

Aalborg Universitet

Metaheuristic algorithms for balancing robotic assembly lines with sequence-
dependent robot setup times

Janardhanan, Mukund Nilakantan; Li, Zixiang; Bocewicz, Grzegorz; Banaszak, Zbigniew;
Nielsen, Peter
Published in:
Applied Mathematical Modelling

DOI (link to publication from Publisher):
10.1016/j.apm.2018.08.016

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic algorithms for
balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling,
65, 256-270. https://doi.org/10.1016/j.apm.2018.08.016

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/304609485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.apm.2018.08.016
https://vbn.aau.dk/en/publications/cf883e7c-6dff-406b-8350-8a0f33b1e732
https://doi.org/10.1016/j.apm.2018.08.016

Accepted Manuscript

Metaheuristic algorithms for balancing robotic assembly lines with
sequence-dependent robot setup times

Mukund Nilakantan Janardhanan , Zixiang Li , Grzegorz Bocewicz ,
Zbigniew Banaszak , Peter Nielsen

PII: S0307-904X(18)30405-0
DOI: https://doi.org/10.1016/j.apm.2018.08.016
Reference: APM 12430

To appear in: Applied Mathematical Modelling

Received date: 18 December 2017
Revised date: 9 August 2018
Accepted date: 20 August 2018

Please cite this article as: Mukund Nilakantan Janardhanan , Zixiang Li , Grzegorz Bocewicz ,
Zbigniew Banaszak , Peter Nielsen , Metaheuristic algorithms for balancing robotic assembly
lines with sequence-dependent robot setup times, Applied Mathematical Modelling (2018), doi:
https://doi.org/10.1016/j.apm.2018.08.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.apm.2018.08.016
https://doi.org/10.1016/j.apm.2018.08.016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot

setup times

Mukund Nilakantan Janardhanan
1, 2*

, Zixiang Li
3, 4

, Grzegorz Bocewicz
5
, Zbigniew Banaszak

5
, Peter Nielsen

1

1
Department of Materials and Production, Aalborg University, Aalborg, Denmark.
2
Department of Engineering, University of Leicester, Leicester, United Kingdom.

Email: mukund.janardhanan@leicester.ac.uk, peter@mp.aau.dk
3
Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,

Wuhan University of Science and Technology, Wuhan, Hubei, China.
4
Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology,

Wuhan, Hubei, China.

Email: zixiangliwust@gmail.com
5
Department of Electronics and Computer Science, Koszalin University of Technology,

Sniadeckich 2, 75-453 Koszalin, Poland.

Email: bocewicz@ie.tu.koszalin.pl, zbigniew.banaszak@tu.koszalin.pl

Abstract: Industries are incorporating robots into assembly lines due to their greater flexibility and

reduced costs. Most of the reported studies did not consider scheduling of tasks or the sequence-

dependent setup times in an assembly line, which cannot be neglected in a real-world scenario. This

paper presents a study on robotic assembly line balancing, with the aim of minimizing cycle time by

considering sequence-dependent setup times. A mathematical model for the problem is formulated

and CPLEX solver is utilized to solve small-sized problems. A recently developed metaheuristic

Migrating Birds Optimization (MBO) algorithm and set of metaheuristics have been implemented

to solve the problem. Three different scenarios are tested (with no setup time, and low and high

setup times). The comparative experimental study demonstrates that the performance of the MBO

algorithm is superior for the tested datasets. The outcomes of this study can help production

managers improve their production system in order to perform the assembly tasks with high levels

of efficiency and quality.

Keywords: Assembly line balancing; robotic assembly line; sequence-dependent setup times;

metaheuristics

1. Introduction
Assembly lines have been extensively used in the consumer electronics and automobile industries

for the assembly of different products [1, 2]. Due to increasing human labor costs and customers’

mounting demands for a variety of products, industries are utilizing robots in assembly lines in

order to improve production flexibility and product quality [3]. Robotic assembly line balancing

(RALB) problems have been receiving increased attention in the last few years. RALB is defined as

assigning a set of tasks to workstations in balanced form by allocating the best robot to each task at

each workstation. Some contributions on RALB focus on type I robotic assembly line balancing

(RALB-I) problems to minimize the number of workstations, while type II robotic assembly line

balancing (RALB-II) problems are concerned with the optimization of cycle time [4]. Simple

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

assembly line balancing problems are classified as NP-hard; the RALB problem considered in this

research is also categorized under NP-hard due to the added complexities [5, 6].

Rubinovitz and Bukchin [7] introduce the RALB problem with the aim of minimizing the

number of workstations (RALB-I); later Rubinovitz et al. [8] apply the branch and bound method to

solve the same problem. Due to computational complexity, researchers have started to use heuristics

[9] and metaheuristic algorithms to solve problems of this nature; e.g. Levitin et al. [3] utilize a

genetic algorithm to solve the RALB-II problem, where it is assumed that all robot types are

available without any limitations. Gao et al. [5] were the first to present the mathematical model for

RALB-II with slight differences from the assumption in Levitin et al. [3]. It is assumed that the

available robot types are predetermined and only one robot is available for each type. They

incorporate an improved genetic algorithm with local search to solve the identified problem.

Yoosefelahi et al. [10] present a RALB problem with multiple objectives, using three versions of

multi-objective evolution strategies. Nilakantan et al. [4] utilize a set of bio-inspired algorithms

(particle swarm optimization and cuckoo search algorithms) to solve the same RALB-II problem

reported in Levitin et al. [3] and provide better solutions for the benchmark problems. Most of the

abovementioned literature focuses on type I and type II RALB problems. Due to an increased

awareness of energy conservation, Mukund Nilakantan et al. [11] were the first to deliver a

contribution focusing on minimizing energy consumption in straight robotic assembly lines by

using particle swarm optimization based on the assumptions in Levitin et al. [3]. Most of the

literature focuses on straight robotic assembly lines and considers only single product assembly;

however, recently, many contributions are being reported for different assembly line configurations

and different product assemblies (mixed model). Çil et al. [12] solve a mixed-model RALB-II

problem and utilize beam search to minimize cycle time. Rabbani et al. [13] solve a multi-objective

mixed-model RALB-II problem by using a multi-objective genetic algorithm and particle swarm

optimization. Çil et al. [14] report multi-objective optimization using a goal programming technique.

Several objectives such as minimizing cycle time, number of workstations and robot cost are

considered and tested in a case study. Çil et al. [15] were the first to propose a study on parallel

robotic assembly line balancing problems, with the aim of minimizing cycle time. To solve the

proposed problem, they utilize beam search approaches and compare them to other types of robotic

assembly lines. Li et al. [16] were the first to propose simultaneously balancing and sequencing

robotic mixed-model assembly lines. They propose a mixed-integer programming model to

minimize makespan and utilize a CPLEX solver for solving small-sized problems, making use of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

two metaheuristics: a restarted simulated annealing algorithm and a co-evolutionary algorithm, to

address this NP-hard problem. Nilakantan et al. [17] optimize carbon footprint and line efficiency

simultaneously and utilize a multi-objective co-operative co-evolutionary algorithm. These types of

problems are naturally suited to being solved by implementing metaheuristics, as can be seen from

the solution strategies utilized in the literature listed above.

In most of the contributions, setup time is not given much attention and it is assumed that the

setup times are either negligible or can be included in the task processing time. However, given

today’s advanced and flexible manufacturing systems, it is important that the various resources are

utilized efficiently and that setup times are treated separately from processing times, allowing the

assembly operations to be performed simultaneously, thus improving resource utilization. There are

two types of setup time: sequence-independent and sequence-dependent [18]. Sequence-

independent setup time considers the setup time for the current task, regardless of the preceding

task. In the case of sequence-dependent setup time, setup time depends on both the current task and

the preceding task. Özcan and Toklu [19] report that some consideration of sequence-dependent

setup times is necessary for assembly lines. The first study which explores sequence-dependent

setup times was performed by Andres et al. [20], who term the problem: General assembly line

balancing problem with setups. They utilize eight different heuristic rules and a GRASP algorithm

to solve this problem. Scholl et al. [21] propose a problem similar to that of Andres et al. [20],

where sequence-dependent task time increments are introduced, along with several versions of a

mixed-integer program, and various solutions to the problem are proposed. Yolmeh and Kianfar

[22] propose solving assembly line balancing and scheduling problems with setup times (SUALBP)

and utilize a hybrid genetic algorithm to solve them. The problem aims to assign and schedule tasks

for each station. The operators and parameters involved are selected using designs of experiments.

Yolmeh and Kianfar compared the solution obtained with the published solutions, and found that

the proposed algorithm outperformed the reported solutions. Scholl et al. [23] propose a

mathematical model for the assembly line balancing problem and scheduling problem which

considers sequence-dependent setup times and propose a toolbox comprising a set of heuristic

methods to test the proposed problem. Extensive computational studies demonstrate that proposed

heuristics dominate former approaches in terms of solution quality and computation times.

 Akpinar and Baykasoğlu [24] propose a model for solving mixed model assembly line

balancing problems which utilizes setup times and applies multiple colony hybrid bee algorithms.

They tested this model on a set of datasets and reported the superiority of their method compared to

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

others in the literature. Seyed-Alagheband et al. [25] investigate the problem of balancing and

sequencing tasks in an assembly line using sequence-dependent setup times with the aim of

minimizing cycle time. They develop a mathematical model and propose a simulated annealing

algorithm to solve the problem. Hamta et al. [26] propose a multi-objective assembly line balancing

problem with flexible operation times, sequence-dependent setup times and learning effect. Three

objectives are simultaneously optimized and they utilize particle swarm optimization algorithms

with a variable neighborhood search to solve the problem.

To the best of the authors’ knowledge, no contributions have been published which deal with

straight robotic assembly lines with sequence-dependent setup times, aside from one recent paper

by Aghajani et al. [27] on two-sided assembly lines. In this study, a new mixed-integer

programming model is proposed for type II robotic mixed-model two-sided assembly line

balancing. In the case of robotic assembly lines, it is essential to consider sequence-dependent setup

times, since tasks might require some setup changes to the tools/robotic arms in order for the

allocated tasks to be properly executed in the workstations. If a task is to be executed in the same

workstation directly before another task, the preceding task may influence the following task

because a setup/tool change might be necessary, and this setup time must be considered when

calculating the end time of the task. Moreover, if a task is assigned to the workstation as the final

task, a setup/tool change may be required before the first task assigned to that workstation can be

carried out, since the tasks are performed cyclically [19].

Building on the significance and relevance of the above study to sequence-dependent setup

times in robotic assembly lines, this study presents several contributions, as follows:

(1) A mixed-integer linear programming model is developed to solve robotic assembly line

balancing problems using sequence-dependent setup times and with the aim of minimizing cycle

times (type II RALB-S). Small-sized problems are solved using the CPLEX optimization

package. Datasets are generated for creating problem instances in robotic assembly lines with

setup times.

(2) A newly developed Migrating Birds Optimization (MBO) algorithm is employed to

tackle large-sized problems within an acceptable CPU time. MBO was selected due to its

superior performance in solving problems of a similar nature [28, 29] and this is the first attempt

to apply MBO to solve type II RALB with sequence-dependent setup times.

(3) A comprehensive comparative study is conducted to test the performance of the

proposed algorithm. A set of well-known metaheuristic algorithms are selected and re-

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

implemented to solve the proposed problem; from the computational study, it can be seen that

the proposed MBO performs better for the majority of problem instances. Since it is an NP-hard

problem, it is necessary to test it with different metaheuristics, perform a comparative study, and

find the best performing metaheuristic.

The remainder of the paper is organized as follows: Section 2 presents the mathematical model

and the problem assumptions. Section 3 presents a detailed methodology along with an illustrated

example. Section 4 presents detailed comparative computational study analysis. Finally, the

conclusion and future research directions are provided in Section 5.

2. Mathematical model formulation
This section first describes the problem and the problem assumptions, before presenting a

mathematical model of the problem.

2.1 Problem description

Based on conclusions from the literature review, this paper will focus on proposing algorithms and

approaches for solving type II robotic assembly line balancing problems with setup times. This

paper tackles the problem by aiming to minimize the cycle time and integrate setup times into the

cycle time. The assumptions listed here are based on the studies of Gao et al. [5] and Andres et al.

[20]. It should be noted that Scholl et al. [23] categorize the setup times into two types: forward

setup and backward setup. Forward setup refers to a situation where task j is operated directly after

task i is completed in the same cycle. Backward setup occurs when task i is the last one operated at

the workpiece in cycle p and the worker has to move on to the next workpiece to complete a task

which is to be assembled in cycle p+1. In this study, only forward setup times are considered based

on the work reported in Aghajani et al. [27], which is the only paper published to date which

considers setup times in robotic assembly lines. Based on the authors’ knowledge, the positions of

robot and products are always fixed and hence no backward setup time is observed in automobile

factories. Therefore, in this study, of robotic assembly lines with setup times, only forward setup

times are considered. The following assumptions are considered in this study.

1) This study considers a robotic assembly line where a single product is assembled.

2) The task processing times of the robots, the sequence-dependent setup times matrix and the

precedence relationships are known deterministically.

3) The processing times and setup times of robots are independent of the workstation at which

tasks are processed.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

4) A straight robotic assembly line layout is considered. In this layout, workstations are

arranged in a straight line.

5) A maximum of one robot can be allocated to each workstation.

6) The number of available robots is greater than or equal to the number of workstations.

7) Material handling, loading and unloading times are considered negligible or can be

considered to be included in the processing time of the tasks.

In the considered robotic assembly line there is a set of workstations, and each of these

workstations has a robot allocated to it. If there are Nt tasks and Ns workstations, the available Nr

robots will be allocated to these Ns workstations to perform the allocated Nt tasks. The considered

RALB problem aims to assign Nt tasks to Ns workstations and allocate the Nr robots with the

objective of minimizing cycle time, where the cycle time includes the sequence-dependent setup

times. There are two main sub-problems that are optimized simultaneously: assignment of tasks and

allocation of robots. A task will be executed only if all preceding tasks have been completed and a

robot has been allocated to the workstation to perform the allocated tasks. Figure 1 shows a sample

layout of a robotic assembly line; the assembly line consists of 4 workstations and 11 tasks. Tasks

are allocated to the workstations in a balanced manner and a best-fit robot is assigned to perform the

allocated tasks.

Figure 1. Balanced robotic assembly line

2.2 Mathematical Model – Mixed Integer Programming Model

The notations used in the mathematical formulations are given as follows:

 Indices

i, j: Index of tasks.

k: Index of workstations.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

p: Index of position inside the schedule of a workstation.

r: Index of robots.

𝐼: Set of tasks and I = *1, 2,⋯ , 𝑖,⋯ ,𝑁𝑡+, where Nt is the number of tasks.

K: Set of workstations and K = *1, 2,⋯ , 𝑘,⋯ ,𝑁𝑘+ where Nk is the number of workstations.

R: Set of robots and R= *1, 2,⋯ , 𝑟,⋯ ,𝑁𝑟+ where Nr is the number of available robots.

 Parameters

tir : Operation time of task i by robot r.

PTi: Set of tasks, all of which precede task i.

Nmk: Maximum number of tasks that can be assigned to workstation k.

N
max

: Maximum number of tasks that can be assigned to any workstation. 𝑁𝑚𝑎𝑥 = max𝑘*𝑁𝑚𝑘+.

sijr: Setup time when task j is performed just after task i at the same workstation operated by robot r.

ψ : A very large positive number.

 Decision Variables

CT: Cycle time.

xirkp: Binary variable. xirj is equal to 1 when task i is operated by robot r at station k in position p of

its schedule.

yirk: Binary variable. yirk is equal to 1 when task i is the last one operated by robot r in the sequence

of tasks assigned to workstation k.

zijrk: Binary variable. zijrk is equal to 1 when task i is performed immediately before task j is operated

by robot r at the workstation k in the same or in the next cycle.

wrk: Binary variable. wrk is equal to 1 when robot r is allocated to station k.

The model presented below is developed based on the mathematical model presented in Andres et

al. [20].

Minimize CT (1)

Subject to:

∑ ∑ ∑ x𝑖𝑟𝑘𝑝
𝑁𝑚𝑘
𝑝=1𝑘∈𝐾𝑟∈𝑅 =1 ∀i ∈ I (2)

∑ 𝑤𝑟𝑘𝑘∈𝐾 ≤ 1 ∀𝑟 ∈ 𝑅 (3)

∑ ∑ 𝑤𝑟𝑘𝑘∈𝐾𝑟∈𝑅 = 𝑁𝑘 (4)

∑ x𝑖𝑟𝑘𝑝𝑖∈𝐼 ≤1 ∀r∈R, k∈K, p=1,⋯ , 𝑁𝑚𝑘 (5)

∑ xirk,p+1𝑖∈𝐼 ≤∑ xirkp𝑖∈𝐼 ∀r∈R, k∈K, p=1,⋯ ,𝑁𝑚𝑘 − 1 (6)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

∑ ∑ ∑ (𝑁𝑚𝑎𝑥 ∙ (𝑘 − 1) + 𝑝) ∙ xirkp
𝑁𝑚𝑘
𝑝=1𝑘∈𝐾𝑟∈𝑅 ≤∑ ∑ ∑ (𝑁𝑚𝑎𝑥 ∙ (𝑘 − 1) + 𝑝) ∙

𝑁𝑚𝑘
𝑝=1𝑘∈𝐾𝑟∈𝑅

xjrkp ∀(𝑖,j)|𝑖 ∈ 𝑃𝑇𝑗 (7)

∑ ∑ ∑ 𝑡𝑖𝑟 ∙ xirkp
𝑁𝑚𝑘
𝑝=1𝑟∈𝑅𝑖∈𝐼 + ∑ ∑ ∑ 𝑠𝑖𝑗𝑟 ∙ zijrk𝑟∈𝑅j∈I|(𝑖≠𝑗) 𝑖∈𝐼 ≤ 𝐶𝑇 ∀𝑘 ∈ 𝐾 (8)

xirkp + xjrk,p+1 ≤ 1 + 𝑧𝑖𝑗𝑟𝑘 ∀r∈R, k∈K, p=1,⋯ ,𝑁𝑚𝑘 − 1, ∀(𝑖,j)|(i≠j)⋀(j ∉ 𝑃𝑇𝑖) (9)

xirkp − ∑ xjrk,p+1∀j∈I|(𝑖≠𝑗)∧(j ∉𝑃𝑇𝑖)
≤ 𝑦𝑖𝑟𝑘 ∀i∈I, r∈R, k∈K, i≠j, p=1,⋯ , 𝑁𝑚𝑘 − 1 (10)

𝑦𝑖𝑟𝑘 + xjrk1 ≤ 1 + 𝑧𝑖𝑗𝑟𝑘 ∀r∈R, k∈K, i≠j, i ∉ 𝑃𝑇𝑗 (11)

∑ xirkp𝑖∈𝐼 ≤ψ⋅𝑤𝑟𝑘 ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾, p=1,⋯ ,𝑁𝑚𝑘 (12)

The objective function (1) aims to minimize the cycle time. Constraint (2) implies that each

task must be operated by only one robot and must be assigned to only one position at only one

workstation. Constraint (3) and constraint (4) ensures that each workstation is allocated a robot and

the number of utilized robots is equal to the number of workstations. Constraint (5) implies that, in

each position at each workstation, there should be no more than one task allocated to robot r.

Constraint (6) ensures that the tasks are assigned by increasing positions in the schedule of every

workstation by robot r. Constraint (7) addresses precedence constraints, which constrain the task

assignment on both the positions inside the same workstation and between different workstations.

Constraint (8) ensures that the global time in each workstation, including task durations and setup

times, is less than or equal to cycle time. Constraints (9-11) restrict the value of zijrk. Specifically,

Constraint (9) denotes that the variable zijrk is 1 when task i is allocated to position p and task k is

allocated to position p+1 in the schedule of workstation k. Constraints (10-11) denote that the

variable yirk is 1 when task i is the last one operated by robot r in the sequence of tasks assigned to

workstation k, and the variable 𝑧𝑖𝑗𝑟𝑘 is 1 when task j is assigned to the first position and task i to the

last position in the schedule of workstation k. Constraint (12) ensures that tasks found at the same

workstation are operated by the same robot.

3. Proposed Migrating Birds Optimization Algorithm
The Migrating Birds Optimization algorithm is a recently developed metaheuristic approach, based

on the V-shaped flight formation of migrating birds, a strategy that has been proven to be effective

in conserving energy while flying long distances during migration [30]. It is believed that each bird

flies at a specific angle and distance relative to the lead bird. The lead bird in the flock expends the

most energy while the other birds follow the flying pattern of the lead bird. MBO is an algorithm

that includes a neighboring search technique. The algorithm starts with a set of initial solutions,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

which are improved at each step. There are four main steps and four parameters in MBO. After the

initial solutions are generated, the subsequent steps are performed iteratively until the termination

criteria are met: leader improvement, block improvement and leader replacement. In the loop,

improvement of the leader is attempted by generating and evaluating k neighbor solutions. If the

improvement is obtained, the best neighbor solution after evaluation of all neighbor solutions

replaces the current leader. In addition to the abovementioned step, other potential individuals are

also improved using the x unused best neighbor solutions that are in the front and also its neighbor

(k-x) solutions, and this procedure is the block improvement stage of the algorithm. The sharing of

neighbor solutions of other individuals helps promote communication between the individuals and

also facilitates the evolution of the whole population. This is referred to as the benefit mechanism

[31]. Leader improvement and block improvement are executed consecutively m times and then the

leader replacement procedure is carried out where the leading individual is moved to the end and

the best of the next individuals will be made the leader.

Recently, MBO has shown its superior performance in solving combinatorial problems such as

quadratic assignment problems [30] and flow shop scheduling problems [32]. Despite this, attempts

to use the algorithm to solve assembly line balancing problems have been minimal. This study aims

to show why MBO should be used to improve robotic assembly line balancing. The following

sections describe how the metaheuristic algorithm is implemented to solve the considered problem.

3.1 Encoding and Decoding

This study uses the encoding procedure reported in Gao et al. [5], where both task permutation and

robot allocation are utilized. Based on the example presented in Figure 1, one possible encoding is

illustrated in Figure 2. In the task permutation, the tasks in the first positions have higher priority

and are allocated first. For instance, tasks 1, 2 and 3 are in the first positions and hence they are

allocated to the first workstation, as can be seen in Figure 1. In the robot assignment procedure, the

robots are allocated to workstations in a sequence. For instance, robot 3, robot 2, robot 1 and robot 4

are allocated to workstation 1, workstation 2, workstation 3 and workstation 4.

Task permutation 1 3 2 4 5 6 7 9 8 10 11

Robot allocation 3 2 1 4

Figure 2. Encoding scheme

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

As two vectors are utilized in the encoding scheme, this study develops its decoding procedure

based on Gao et al. [5], and utilizes the iterative mechanism for two-sided assembly lines used in Li

et al. [33]. The decoding procedure is presented in detail below. In this procedure, robot allocation

is firstly determined by the robot allocation vector, following which the workstation is assigned

with as many as possible tasks in the former positions of the task permutation.

Algorithm: Decoding Procedure
 Input: Task permutation, robot allocation and instance

Start

1. Evaluate the initial cycle time

2. Open a new workstation

3. Plan the allocation of tasks

4. Assign the allocated robot to the current workstation.

5. Select the tasks satisfying precedence constraint and cycle time constraint.

6. If a situation with no assignable tasks exists

a. Open a new workstation

b. Or else

c. Execute the previous step (delete the task)

7. End if

8. Allot the task in the former position of the task permutation to the current workstation

9. Update the remaining capacity of the current workstation

10. If all tasks have been allotted

11. Terminate the decoding procedure

12. Otherwise

13. Open a new workstation

14. End if

15. Stop
Output: The corresponding cycle time achieved and the detailed task and robot assignment

In the proposed approach, the initial cycle time is set to a large

value,𝐶𝑇 = 2 ∙ ∑ ∑ 𝑡𝑖𝑟𝑟∈𝑅𝑖∈𝐼 (𝑁𝑟 ∙ 𝑁𝑠)⁄ , where Nr is the number of available robots and Ns is the

number of workstations. Assigning a large value ensures that all the problems will be able to obtain

a good feasible solution. The procedure updates the initial cycle time when a new best cycle time is

obtained using 𝐶𝑇 = 𝐶𝑇𝐵𝑒𝑠𝑡 − 1. Once the new best cycle time is achieved, all the individuals in the

solution are re-decoded using this new CT and their fitness values are updated. The initial cycle

time in the algorithm evolution is updated using the following procedure.

Setting the initial cycle time to a large value ensures the discovery of a feasible solution in a

faster computational time by gradually decreasing achieved cycle time. This method is referred to as

an iterative mechanism in Li et al. [33], who used this procedure for type II two-sided assembly line

balancing problems. Using the same initial cycle time for all individuals in the solution, it preserves

minor improvements made to individuals. However, in the procedure reported in Mukund,

Nilakantan and Ponnambalam [34], the initial cycle time is incremented gradually from a small

value until a feasible solution is obtained. This naturally increases the computational time; however,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

the proposed method is computationally faster because it executes the decoding scheme only once.

 Algorithm: Cycle Time Update

Step 1. Set the initial cycle time as 𝐶𝑇 = 2 ∙ ∑ ∑ 𝑡𝑖𝑟𝑟∈𝑅𝑖∈𝐼 (𝑁𝑟 ∙ 𝑁𝑠)⁄

Step 2. Obtain the solutions using CT as cycle time

Step 3. If a new best cycle time is achieved, CT is updated to 𝐶𝑇 = 𝐶𝑇𝐵𝑒𝑠𝑡 − 1 and all the

 individuals are re-decoded using this new CT as cycle time

Step 4. Obtain the solutions in each iteration using CT as the initial cycle time

Step 5. If the algorithm is still running, go to the 3rd step

3.2 MBO Methodology

This study presents a modified MBO algorithm with specifically chosen improvements. The

algorithm of the proposed MBO is illustrated in this section. In the standard MBO algorithm, there

are four steps, starting with block initialization (population initialization) and followed by three

steps (leader improvement, block improvement and leader replacement) which constitute a loop,

and this loop is terminated when one predetermined termination criterion is satisfied. The procedure

followed in this study is similar; however, several improvements have been made to adapt the

procedure to the problem.

The improvements made are as follows: if the leader improvement or block improvement

procedure shows an improvement, the incumbent individual is directly replaced with a new

neighbor solution. Even when the same fitness value is achieved, the incumbent individual is

replaced with the new neighbor solution. The fitness of the neighbor solution is set to a very large

positive value if it shares the same fitness as the incumbent individual. The ideas behind these

improvements are as follows: replacing the incumbent individual immediately after the

improvement achieved helps to search for more areas that are promising and helps avoid

unnecessary searching around a poor individual. Replacing the incumbent individual with a new

neighbor with an equivalent fitness value means there could be many solutions, as many individuals

could share the same fitness value. By implementing this modification, it is possible to explore

more solutions, enhancing the exploration to some extent. The fitness of the neighbor solution that

shares the same fitness value as the incumbent one is set to a very large positive value. This value

assignment is done to avoid premature convergence of the proposed algorithm. The value set in this

paper is 10,000. If this is not incorporated after a few iterations, all the individuals will have the

same fitness value.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

Algorithm: Procedure of Modified MBO
Input: Algorithm parameters and one instance (task operation times and precedence relations)
1. Generate initial individuals randomly; % Initialization
2. While (Termination criterion is not met) do

3. For i=1 to m do
4. For j=1 to k do % Leader improvement
5. Generate a neighbor solution for the leader solution
6. Replace the current leader solution with the neighbor solution when the same

 or better fitness is achieved.
7. End for
8. Replace the current leader solution when same or better fitness value is achieved

 with best individual from the neighbor solutions.
9. Set a large value for the fitness of the individual whose fitness is the same as the

 incumbent one.
10. For each individual on both (left and right) sides % Block improvement
11. For j=1 to (k-x) do
12. Generate a neighbor solution for this solution;

13. Replace the current solution with the neighbor solution when the same or

 better fitness is achieved.

14. End for
15. Replace this individual with the best individual from its (k-x) neighbor solutions

 and the x unused best neighbor solutions of the solution in the front when the

 same or better fitness is achieved.

16. Set a large value to the fitness of the individual whose fitness is the same as the

 incumbent one.

17. End for

18. End for

19. Move the leading individual to the end. % Leader replacement

20. Forward the immediately following individual to the leader position.

21. Endwhile
Output: Best cycle time achieved so far and the detailed task and robot assignment

The proposed MBO shows fast convergence, as observed during preliminary experiments. This

study also employs new acceptance criterion to enhance exploitation capacity and avoid getting

trapped into local optima. Specifically, once the current best cycle time has remained unchanged for

many iterations (set to 500), the greedy acceptance criterion is replaced with the acceptance

criterion in a simulated annealing algorithm [27]. Namely, the new neighbor solution replaces the

incumbent one when it achieves a better fitness or with a probability of 𝑒𝑥𝑝−(Fit(𝑆′)−Fit(S)) (𝑇×𝐹𝑖𝑡(𝑆))⁄ ,

where S and S’ refer to the incumbent solution and the new neighbor solution, T is the temperature,

and 𝐹𝑖𝑡(𝑆) is the cycle time by a solution. In this paper, T is initialized with an initial temperature

(set to 0.2), and is updated with 𝑇 = 𝑇 × (α is the cooling rate, set to 0.95) in each iteration. If a

new best cycle time is achieved, the original greedy acceptance criterion is again applied.

3.3 Illustrative example

This section presents an example that illustrates how the encoding, decoding and cycle time

calculation process works. The example considered is a problem made up of 11 tasks with 4 work

stations and 4 robots. The precedence relationships and operation times of each robot’s task are

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

presented in Table 1. The first column presents the task numbers while the second column presents

the precedence relationship. The remaining columns present the robots’ operation times. The

sequence-dependent setup times between tasks are shown in Table 2.

Based on the proposed procedure, the cycle time of the robotic assembly line is calculated by

considering the sequence-dependent setup times between tasks; the allocation of robots and tasks

are presented in detail in Table 3. In the table, the operation times of the allocated tasks, the

sequence-dependent setup times and the total time are presented for each workstation. Figure 3 also

shows the final allocation of tasks to the workstations and the detailed robot allocation. The

workstation completion times are also presented, and the cycle time is found to be 137.

Table 1 Precedence relationships and operation times for the illustrative example

Tasks Successors
Operation times

Robot 1 Robot 2 Robot 3 Robot 4

1 2, 3, 4, 5 81 37 51 49

2 6 109 101 90 42

3 7 65 80 38 52

4 7 51 41 91 40

5 7 92 36 33 25

6 8 77 65 83 71

7 9 51 51 40 49

8 10 50 42 34 44

9 11 43 76 41 33

10 11 45 46 41 77

11 - 76 38 83 87

Table 2 Sequence-dependent setup times between tasks for the illustrative example
Robot 1 Robot 2

0 2 9 10 10 0 4 7 0 5 7 0 2 1 2 4 7 8 6 8 3 3

8 0 7 1 10 3 1 5 2 2 3 5 0 1 2 1 2 5 8 5 3 0

6 6 0 3 9 1 4 1 0 0 10 4 5 0 3 6 1 4 2 1 1 1

10 6 3 0 0 3 2 0 8 2 9 1 5 1 0 7 1 8 1 2 5 7

6 6 6 3 0 4 4 8 2 0 7 5 2 3 4 0 4 7 5 6 3 4

8 9 5 1 10 0 7 0 0 5 3 8 8 3 1 4 0 3 4 4 4 3

6 7 4 6 5 7 0 7 0 9 7 1 7 7 1 4 6 0 0 2 6 1

8 2 6 5 1 1 6 0 7 5 7 5 6 5 6 2 3 2 0 1 4 3

7 5 2 6 6 4 8 1 0 10 6 0 1 6 3 8 0 6 4 0 6 0

8 8 8 8 0 3 6 4 4 0 5 6 7 0 1 5 6 2 0 7 0 2

8 5 10 4 1 2 10 8 1 4 0 0 8 3 3 2 8 6 5 3 2 0

Robot 3 Robot 4

0 0 5 1 3 7 5 5 3 7 5 0 4 0 4 4 4 0 0 0 4 0

3 0 6 1 7 0 2 4 1 3 0 5 0 0 1 4 5 4 2 3 5 0

3 7 0 4 7 2 3 0 8 4 1 1 3 0 0 2 0 0 2 5 3 1

1 0 2 0 5 5 7 2 2 4 6 4 3 2 0 0 0 1 1 2 5 3

0 6 8 2 0 5 0 4 2 3 5 1 0 3 3 0 4 5 5 3 0 2

1 3 4 1 0 0 0 5 2 6 3 4 3 2 0 4 0 5 5 6 1 4

0 7 7 6 4 1 0 4 3 5 5 2 5 4 5 5 2 0 3 0 5 4

3 1 5 1 7 7 7 0 5 4 1 1 4 2 5 1 6 0 0 0 6 5

8 1 5 1 4 6 1 1 0 2 0 0 3 2 5 2 4 0 3 0 3 5

6 4 3 2 6 6 5 4 4 0 2 4 3 1 3 0 4 1 4 3 0 2

1 0 7 7 6 2 0 5 1 1 0 4 5 0 0 2 4 3 0 4 2 0

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

Table 3 Detailed task assignment and robot selection for the illustrative example

 Workstation 1 Workstation 2 Workstation 3 Workstation 4

Robot allocation 4 1 3 2

Task assignment 1, 2, 5 6, 4 3, 7, 9 8, 10, 11

Operation time 49, 42, 25 77, 51 38, 40, 41 42, 46, 38

Setup times 4, 4, 1 1, 3 3, 3, 5 4, 2, 5

Total time 125 132 130 137

 Figure 3. Final tasks and robot allocation for the illustrative example

4. Computational study
This section first presents the details of the experimental design, followed by the findings of the

evaluation of the proposed models, and, finally, reports a comparison of the implemented

algorithms. Since no research has been published concerning this problem, there are no benchmark

problems available. This research utilizes and expands on nine sets of benchmark problems based

on the ones reported in Gao et al. [5]. From each problem, the original precedence network and task

performance robots are preserved. For every problem, two levels of setup time variability are set:

 For low Variability, the matrix of setup times is randomly generated based on uniform

discrete distribution 𝑈, , 2 𝑚𝑖 ∀𝑖∈𝑁𝑡𝑖-.

 For high Variability, the matrix of setup times is randomly generated based on uniform

discrete distribution 𝑈, , 𝑚𝑖 ∀𝑖∈𝑁𝑡𝑖-.

In total, the benchmark is composed of 33 problems with different combinations of task sizes

and robots available. All 33 problems are tested with two levels of variability in setup times.

Problems with task sizes ranging from 11 to 70 are classified as small-sized datasets and problems

with task sizes ranging from 89 to 297 are classified as large-sized datasets. This paper re-

implements some recent and high-performing metaheuristic methods by adapting them to the

considered problem. The algorithms tested in this paper are summarized in Table 4. These

algorithms are taken from the literature and have been reported to solve problems of a similar nature

(references to relevant studies are summarized in Table 4). This paper adopts the same procedure

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

followed in Li et al. [35] with regards to the termination criteria. Maximum elapsed CPU time is

considered as the termination criterion in this paper and is equal to Nt×Nt×τ milliseconds, where it

is tested at six levels (τ=10, 20, 30, 40, 50 and 60). By following this procedure, more

computational time is allocated to large-sized problems and six termination criteria are used to

analyze the performance of the algorithms for short CPU time and large CPU time. The algorithms

were executed on a cluster of personal computers and were coded in C++. All the experiments were

carried out on a tower type of server. This server had two Intel Xeon E5-2680 v2 processors (40

processor cores in total) running at 2.8 GHz and 64 GB of RAM memory.

Table 4 Tested algorithms for Type II RALB-S
Algorithms Description Reference

GA Genetic Algorithm - Elite strategy is

applied by cloning the best individual

to replace one of the offspring.

Kim et al. [36]

Taha et al. [37]

PSO Particle Swarm Optimization -

Crossover, insert and swap operators

are applied for population evolution.

Li et al. [35]

Petropoulos and

Nearchou [38]

ABC Artificial Bee Colony - When no

improvement on the best solution is

achieved, a scout is applied to replace

the worst individual or a duplicate

individual with a neighbor solution.

Tang et al. [39]

Saif et al. [40]

DCS Discrete Cuckoo Search - Individuals

with duplicate and worst solutions are

discarded and replaced with the

neighbor solutions of remaining

individuals.

Li et al. [41]

SA Simulated annealing algorithm -

Proposes the task sequence vector,

breakpoint vector and robot

allocation vector for encoding. The

other operators are set similarly to

their settings in Aghajani et al. [27].

Aghajani et al. [27]

MBO Migrating Bird Optimization -

4.1 Selected parameters for the metaheuristic algorithms

This research utilizes the full factorial design and Analysis of Variance (ANOVA) technique to

determine the parameters following Li et al. [33, 35] and many others. Specifically, all the

combinations of the parameters are tested on one test problem with 111 tasks and 13 workstations,

and this test problem is solved 10 times by each combination of the parameters, and the achieved

cycle times are regarded as the response variable in the ANOVA test. For reasons of space

restrictions, this study does not present the detailed ANOVA results, but instead shows the

parameters selected for the algorithms considered in Table 5. As there is one reported article

addressing setup times in a two-sided robotic assembly line utilizing simulated annealing (SA)[27],

this study also re-implements the SA algorithm using the reported encoding and decoding schemes.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

Table 5 Parameters selected for the tested algorithms
Algorithm Parameters Range Selected value/procedure

GA

Population size 40, 80, 120, 160, 200 120

Selection type -
Binary tournament selection (the better of two

randomly selected individuals is selected)

Crossover type - Two-point crossover
Crossover probability 0.4, 0.5, 0.6, 0.7, 0.8 0.5

Mutation type - Swap operation and insert operation

Mutation probability - 1-crossover probability

ABC

Population size 40, 80, 120, 160, 200 40
Neighborhood operator - Swap operation and insert operation

Scout phase -

Sending a scout when there is no improvement

within an iteration to replace the worst individual in
the population

PSO

Number of swarms 4, 8, 12 6

Number of particles in a
swarm

20, 40, 60 20

c 0.5, 0.6 0.7

DCS

Population size 40, 80, 120 40
Rate of abandoned

individuals
0.1, 0.2, 0.3, 0.4 0.1

SA Initial temperature 0.5, 1 0.5

 Cooling rate 0.9, 0.95, 0.98 0.9

Number of iterations

before a temperature

change

50, 100, 500, 1000 500

MBO

Population size 5, 11, 21 5

k 7, 11, 21 11

x 3, 5, 10 5
m 10, 20 20

4.2 Computational Evaluation

This section presents a comparative study of the algorithms. Each algorithm is solved 30 times and

the resulting best results for small-sized problems are compared with the optimal solution achieved

by CPLEX solver and this is reported in Table 6. Three different criteria are tested in this paper (no

setup time, low and high setup times). The first column in the table shows the problems tested

denoted by their task size. The second column shows the number of workstations (Nw) for the

problems. The next two columns present the cycle time obtained using a CPLEX solver as well as

the computation time (CPU) when no setup times are considered. CPLEX is programmed in such a

way that the program terminates when it reaches 3600 seconds. The next two columns show the

results obtained for low setup times; however, only P11 with 11 tasks and 4 workstations could

obtain a solution within the predetermined termination criteria. Similarly, for high setup times,

CPLEX could only achieve a solution for the P11 problem. The results obtained by MBO are the

best cycle times within 30 iterations with the termination criterion of Nt×NT×10 milliseconds.

It is observed that CPLEX could only achieve 6 optimal solutions for no setup instances, and

only one solution for both low setup times and high setup times. This situation proves the

complexity of the considered problem. It is to be noted that the results obtained by CPLEX could be

improved if we utilize more processors and larger RAM, but this research utilizes the same

configuration for a fair comparison. It is also clear that MBO achieves the same or smaller cycle

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

times for all the tested instances, and the results obtained by MBO are larger than or equal to the

lower bounds. Notably, the results obtained using MBO outperform the results of CPLEX for all the

instances in P53 and P70 with shorter computational times. This comparison demonstrates the

superiority of the MBO algorithm in solving large-size instances and clarifies the reasons for

utilizing some algorithms.

Table 6 Optimal solutions obtained using CPLEX solver

Instances Nw

CPLEX solver MBO

No setup Low High
No setup Low High CPU

Results CPU Results CPU Results CPU

P11 4 128 0.59 137 316.27 152 2693.95 128 137 152 1.21

P25 3 503 0.68 NA 3600 NA 3600 503 516 579 6.25

P25 4 327 2.44 NA 3600 NA 3600 327 346 380 6.25

P25 6 213 442.96 NA 3600 NA 3600 213 227 242 6.25

P25 9 134 (99.24) 2210.58* NA 3600 NA 3600 121 131 142 6.25

P35 4 449 25.70 NA 3600 NA 3600 449 462 494 12.25

P35 5 344 78.18 NA 3600 NA 3600 344 355 392 12.25

P35 7 233 (213.66) 3355.58* NA 3600 NA 3600 222 237 261 12.25

P35 12 148 (86.95) 2506.64* NA 3600 NA 3600 112 118 131 12.25

P53 5 554 2310.04 NA 3600 NA 3600 559 574 619 28.09

P53 7 343 (270.11) 2563.51* NA 3600 NA 3600 320 334 359 28.09

P53 10 322 (184.78) 3040.56* NA 3600 NA 3600 239 256 276 28.09

P53 14 248 (116) 3600 NA 3600 NA 3600 162 170 185 28.09

P70 7 510(386.79) 1911.09* NA 3600 NA 3600 448 469 507 49.00

P70 10 329(216.08) 3600 NA 3600 NA 3600 271 282 309 49.00

P70 14 346 (157) 3600 NA 3600 NA 3600 201 211 233 49.00

P70 19 600 (110) 3600 NA 3600 NA 3600 152 158 175 49.00

Note: In the third column, the number before the bracket is the upper bound and the number within the bracket is the lower bound,

the CPU time is added with ‘*’ when CPLEX terminates due to being out of memory, and NA means that no solution is achieved

within the given CPU time.

The selected metaheuristic algorithms for comparison were tested under different termination

criteria to solve all the problem instances, as discussed earlier. Based on the results obtained, cycle

times are transferred to relative percentage deviations (RPD) based on Equation 12, where 𝐶 𝑇𝑠 𝑜 𝑚 𝑒

is the cycle time achieved by one combination and 𝐶 𝑇𝐵 𝑒 𝑠 𝑡 is the cycle time achieved by all

combinations.

𝑅𝑃𝐷 = 1 ∙ (𝐶𝑇𝑠𝑜𝑚𝑒 − 𝐶𝑇𝐵𝑒𝑠𝑡) 𝐶𝑇𝐵𝑒𝑠𝑡⁄ (11)

Based on the selected parameters, all algorithms are solved for 30 iterations and the RPD values are

presented in Table 7. As there are 3 datasets, 6 termination criteria and 30 running times, there is a

large amount of data and it is important to carefully analyze this data. Table 7 presents only the

average RPD values obtained by algorithms for the considered problems with low setup times with

τ=60 as an example. It is observed that MBO achieves the best performance with the overall RPD

of 0.65, and ABC and DCS are the second and third best performers. The PSO and SA, on the

contrary, are the worst and the second worst performers, with an overall RPD of 3.34 and 3.16.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

Surprisingly, MBO achieves the best performance for P111, P148 and P297, demonstrating the

superiority of MBO in solving large-size instances.

Table 8 presents the overall RPD values obtained for the 33 datasets for the three scenarios (no

setup times, low and high setup time variability) for the six metaheuristics considered. The average

RPD values are obtained for each algorithm by taking the average RPD values for all the problems.

Different termination criteria (six in total) are tested to observe the performance of the considered

metaheuristic algorithms. It should be noted that the detailed results (average RPD, best cycle times,

average cycle times and standard deviation) for each instance are omitted for space reasons, but

they are available upon request. From this table, it can be observed that the proposed MBO is able

to perform better than the other metaheuristic algorithms for all termination criteria.

Notably, for no setup times, the MBO performed better than other algorithms for all the

termination criteria. For termination criterion with Nt×Nt×10 milliseconds, MBO ranked first,

followed by DCS, ABC, GA, SA and PSO. For other termination criteria, MBO also performs better

than the other algorithms and ranks first among them. For low setup time variability and high setup

time variability, MBO performs the best among these algorithms with the termination criterion of

Nt×Nt×10 milliseconds, and it remains the best performer across all the other five tested criteria.

Again, PSO and SA are the two worst performers for all the termination criteria. In summary, this

computational study suggests that MBO is the best performer among all the algorithms with regard

to no setup times, low, and high setup time variability. Furthermore, the results show that setup

times cannot be ignored in a robotic assembly line and researchers should include setup times when

considering how to balance a robotic assembly line. We have omitted the detailed cycle times which

were used to calculate the RPD values for each problem; they are available on request and will be

archived in Research Gate. The superiority of the proposed MBO should be attributed to the

combination of the problem-specific improvements and the strong local search ability of the

original MBO. This method utilizes an improved decoding procedure and an iterative mechanism in

order to preserve the minor improvements made to individuals. Moreover, having the MBO replace

the incumbent individual immediately after the improvement is made, this allows searching for

more promising areas and helps avoid unnecessary searching around a poor individual. Meanwhile,

the proposed MBO utilizes two improvements to enhance exploration capacity. 1) The incumbent

individual is replaced with the new neighbor solution when the same fitness value is achieved. 2)

The fitness of the neighbor solution is set to a very large positive value if it shares the same fitness

as the incumbent one. Without these two improvements, all the individuals will have the same

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

fitness value after a few iterations and the algorithm might show premature convergence. In short,

these problem-specific improvements are in favor of the MBO maintaining a proper balance

between exploration and exploitation.

Although the difference is quite clear, carrying out statistical analysis to confirm that the

observed difference is statistically significant is still advised. As the performances of algorithms are

quite different when solving different instances, this research utilizes the average RPD of all

instances in one run as the response variable. Subsequently, the ANOVA test is carried out where

the algorithm type and termination criteria are regarded as two controlled factors. The ANOVA

analysis demonstrates that there are statistically significant differences between these methods, the

termination criteria and the interaction of the two factors. Figure 4 depicts the means plots of

algorithms for three scenarios, with Figure 4a showing no setup times, Figure 4b showing low setup

time variability and Figure 4c showing high setup time variability. For better readability, these

figures primarily present the results when τ=20, 40 and 60 are tested. It can be clearly seen from the

figures that MBO is the best performer in all three scenarios based on these three termination

criteria. It can also be seen that SA is trapped in the local optima and cannot find better results with

increased CPU time. MBO ranks first, DCS and ABC rank second and third, followed by GA, SA

and PSO in terms of their performance in solving the considered problem. The statistical analysis

also concludes that the proposed MBO obtains superior results, as shown in Table 7 and Table 8.

5. Conclusion and future research
This paper presents the methodology used to address the problem of balancing a robotic

assembly line with sequence-dependent setup times. The objective is to optimize the cycle time; the

paper presents a mathematical model for the considered problem, and a CPLEX solver is used to

solve small-sized problems. Three different scenarios are tested (no setup time, low and high setup

times) and, since the considered problem falls under the NP-hard category, a recently developed

metaheuristic Migrating Birds Optimization (MBO) algorithm, along with a set of four

metaheuristics, is implemented to solve the problem. Average RPD (Relative Percentage Deviation)

values for the three scenarios and all the considered metaheuristics are presented in detail. From an

analysis of the results, it can be seen that the proposed MBO algorithm performed better for all

three scenarios with different termination criteria. The study can be implemented in a decision

support system and production managers can use the findings of this study and apply it in real-time

scenarios. The results were obtained within a short computational time; hence, results can be

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

quickly analyzed, facilitating the effective and high-quality design and implementation of a system.

This study’s outcome will help production managers test different possible scenarios for

balancing a robotic assembly line with sequence-dependent setup times and determine a feasible

balanced solution within an acceptable computational time. This system can be integrated into

decision support systems for real-time usage. In the future, different layouts of robotic assembly

lines with setup times could be compared. It would also be interesting to examine the performance

of hybrid metaheuristic algorithms for problems of this type. As the industry contexts are quite

diverse, there might be backward setup times on some occasions and thus it would be of interest to

address this gap. Researchers could consider including more realistic situations such as constraints

on the allocation of tasks to the robots. Another interesting area of work would be to consider a

semi-robotic assembly line situation where both robots and human workers are required to execute

tasks.

Algorithm
PSO SA GA DCS ABC MBO

A
v
e
ra

g
e
 R

P
D

2

4

6

8

10 20

40

60

Algorithm
PSO SA GA DCS ABC MBO

A
ve

ra
ge

 R
P

D

2

4

6

8

10
20

40

60

 a) Results for no setup times b) Results for low setup time variability

Algorithm
PSO SA GA DCS ABC MBO

A
ve

ra
ge

 R
P

D

2

4

6

8

10

12
20

40

60

c) Results for high setup time variability

Figure 4 Means plot and 95% Tukey HSD confidence intervals for the interactions between

algorithms and termination criteria

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

References

[1] A. Scholl, C. Becker, State-of-the-art exact and heuristic solution procedures for simple assembly line

balancing, European Journal of Operational Research, 168 (2006) 666-693.

[2] M. Li, Q. Tang, Q. Zheng, X. Xia, C. Floudas, Rules-based heuristic approach for the U-shaped assembly

line balancing problem, Applied Mathematical Modelling, 48 (2017) 423-439.

[3] G. Levitin, J. Rubinovitz, B. Shnits, A genetic algorithm for robotic assembly line balancing, European

Journal of Operational Research, 168 (2006) 811-825.

[4] J.M. Nilakantan, S. Ponnambalam, N. Jawahar, G. Kanagaraj, Bio-inspired search algorithms to solve

robotic assembly line balancing problems, Neural Computing and Applications, 26 (2015) 1379-1393.

[5] J. Gao, L. Sun, L. Wang, M. Gen, An efficient approach for type II robotic assembly line balancing

problems, Computers & Industrial Engineering, 56 (2009) 1065-1080.

[6] A. Roshani, A. Roshani, A. Roshani, M. Salehi, A. Esfandyari, A simulated annealing algorithm for multi-

manned assembly line balancing problem, Journal of Manufacturing Systems, 32 (2013) 238-247.

[7] J. Rubinovitz, J. Bukchin, Design and balancing of robotic assembly lines, Society of Manufacturing

Engineers1991.

[8] J. Rubinovitz, J. Bukchin, E. Lenz, RALB–A heuristic algorithm for design and balancing of robotic

assembly lines, CIRP Annals-Manufacturing Technology, 42 (1993) 497-500.

[9] A. Sepahi, S.G.J. Naini, Two-sided assembly line balancing problem with parallel performance capacity,

Applied Mathematical Modelling, 40 (2016) 6280-6292.

[10] A. Yoosefelahi, M. Aminnayeri, H. Mosadegh, H.D. Ardakani, Type II robotic assembly line balancing

problem: An evolution strategies algorithm for a multi-objective model, Journal of Manufacturing Systems,

31 (2012) 139-151.

[11] J. Mukund Nilakantan, G.Q. Huang, S.G. Ponnambalam, An investigation on minimizing cycle time and

total energy consumption in robotic assembly line systems, Journal of Cleaner Production, 90 (2015) 311-

325.

[12] Z.A. Çil, S. Mete, K. Ağpak, Analysis of the type II robotic mixed-model assembly line balancing

problem, Engineering Optimization, (2016) 1-20.

[13] M. Rabbani, Z. Mousavi, H. Farrokhi-Asl, Multi-objective metaheuristics for solving a type II robotic

mixed-model assembly line balancing problem, Journal of Industrial and Production Engineering, 33 (2016)

472-484.

[14] Z.A. Çil, S. Mete, K. Ağpak, A Goal Programming Approach for Robotic Assembly Line Balancing

Problem, IFAC-PapersOnLine, 49 (2016) 938-942.

[15] Z.A. Çil, S. Mete, E. Özceylan, K. Ağpak, A beam search approach for solving type II robotic parallel

assembly line balancing problem, Applied Soft Computing, 61 (2017) 129-138.

[16] Z. Li, M.N. Janardhanan, Q. Tang, P. Nielsen, Mathematical model and metaheuristics for simultaneous

balancing and sequencing of a robotic mixed-model assembly line, Engineering Optimization, 50 (2018)

877-893.

[17] J.M. Nilakantan, Z. Li, Q. Tang, P. Nielsen, Multi-objective co-operative co-evolutionary algorithm for

minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems, Journal of

Cleaner Production, 156 (2017) 124-136.

[18] A. Allahverdi, H. Soroush, The significance of reducing setup times/setup costs, European Journal of

Operational Research, 187 (2008) 978-984.

[19] U. Özcan, B. Toklu, Balancing two-sided assembly lines with sequence-dependent setup times,

International Journal of Production Research, 48 (2010) 5363-5383.

[20] C. Andres, C. Miralles, R. Pastor, Balancing and scheduling tasks in assembly lines with sequence-

dependent setup times, European Journal of Operational Research, 187 (2008) 1212-1223.

[21] A. Scholl, N. Boysen, M. Fliedner, The sequence-dependent assembly line balancing problem, OR

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

Spectrum, 30 (2008) 579-609.

[22] A. Yolmeh, F. Kianfar, An efficient hybrid genetic algorithm to solve assembly line balancing problem

with sequence-dependent setup times, Computers & Industrial Engineering, 62 (2012) 936-945.

[23] A. Scholl, N. Boysen, M. Fliedner, The assembly line balancing and scheduling problem with sequence-

dependent setup times: problem extension, model formulation and efficient heuristics, OR Spectrum, 35

(2013) 291-320.

[24] Ş. Akpinar, A. Baykasoğlu, Modeling and solving mixed-model assembly line balancing problem with

setups. Part II: A multiple colony hybrid bees algorithm, Journal of Manufacturing Systems, 33 (2014) 445-

461.

[25] S. Seyed-Alagheband, S.F. Ghomi, M. Zandieh, A simulated annealing algorithm for balancing the

assembly line type II problem with sequence-dependent setup times between tasks, International Journal of

Production Research, 49 (2011) 805-825.

[26] N. Hamta, S.F. Ghomi, F. Jolai, M.A. Shirazi, A hybrid PSO algorithm for a multi-objective assembly

line balancing problem with flexible operation times, sequence-dependent setup times and learning effect,

International Journal of Production Economics, 141 (2013) 99-111.

[27] M. Aghajani, R. Ghodsi, B. Javadi, Balancing of robotic mixed-model two-sided assembly line with

robot setup times, The International Journal of Advanced Manufacturing Technology, 74 (2014) 1005-1016.

[28] E. Ulker, V. Tongur, Migrating birds optimization (MBO) algorithm to solve knapsack problem,

Procedia Computer Science, 111 (2017) 71-76.

[29] I. Benkalai, D. Rebaine, C. Gagné, P. Baptiste, Improving the migrating birds optimization

metaheuristic for the permutation flow shop with sequence-dependent set-up times, International Journal of

Production Research, (2017) 1-13.

[30] E. Duman, M. Uysal, A.F. Alkaya, Migrating Birds Optimization: A new metaheuristic approach and its

performance on quadratic assignment problem, Information Sciences, 217 (2012) 65-77.

[31] V. Tongur, E. Ülker, Migrating birds optimization for flow shop sequencing problem, Journal of

Computer and Communications, 2 (2014) 142.

[32] A. Sioud, C. Gagné, Enhanced migrating birds optimization algorithm for the permutation flow shop

problem with sequence dependent setup times, European Journal of Operational Research, 264 (2018) 66-73.

[33] Z. Li, I. Kucukkoc, J.M. Nilakantan, Comprehensive review and evaluation of heuristics and meta-

heuristics for two-sided assembly line balancing problem, Computers & Operations Research, 84 (2017)

146-161.

[34] J. Mukund Nilakantan, S.G. Ponnambalam, Robotic U-shaped assembly line balancing using particle

swarm optimization, Engineering Optimization, 48 (2016) 231-252.

[35] Z. Li, M.N. Janardhanan, Q. Tang, P. Nielsen, Co-evolutionary particle swarm optimization algorithm

for two-sided robotic assembly line balancing problem, Advances in Mechanical Engineering, 8 (2016)

1687814016667907.

[36] Y.K. Kim, J.Y. Kim, Y. Kim, A coevolutionary algorithm for balancing and sequencing in mixed model

assembly lines, Applied intelligence, 13 (2000) 247-258.

[37] R.B. Taha, A.K. El-Kharbotly, Y.M. Sadek, N.H. Afia, A Genetic Algorithm for solving two-sided

assembly line balancing problems, Ain Shams Engineering Journal, 2 (2011) 227-240.

[38] D.I. Petropoulos, A.C. Nearchou, A particle swarm optimization algorithm for balancing assembly lines,

Assembly Automation, 31 (2011) 118-129.

[39] Q. Tang, Z. Li, L. Zhang, An effective discrete artificial bee colony algorithm with idle time reduction

techniques for two-sided assembly line balancing problem of type-II, Computers & Industrial Engineering,

97 (2016) 146-156.

[40] U. Saif, Z. Guan, W. Liu, C. Zhang, B. Wang, Pareto based artificial bee colony algorithm for multi

objective single model assembly line balancing with uncertain task times, Computers & Industrial

Engineering, 76 (2014) 1-15.

[41] Z. Li, N. Dey, A.S. Ashour, Q. Tang, Discrete cuckoo search algorithms for two-sided robotic assembly

line balancing problem, Neural Computing and Applications, (2017) 1-12.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23

Table 7 Average RPD values for RALB problems with low setup times

Instances Nw PSO SA GA DCS ABC MBO

P11 4 0.00 0.00 0.00 0.00 0.00 0.00

P25 3 0.12 0.21 0.14 0.39 0.29 0.12

P25 4 0.00 0.00 0.00 0.00 0.00 0.00

P25 6 0.00 0.00 0.00 0.00 0.00 0.00

P25 9 1.15 0.53 0.61 0.23 0.15 0.31

P35 4 1.30 0.67 1.28 0.50 0.50 0.33

P35 5 8.34 4.17 5.38 2.00 0.85 0.00

P35 7 5.79 3.26 3.99 3.69 2.70 2.49

P35 12 9.58 2.29 2.80 1.27 0.93 1.10

P53 5 0.70 0.46 0.70 0.67 0.49 0.63

P53 7 1.08 0.75 0.78 0.45 0.00 0.00

P53 10 7.18 5.02 4.98 5.43 4.90 4.57

P53 14 8.49 4.82 5.12 3.13 3.19 3.43

P70 7 7.10 4.49 3.35 2.19 2.65 2.19

P70 10 10.60 5.48 4.09 3.84 1.42 1.00

P70 14 12.64 6.35 4.81 3.46 2.45 1.83

P70 19 13.86 7.15 3.92 1.90 1.01 0.89

P89 8 5.09 3.28 3.01 0.98 2.20 0.61

P89 12 6.77 3.46 3.54 2.11 1.72 1.15

P89 16 9.59 5.20 4.47 2.15 1.91 2.32

P89 21 15.00 8.80 5.00 3.46 2.16 2.55

P111 9 11.47 7.88 4.72 3.20 1.30 2.28

P111 13 15.84 8.88 6.38 4.19 2.04 2.22

P111 17 15.96 8.50 5.00 3.46 2.19 1.85

P111 22 18.96 10.95 4.68 3.43 1.79 1.29

P148 10 14.46 8.15 6.17 5.34 3.00 3.38

P148 14 16.89 10.16 4.95 4.82 2.90 3.06

P148 21 19.67 11.52 6.70 3.93 2.21 2.34

P148 29 21.08 12.75 5.98 3.14 1.76 1.18

P297 19 12.67 7.78 4.26 2.66 1.26 0.99

P297 29 16.42 9.06 4.17 2.51 0.87 0.39

P297 38 17.81 11.10 4.52 2.70 1.38 0.73

P297 50 18.88 12.95 5.75 2.76 1.87 0.37

Average RPD 9.83 5.64 3.67 2.42 1.58 1.38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

Table 8 Average RPD values for RALB problems by algorithm

No setup times

Algorithms Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60

PSO 10.83 10.15 9.81 9.53 9.36 9.15

SA 5.37 5.37 5.36 5.36 5.36 5.35

GA 4.65 4.24 3.95 3.79 3.67 3.54

DCS 3.60 3.13 2.90 2.71 2.62 2.50

ABC 2.82 2.22 1.98 1.82 1.71 1.64

MBO 2.16 1.69 1.43 1.22 1.07 0.97

Low setup time variability

Algorithms Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60

PSO 11.50 10.89 10.46 10.22 9.99 9.83

SA 5.65 5.65 5.64 5.64 5.64 5.64

GA 4.85 4.32 4.09 3.90 3.78 3.67

DCS 3.69 3.21 2.92 2.67 2.54 2.42

ABC 3.11 2.38 2.03 1.81 1.68 1.58

MBO 2.63 2.15 1.86 1.67 1.50 1.38

High setup time variability

Algorithms Nt×Nt×10 Nt×Nt×20 Nt×Nt×30 Nt×Nt×40 Nt×Nt×50 Nt×Nt×60

PSO 13.48 12.75 12.32 12.00 11.79 11.64

SA 6.66 6.65 6.65 6.65 6.65 6.65

GA 5.52 4.94 4.68 4.41 4.23 4.11

DCS 4.38 3.71 3.32 3.01 2.78 2.64

ABC 3.84 2.78 2.24 1.96 1.73 1.59

MBO 3.11 2.44 2.06 1.80 1.61 1.47

