
9.                  Set a large value for the fitness of the individual whose fitness is the same as the                    

                 incumbent one. 
10.                For each individual on both (left and right) sides                   % Block improvement 
11.                     For j=1 to (k-x) do  
12.                        Generate a neighbor solution for this solution; 

13.                        Replace the current solution with the neighbor solution when the same or  

                       better fitness is achieved. 

14.                   End for 
15.                   Replace this individual with the best individual from its (k-x) neighbor solutions   

                  and the x unused best neighbor solutions of the solution in the front when the   

                  same or better fitness is achieved.  

16.                  Set a large value to the fitness of the individual whose fitness is the same as the       

                 incumbent one. 

17.                  End for 

18.         End for 

19.         Move the leading individual to the end.                                             % Leader replacement 

20.         Forward the immediately following individual to the leader position.  

21. Endwhile 
Output: Best cycle time achieved so far and the detailed task and robot assignment  

 

The proposed MBO shows fast convergence, as observed during preliminary experiments. This 

study also employs new acceptance criterion to enhance exploitation capacity and avoid getting 

trapped into local optima. Specifically, once the current best cycle time has remained unchanged for 

many iterations (set to 500), the greedy acceptance criterion is replaced with the acceptance 

criterion in a simulated annealing algorithm [27]. Namely, the new neighbor solution replaces the 

incumbent one when it achieves a better fitness or with a probability of 𝑒𝑥𝑝−(Fit(𝑆′)−Fit(S)) (𝑇×𝐹𝑖𝑡(𝑆))⁄  , 

where S and S’ refer to the incumbent solution and the new neighbor solution, T is the temperature, 

and 𝐹𝑖𝑡(𝑆) is the cycle time by a solution. In this paper, T is initialized with an initial temperature 

(set to 0.2), and is updated with 𝑇 = 𝑇 ×   (α is the cooling rate, set to 0.95) in each iteration. If a 

new best cycle time is achieved, the original greedy acceptance criterion is again applied.  

 

3.3 Illustrative example  

This section presents an example that illustrates how the encoding, decoding and cycle time 

calculation process works. The example considered is a problem made up of 11 tasks with 4 work 

stations and 4 robots. The precedence relationships and operation times of each robot’s task are 
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presented in Table 1. The first column presents the task numbers while the second column presents 

the precedence relationship. The remaining columns present the robots’ operation times. The 

sequence-dependent setup times between tasks are shown in Table 2.  

Based on the proposed procedure, the cycle time of the robotic assembly line is calculated by 

considering the sequence-dependent setup times between tasks; the allocation of robots and tasks 

are presented in detail in Table 3. In the table, the operation times of the allocated tasks, the 

sequence-dependent setup times and the total time are presented for each workstation. Figure 3 also 

shows the final allocation of tasks to the workstations and the detailed robot allocation. The 

workstation completion times are also presented, and the cycle time is found to be 137.  

Table 1 Precedence relationships and operation times for the illustrative example 

Tasks Successors 
Operation times 

Robot 1 Robot 2 Robot 3 Robot 4 

1 2, 3, 4, 5 81 37 51 49 

2 6 109 101 90 42 

3 7 65 80 38 52 

4 7 51 41 91 40 

5 7 92 36 33 25 

6 8 77 65 83 71 

7 9 51 51 40 49 

8 10 50 42 34 44 

9 11 43 76 41 33 

10 11 45 46 41 77 

11 - 76 38 83 87 

 

Table 2 Sequence-dependent setup times between tasks for the illustrative example 
Robot 1 Robot 2 

0 2 9 10 10 0 4 7 0 5 7 0 2 1 2 4 7 8 6 8 3 3 

8 0 7 1 10 3 1 5 2 2 3 5 0 1 2 1 2 5 8 5 3 0 

6 6 0 3 9 1 4 1 0 0 10 4 5 0 3 6 1 4 2 1 1 1 

10 6 3 0 0 3 2 0 8 2 9 1 5 1 0 7 1 8 1 2 5 7 

6 6 6 3 0 4 4 8 2 0 7 5 2 3 4 0 4 7 5 6 3 4 

8 9 5 1 10 0 7 0 0 5 3 8 8 3 1 4 0 3 4 4 4 3 

6 7 4 6 5 7 0 7 0 9 7 1 7 7 1 4 6 0 0 2 6 1 

8 2 6 5 1 1 6 0 7 5 7 5 6 5 6 2 3 2 0 1 4 3 

7 5 2 6 6 4 8 1 0 10 6 0 1 6 3 8 0 6 4 0 6 0 

8 8 8 8 0 3 6 4 4 0 5 6 7 0 1 5 6 2 0 7 0 2 

8 5 10 4 1 2 10 8 1 4 0 0 8 3 3 2 8 6 5 3 2 0 

Robot 3 Robot 4 

0 0 5 1 3 7 5 5 3 7 5 0 4 0 4 4 4 0 0 0 4 0 

3 0 6 1 7 0 2 4 1 3 0 5 0 0 1 4 5 4 2 3 5 0 

3 7 0 4 7 2 3 0 8 4 1 1 3 0 0 2 0 0 2 5 3 1 

1 0 2 0 5 5 7 2 2 4 6 4 3 2 0 0 0 1 1 2 5 3 

0 6 8 2 0 5 0 4 2 3 5 1 0 3 3 0 4 5 5 3 0 2 

1 3 4 1 0 0 0 5 2 6 3 4 3 2 0 4 0 5 5 6 1 4 

0 7 7 6 4 1 0 4 3 5 5 2 5 4 5 5 2 0 3 0 5 4 

3 1 5 1 7 7 7 0 5 4 1 1 4 2 5 1 6 0 0 0 6 5 

8 1 5 1 4 6 1 1 0 2 0 0 3 2 5 2 4 0 3 0 3 5 

6 4 3 2 6 6 5 4 4 0 2 4 3 1 3 0 4 1 4 3 0 2 

1 0 7 7 6 2 0 5 1 1 0 4 5 0 0 2 4 3 0 4 2 0 
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Table 3 Detailed task assignment and robot selection for the illustrative example 

  Workstation 1 Workstation 2 Workstation 3 Workstation 4 

Robot allocation 4 1 3 2 

Task assignment 1, 2, 5 6, 4 3, 7, 9 8, 10, 11 

Operation time 49, 42, 25 77, 51 38, 40, 41 42, 46, 38 

Setup times 4, 4, 1 1, 3 3, 3, 5 4, 2, 5 

Total time 125 132 130 137 

 

 
 Figure 3. Final tasks and robot allocation for the illustrative example   

 

 

4. Computational study 
This section first presents the details of the experimental design, followed by the findings of the 

evaluation of the proposed models, and, finally, reports a comparison of the implemented 

algorithms. Since no research has been published concerning this problem, there are no benchmark 

problems available. This research utilizes and expands on nine sets of benchmark problems based 

on the ones reported in Gao et al. [5]. From each problem, the original precedence network and task 

performance robots are preserved. For every problem, two levels of setup time variability are set:  

 For low Variability, the matrix of setup times is randomly generated based on uniform 

discrete distribution 𝑈, ,   2  𝑚𝑖 ∀𝑖∈𝑁𝑡𝑖-. 

 For high Variability, the matrix of setup times is randomly generated based on uniform 

discrete distribution 𝑈, ,      𝑚𝑖 ∀𝑖∈𝑁𝑡𝑖-. 

In total, the benchmark is composed of 33 problems with different combinations of task sizes 

and robots available. All 33 problems are tested with two levels of variability in setup times. 

Problems with task sizes ranging from 11 to 70 are classified as small-sized datasets and problems 

with task sizes ranging from 89 to 297 are classified as large-sized datasets. This paper re-

implements some recent and high-performing metaheuristic methods by adapting them to the 

considered problem. The algorithms tested in this paper are summarized in Table 4. These 

algorithms are taken from the literature and have been reported to solve problems of a similar nature 

(references to relevant studies are summarized in Table 4). This paper adopts the same procedure 
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followed in Li et al. [35] with regards to the termination criteria. Maximum elapsed CPU time is 

considered as the termination criterion in this paper and is equal to Nt×Nt×τ milliseconds, where it 

is tested at six levels (τ=10, 20, 30, 40, 50 and 60). By following this procedure, more 

computational time is allocated to large-sized problems and six termination criteria are used to 

analyze the performance of the algorithms for short CPU time and large CPU time. The algorithms 

were executed on a cluster of personal computers and were coded in C++. All the experiments were 

carried out on a tower type of server. This server had two Intel Xeon E5-2680 v2 processors (40 

processor cores in total) running at 2.8 GHz and 64 GB of RAM memory.  

Table 4 Tested algorithms for Type II RALB-S 
Algorithms Description Reference  

GA Genetic Algorithm - Elite strategy is 

applied by cloning the best individual 

to replace one of the offspring. 

Kim et al. [36] 

Taha et al. [37] 

PSO Particle Swarm Optimization - 

Crossover, insert and swap operators 

are applied for population evolution. 

Li et al. [35] 

Petropoulos and 

Nearchou [38] 

ABC Artificial Bee Colony - When no 

improvement on the best solution is 

achieved, a scout is applied to replace 

the worst individual or a duplicate 

individual with a neighbor solution. 

Tang et al. [39] 

Saif et al. [40] 

DCS Discrete Cuckoo Search - Individuals 

with duplicate and worst solutions are 

discarded and replaced with the 

neighbor solutions of remaining 

individuals. 

Li et al. [41] 

SA Simulated annealing algorithm - 

Proposes the task sequence vector, 

breakpoint vector and robot 

allocation vector for encoding. The 

other operators are set similarly to 

their settings in Aghajani et al. [27]. 

Aghajani et al. [27] 

MBO Migrating Bird Optimization - 

 

4.1 Selected parameters for the metaheuristic algorithms 

This research utilizes the full factorial design and Analysis of Variance (ANOVA) technique to 

determine the parameters following Li et al. [33, 35] and many others. Specifically, all the 

combinations of the parameters are tested on one test problem with 111 tasks and 13 workstations, 

and this test problem is solved 10 times by each combination of the parameters, and the achieved 

cycle times are regarded as the response variable in the ANOVA test. For reasons of space 

restrictions, this study does not present the detailed ANOVA results, but instead shows the 

parameters selected for the algorithms considered in Table 5.  As there is one reported article 

addressing setup times in a two-sided robotic assembly line utilizing simulated annealing (SA)[27], 

this study also re-implements the SA algorithm using the reported encoding and decoding schemes.  
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Table 5 Parameters selected for the tested algorithms 
Algorithm Parameters Range Selected value/procedure 

GA 

Population size 40, 80, 120, 160, 200 120 

Selection type - 
Binary tournament selection (the better of two 

randomly selected individuals is selected) 

Crossover type - Two-point crossover 
Crossover probability 0.4, 0.5, 0.6, 0.7, 0.8 0.5 

Mutation type - Swap operation and insert operation 

Mutation probability - 1-crossover probability 

ABC 

Population size 40, 80, 120, 160, 200 40 
Neighborhood operator  - Swap operation and insert operation 

Scout phase - 

Sending a scout when there is no improvement 

within an iteration to replace the worst individual in 
the population 

PSO 

Number of swarms 4, 8, 12 6 

Number of particles in a 
swarm 

20, 40, 60 20 

c 0.5, 0.6  0.7 

DCS 

Population size 40, 80, 120 40 
Rate of abandoned 

individuals 
0.1, 0.2, 0.3, 0.4  0.1 

SA Initial temperature 0.5, 1 0.5 

 Cooling rate 0.9, 0.95, 0.98 0.9 

 

Number of iterations 

before a temperature 

change 

50, 100, 500, 1000 500 

MBO 

Population size 5, 11, 21 5 

k 7, 11, 21 11 

x 3, 5, 10 5 
m 10, 20 20 

4.2 Computational Evaluation 

This section presents a comparative study of the algorithms. Each algorithm is solved 30 times and 

the resulting best results for small-sized problems are compared with the optimal solution achieved 

by CPLEX solver and this is reported in Table 6. Three different criteria are tested in this paper (no 

setup time, low and high setup times). The first column in the table shows the problems tested 

denoted by their task size. The second column shows the number of workstations (Nw) for the 

problems. The next two columns present the cycle time obtained using a CPLEX solver as well as 

the computation time (CPU) when no setup times are considered. CPLEX is programmed in such a 

way that the program terminates when it reaches 3600 seconds. The next two columns show the 

results obtained for low setup times; however, only P11 with 11 tasks and 4 workstations could 

obtain a solution within the predetermined termination criteria. Similarly, for high setup times, 

CPLEX could only achieve a solution for the P11 problem. The results obtained by MBO are the 

best cycle times within 30 iterations with the termination criterion of Nt×NT×10 milliseconds.  

It is observed that CPLEX could only achieve 6 optimal solutions for no setup instances, and 

only one solution for both low setup times and high setup times. This situation proves the 

complexity of the considered problem. It is to be noted that the results obtained by CPLEX could be 

improved if we utilize more processors and larger RAM, but this research utilizes the same 

configuration for a fair comparison. It is also clear that MBO achieves the same or smaller cycle 
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times for all the tested instances, and the results obtained by MBO are larger than or equal to the 

lower bounds. Notably, the results obtained using MBO outperform the results of CPLEX for all the 

instances in P53 and P70 with shorter computational times. This comparison demonstrates the 

superiority of the MBO algorithm in solving large-size instances and clarifies the reasons for 

utilizing some algorithms.  

 

Table 6 Optimal solutions obtained using CPLEX solver  

Instances Nw 

CPLEX solver MBO 

No setup Low High 
No setup Low High CPU 

Results CPU Results CPU Results CPU 

P11 4 128 0.59  137 316.27  152 2693.95  128 137 152 1.21 

P25 3 503 0.68  NA 3600 NA 3600 503 516 579 6.25 

P25 4 327 2.44  NA 3600 NA 3600 327 346 380 6.25 

P25 6 213 442.96  NA 3600 NA 3600 213 227 242 6.25 

P25 9 134 (99.24) 2210.58* NA 3600 NA 3600 121 131 142 6.25 

P35 4 449 25.70  NA 3600 NA 3600 449 462 494 12.25 

P35 5 344 78.18  NA 3600 NA 3600 344 355 392 12.25 

P35 7 233 (213.66)  3355.58* NA 3600 NA 3600 222 237 261 12.25 

P35 12 148 (86.95)  2506.64* NA 3600 NA 3600 112 118 131 12.25 

P53 5 554 2310.04  NA 3600 NA 3600 559 574 619 28.09 

P53 7 343 (270.11)  2563.51* NA 3600 NA 3600 320 334 359 28.09 

P53 10 322 (184.78)  3040.56* NA 3600 NA 3600 239 256 276 28.09 

P53 14 248 (116) 3600 NA 3600 NA 3600 162 170 185 28.09 

P70 7 510(386.79)  1911.09* NA 3600 NA 3600 448 469 507 49.00 

P70 10 329(216.08) 3600 NA 3600 NA 3600 271 282 309 49.00 

P70 14 346 (157) 3600 NA 3600 NA 3600 201 211 233 49.00 

P70 19 600 (110) 3600 NA 3600 NA 3600 152 158 175 49.00 

Note: In the third column, the number before the bracket is the upper bound and the number within the bracket is the lower bound, 

the CPU time is added with ‘*’ when CPLEX terminates due to being out of memory, and NA means that no solution is achieved 

within the given CPU time.  

 

The selected metaheuristic algorithms for comparison were tested under different termination 

criteria to solve all the problem instances, as discussed earlier. Based on the results obtained, cycle 

times are transferred to relative percentage deviations (RPD) based on Equation 12, where 𝐶 𝑇𝑠 𝑜 𝑚 𝑒  

is the cycle time achieved by one combination and 𝐶 𝑇𝐵 𝑒 𝑠 𝑡  is the cycle time achieved by all 

combinations.   

𝑅𝑃𝐷 = 1  ∙ (𝐶𝑇𝑠𝑜𝑚𝑒 − 𝐶𝑇𝐵𝑒𝑠𝑡) 𝐶𝑇𝐵𝑒𝑠𝑡⁄  (11) 

Based on the selected parameters, all algorithms are solved for 30 iterations and the RPD values are 

presented in Table 7. As there are 3 datasets, 6 termination criteria and 30 running times, there is a 

large amount of data and it is important to carefully analyze this data. Table 7 presents only the 

average RPD values obtained by algorithms for the considered problems with low setup times with 

τ=60 as an example. It is observed that MBO achieves the best performance with the overall RPD 

of 0.65, and ABC and DCS are the second and third best performers. The PSO and SA, on the 

contrary, are the worst and the second worst performers, with an overall RPD of 3.34 and 3.16. 
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Surprisingly, MBO achieves the best performance for P111, P148 and P297, demonstrating the 

superiority of MBO in solving large-size instances. 

Table 8 presents the overall RPD values obtained for the 33 datasets for the three scenarios (no 

setup times, low and high setup time variability) for the six metaheuristics considered. The average 

RPD values are obtained for each algorithm by taking the average RPD values for all the problems. 

Different termination criteria (six in total) are tested to observe the performance of the considered 

metaheuristic algorithms. It should be noted that the detailed results (average RPD, best cycle times, 

average cycle times and standard deviation) for each instance are omitted for space reasons, but 

they are available upon request. From this table, it can be observed that the proposed MBO is able 

to perform better than the other metaheuristic algorithms for all termination criteria.  

Notably, for no setup times, the MBO performed better than other algorithms for all the 

termination criteria. For termination criterion with Nt×Nt×10 milliseconds, MBO ranked first, 

followed by DCS, ABC, GA, SA and PSO. For other termination criteria, MBO also performs better 

than the other algorithms and ranks first among them. For low setup time variability and high setup 

time variability, MBO performs the best among these algorithms with the termination criterion of 

Nt×Nt×10 milliseconds, and it remains the best performer across all the other five tested criteria. 

Again, PSO and SA are the two worst performers for all the termination criteria. In summary, this 

computational study suggests that MBO is the best performer among all the algorithms with regard 

to no setup times, low, and high setup time variability. Furthermore, the results show that setup 

times cannot be ignored in a robotic assembly line and researchers should include setup times when 

considering how to balance a robotic assembly line. We have omitted the detailed cycle times which 

were used to calculate the RPD values for each problem; they are available on request and will be 

archived in Research Gate. The superiority of the proposed MBO should be attributed to the 

combination of the problem-specific improvements and the strong local search ability of the 

original MBO. This method utilizes an improved decoding procedure and an iterative mechanism in 

order to preserve the minor improvements made to individuals. Moreover, having the MBO replace 

the incumbent individual immediately after the improvement is made, this allows searching for 

more promising areas and helps avoid unnecessary searching around a poor individual. Meanwhile, 

the proposed MBO utilizes two improvements to enhance exploration capacity. 1) The incumbent 

individual is replaced with the new neighbor solution when the same fitness value is achieved. 2) 

The fitness of the neighbor solution is set to a very large positive value if it shares the same fitness 

as the incumbent one. Without these two improvements, all the individuals will have the same 
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fitness value after a few iterations and the algorithm might show premature convergence. In short, 

these problem-specific improvements are in favor of the MBO maintaining a proper balance 

between exploration and exploitation. 

Although the difference is quite clear, carrying out statistical analysis to confirm that the 

observed difference is statistically significant is still advised. As the performances of algorithms are 

quite different when solving different instances, this research utilizes the average RPD of all 

instances in one run as the response variable. Subsequently, the ANOVA test is carried out where 

the algorithm type and termination criteria are regarded as two controlled factors. The ANOVA 

analysis demonstrates that there are statistically significant differences between these methods, the 

termination criteria and the interaction of the two factors. Figure 4 depicts the means plots of 

algorithms for three scenarios, with Figure 4a showing no setup times, Figure 4b showing low setup 

time variability and Figure 4c showing high setup time variability. For better readability, these 

figures primarily present the results when τ=20, 40 and 60 are tested. It can be clearly seen from the 

figures that MBO is the best performer in all three scenarios based on these three termination 

criteria. It can also be seen that SA is trapped in the local optima and cannot find better results with 

increased CPU time. MBO ranks first, DCS and ABC rank second and third, followed by GA, SA 

and PSO in terms of their performance in solving the considered problem. The statistical analysis 

also concludes that the proposed MBO obtains superior results, as shown in Table 7 and Table 8. 

 

5. Conclusion and future research 
This paper presents the methodology used to address the problem of balancing a robotic 

assembly line with sequence-dependent setup times. The objective is to optimize the cycle time; the 

paper presents a mathematical model for the considered problem, and a CPLEX solver is used to 

solve small-sized problems. Three different scenarios are tested (no setup time, low and high setup 

times) and, since the considered problem falls under the NP-hard category, a recently developed 

metaheuristic Migrating Birds Optimization (MBO) algorithm, along with a set of four 

metaheuristics, is implemented to solve the problem. Average RPD (Relative Percentage Deviation) 

values for the three scenarios and all the considered metaheuristics are presented in detail. From an 

analysis of the results, it can be seen that the proposed MBO algorithm performed better for all 

three scenarios with different termination criteria. The study can be implemented in a decision 

support system and production managers can use the findings of this study and apply it in real-time 

scenarios. The results were obtained within a short computational time; hence, results can be 
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quickly analyzed, facilitating the effective and high-quality design and implementation of a system.  

This study’s outcome will help production managers test different possible scenarios for 

balancing a robotic assembly line with sequence-dependent setup times and determine a feasible 

balanced solution within an acceptable computational time. This system can be integrated into 

decision support systems for real-time usage. In the future, different layouts of robotic assembly 

lines with setup times could be compared. It would also be interesting to examine the performance 

of hybrid metaheuristic algorithms for problems of this type. As the industry contexts are quite 

diverse, there might be backward setup times on some occasions and thus it would be of interest to 

address this gap. Researchers could consider including more realistic situations such as constraints 

on the allocation of tasks to the robots. Another interesting area of work would be to consider a 

semi-robotic assembly line situation where both robots and human workers are required to execute 

tasks.  
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c) Results for high setup time variability 

Figure 4 Means plot and 95% Tukey HSD confidence intervals for the interactions between 

algorithms and termination criteria 
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Table 7 Average RPD values for RALB problems with low setup times 

Instances Nw PSO SA GA DCS ABC MBO 

P11 4 0.00 0.00 0.00 0.00 0.00 0.00 

P25 3 0.12 0.21 0.14 0.39 0.29 0.12 

P25 4 0.00 0.00 0.00 0.00 0.00 0.00 

P25 6 0.00 0.00 0.00 0.00 0.00 0.00 

P25 9 1.15 0.53 0.61 0.23 0.15 0.31 

P35 4 1.30 0.67 1.28 0.50 0.50 0.33 

P35 5 8.34 4.17 5.38 2.00 0.85 0.00 

P35 7 5.79 3.26 3.99 3.69 2.70 2.49 

P35 12 9.58 2.29 2.80 1.27 0.93 1.10 

P53 5 0.70 0.46 0.70 0.67 0.49 0.63 

P53 7 1.08 0.75 0.78 0.45 0.00 0.00 

P53 10 7.18 5.02 4.98 5.43 4.90 4.57 

P53 14 8.49 4.82 5.12 3.13 3.19 3.43 

P70 7 7.10 4.49 3.35 2.19 2.65 2.19 

P70 10 10.60 5.48 4.09 3.84 1.42 1.00 

P70 14 12.64 6.35 4.81 3.46 2.45 1.83 

P70 19 13.86 7.15 3.92 1.90 1.01 0.89 

P89 8 5.09 3.28 3.01 0.98 2.20 0.61 

P89 12 6.77 3.46 3.54 2.11 1.72 1.15 

P89 16 9.59 5.20 4.47 2.15 1.91 2.32 

P89 21 15.00 8.80 5.00 3.46 2.16 2.55 

P111 9 11.47 7.88 4.72 3.20 1.30 2.28 

P111 13 15.84 8.88 6.38 4.19 2.04 2.22 

P111 17 15.96 8.50 5.00 3.46 2.19 1.85 

P111 22 18.96 10.95 4.68 3.43 1.79 1.29 

P148 10 14.46 8.15 6.17 5.34 3.00 3.38 

P148 14 16.89 10.16 4.95 4.82 2.90 3.06 

P148 21 19.67 11.52 6.70 3.93 2.21 2.34 

P148 29 21.08 12.75 5.98 3.14 1.76 1.18 

P297 19 12.67 7.78 4.26 2.66 1.26 0.99 

P297 29 16.42 9.06 4.17 2.51 0.87 0.39 

P297 38 17.81 11.10 4.52 2.70 1.38 0.73 

P297 50 18.88 12.95 5.75 2.76 1.87 0.37 

Average RPD 9.83 5.64 3.67 2.42 1.58 1.38 
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Table 8 Average RPD values for RALB problems by algorithm 

No setup times 

Algorithms Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60 

PSO 10.83  10.15  9.81  9.53  9.36  9.15  

SA 5.37  5.37  5.36  5.36  5.36  5.35  

GA 4.65  4.24  3.95  3.79  3.67  3.54  

DCS 3.60  3.13  2.90  2.71  2.62  2.50  

ABC 2.82  2.22  1.98  1.82  1.71  1.64  

MBO 2.16  1.69  1.43  1.22  1.07  0.97  

Low setup time variability 

Algorithms Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60 

PSO 11.50  10.89  10.46  10.22  9.99  9.83  

SA 5.65  5.65  5.64  5.64  5.64  5.64  

GA 4.85  4.32  4.09  3.90  3.78  3.67  

DCS 3.69  3.21  2.92  2.67  2.54  2.42  

ABC 3.11  2.38  2.03  1.81  1.68  1.58  

MBO 2.63  2.15  1.86  1.67  1.50  1.38  

High setup time variability 

Algorithms Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60 

PSO 13.48  12.75  12.32  12.00  11.79  11.64  

SA 6.66  6.65  6.65  6.65  6.65  6.65  

GA 5.52  4.94  4.68  4.41  4.23  4.11  

DCS 4.38  3.71  3.32  3.01  2.78  2.64  

ABC 3.84  2.78  2.24  1.96  1.73  1.59  

MBO 3.11  2.44  2.06  1.80  1.61  1.47  

 


