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ABSTRACT

Audio tagging (AT) refers to automatically identifying
whether a particular sound event is contained in a given
audio segment. Sound event detection (SED) requires a
system to further determine the time, when exactly an
audio event occurs within the audio segment. Task 4 in
the DCASE 2017 competition required to solve both tasks
automatically based on a set of 17 sounds (horn, siren,
car, bicycle, etc.) relevant for smart cars, a subset of the
weakly-labeled dataset called the AudioSet. We propose
the Xception - Stacked Residual Recurrent Neural Network
(XRRNN), based on modifications of the system CVSSP by
Xu et al. (2017), that won the challenge for the AT task. The
processing stages of the XRRNN consists of 1) an Xception
module as front-end, 2) a 1 ⇥ 1 convolution, 3) a set of
stacked residual recurrent neural networks, and 4) a feed-
forward layer with attention. Using log-Mel spectra and
MFCCs as input features and a fusion of the posteriors of
trained networks with those input features, we yield the fol-
lowing results through a set of Bonferroni-corrected t-tests
using 30 models for each configuration: For AT, XRRNN
significantly outperforms the CVSSP system with a 1.3%
improvement (p = 0.0323) in F-score (XRNN-logMel vs
CVSSP-fusion). For SED, for all three input feature com-
binations, XRRNN significantly reduces the error rate by
4.5% on average (average p = 1.06 · 10�10).

1. INTRODUCTION

Deep neural networks are used for recognition and predic-
tion of events or patterns. They have been successfully
applied to image recognition and audio, e.g. in source sepa-
ration [1], speech and music synthesis [2, 3] and acoustic
scene analysis [4, 5]. AudioSet [6], a large-scale data set of
nearly 2.1 million labeled sound clips, brings an opportunity
to investigate sound detection further. AudioSet is created
by taking 10 seconds long audio clips from YouTube videos.
The data labels carry the information about the names of

Copyright:

c� 2018 Tomas Gajarsky et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

audio events located inside. The difficulty is that the clips
can contain one or more audio events which can be over-
lapped and do not have to spread across the full length of
the clip. The information about the start and end times
of events is not available. Therefore, this kind of data is
called weakly-labeled data [7]. This circumstance brings up
another challenge of detecting the exact position of audio
event within the clip.

The issue described in the previous paragraph was exam-
ined in Task 4 of DCASE 2017 competition, which evalu-
ated systems for the large-scale detection of sound events
within the AudioSet’s subset of 17 classes from a traffic
environment [8]. The assignment of the first sub-task was
audio tagging (AT), where the audio events have to be rec-
ognized and labeled by the system. The second sub-task,
sound event detection (SED), was dealing with prediction
of the time stamps of the audio events.

The CVSSP system [9] ranked 1st and 2nd in these two
sub-tasks. The team that won the SED sub-task achieved
better error rate on the evaluation data with an ensemble
of ConvNets with multiple analysis windows [10]. How-
ever, the input for SED was preprocessed in a different way
than for the AT solution. The audio was segmented with
duplicated labels to find the timestamps, therefore, the as-
sumption of [10] was that every data segment contained all
the labels. This approach has also a limitation to analyzing
a small time window. The system that ranked 3rd [11] in
SED is based on two deep neural network methods. One
is training sample-level Deep Convolutional Neural Net-
works (DCNN) on raw waveforms. The other one makes
predictions on aggregated features of multiscaled DCNN
models. The team that ranked 3rd int the AT sub-task devel-
oped a DenseNet model trained on segmented log Mel filter
banks [12]. Compared to the other DCASE participants, the
method of [9] is unified without any assumption, which is
together with the achieved score a reason why it was chosen
to be the cornerstone for our project.

According to [9], the audio waveform is first transferred
to a time-frequency (T-F) representation. Because the T-F
representation is then treated as an image, some aspects of
the current state-of-the-art CNNs used for image recogni-
tion can be introduced to the architecture. Therefore, we
modify [9] inspired by the Xception [13], a successful CNN
in image processing.

The paper is organized as follows. Section 2 introduces
the architectures of neural networks, Section 3 describes
the experiments, Section 4 shows the results, Sections 5 and



6 contain discussion and conclusion.

2. SYSTEM ARCHITECTURE

2.1 CVSSP System

The audio waveforms are transformed to log Mel spec-
trograms (logMel) and mel frequency cepstal coefficients
(MFCC), which are then fed into the convolutional layers.
Then a recurrent neural network (RNN) follows to capture
the temporal context information followed by a fully con-
nected neural network to determine the posteriors of each
class at each frame. The probabilities of all frames are
then averaged out to get the predicted probabilities for each
tag. [9]

2.1.1 Preprocessing of data

The input audio data in wave format is first filtered using
cutoff frequencies 0Hz and 8kHz, resampled to 16kHz and
converted to logMels as well as MFCCs consisting of 64
Mel frequency bands and 240 frames using 1024 samples
long Hamming windows and a hop size of 360 samples. The
extracted features are then packed into HDF5 file together
with corresponding names and labels. Mean and standard
deviation is calculated on each frequency bin and stored
to a scaler HDF5 file. HDF5 files in binary format help to
accelerate the program [14].

2.1.2 Gated linear unit

The learnable gated linear unit (GLU) [15] is employed
almost in every part of the original system, as a substitution
for ReLU activation [16]. GLU is capable of regulating
the information flow in between two consecutive layers.
The gate value determines if the corresponding T-F unit is
attended or ignored. The idea is that the network will be
able to learn to focus on audio events and not on unrelated
sounds. Thus, an attention mechanism is created. GLUs are
defined as:

Y = (W ⇤X+ b)� �(V ⇤X+ c) (1)

where ⇤ expresses the convolution operator, � the element-
wise product and � the sigmoid non-linearity. W and V
are the convolutional filters, b and c are the biases. X
stands for the input tensor. Equation 1 causes the output a
linear mapping (W ⇤X+ b) to be modulated by the gate
�(V ⇤X+ c) [9]. Those GLUs occur almost in every part
of the neural network (NN).

2.1.3 The gated convolutional block

Each convolutional layer in the CVSSP system is carried
out in a block utilizing GLU as depicted in Figure (1).

2.1.4 The gated recurrent block

Following the convolutional layers, the utilization of tempo-
ral information is performed by recurrent layers. The final
prediction in audio event detection depends on the whole
input sequence. Therefore, a bidirectional RNN (Bi-RNN)
which is a combination of an RNN that moves from the be-
ginning of the sequence to the end and an RNN that moves
backwards in the opposite direction [17] are applied.

input

convolution 2D, 3⇥3, 128

0:64

linear activation

64:128

sigmoid activation

multiply

output

Figure 1: The gated convolutional block (GCB). The filters
obtained from the convolutional layer are split into two

equally sized parts of 64 units.

input

bidirectional
GRU, 128

linear activation

bidirectional
GRU, 128

sigmoid activation

multiply

output

Figure 2: The gated recurrent block (GRB).

The RNN in [9] is created by two bidirectional layers
employing the GLU concept. Each of the layers consists of
128 gated recurrent units (GRUs) [18].

2.1.5 Localization and classification layers

The last part of the system is devoted to localization and
classification of the audio events. The temporal attention
method is proposed to deal with this tasks. Two feed-
forward (FF) layers consisting of 17 units are introduced to
the architecture. These FF layers are time distributed which
means that they produce predictions for every time-step of
the sequence. The first FF with sigmoid activation function
is used for classification at each frame and the FF with
softmax activation function emphasizes the most prominent
frames for each class. The outputs from both FF layers are
then merged by element-wise multiplication

O0(t) = O(t)� Z
loc

(t) (2)

where the classification output of FF with sigmoid is defined
as O(t) and the output of FF with softmax as the localiza-
tion vector Z

loc

(t). Final predictions O00 are obtained after
O0(t) is averaged across the sequence

O00 =

PT�1
t=0 O(t)

PT�1
t=0 Z

loc

(t)
(3)

where T is frame-level resolution along the input data. The
block for localization and classification (BLC) is depicted
in Figure (3). [9]

2.1.6 CVSSP Architecture

The Figure (4) shows how the individual blocks are stacked
from subsections 2.1.3, 2.1.4 and 2.1.5 to form the full
Gated-CRNN-logMel.
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Figure 3: The block for localization and classification
(BLC).

2.1.7 Fusion of system results

The final predictions submitted to the DCASE 2017 chal-
lenge were made by using two system fusion strategies.
The first fusion of system results is conducted among the
epochs in the same CVSSP system. This step improves the
stability of the system [9]. The second one takes an aver-
age of the posteriors from different systems. Neither the
paper [9] nor the published code specify neither the number
of models nor the different architectures that were used for
this method. It is only stated that part of this method was to
train all the NNs on logMels and also on MFCCs separately
and combine the predictions.

2.2 Xception-Recurrent Neural Network (XRRNN)

2.2.1 Xception

The Xception architecture introduced in [13] is a linear stack
of depthwise separable convolutional layers with residual
connections. The depthwise separable convolutions pro-
posed by Sifre [19] perform a spatial convolution indepen-
dently over each channel, followed by a pointwise convo-
lution, i.e. a 1 ⇥ 1 convolution, projecting the channels
output by the depthwise convolution onto a new channel
space. They are similar to the Inception modules [20], but
converge faster. The hypothesis is that the mapping of
cross-channel correlations and spatial correlations in the
feature maps of convolutional neural networks can be en-
tirely decoupled. Therefore, richer feature representations
are extracted. Chollet [21] showed that convolutional lay-
ers learn different shapes and patterns from the input data.
Each class is represented by different set of these patterns,
which enables the CNN to classify unseen data. The more
varied shapes and patterns are created, the more robust and
accurate model we obtain.

2.2.2 Stacked bidirectional layers with residual

connections

The residual connections are introduced in [22] to ease the
training of networks with deep architectures by making the
input of lower layers available to the higher layers. Stacked
bidirectional layers with residual connections were proven
to produce more accurate results than simple stacked bidi-
rectional layers in [23].

240⇥64 input data

GCB

GCB

Max pooling 2D, size 1⇥2

GCB

GCB

Max pooling 2D, size 1⇥2

GCB

GCB

Max pooling 2D, size 1⇥2

GCB

GCB

Max pooling 2D, size 1⇥2

convolution 2D, 3⇥3, ReLU, 256

Max pooling 2D, size 1⇥4

GRB

BLC

Figure 4: The full architecture of the CVSSP system [9].
(This diagram was created by analyzing the publicly

available source code 1 .)

2.2.3 Xception-Recurrent Neural Network

We propose an architecture based on the CVSSP Gated-
CRNN-logMel system [9]. The GCBs are replaced with
the modified entry flow from Xception [13] where max
pooling instead of longer strides takes care of the reduc-
tion of the frequency dimension. Every convolutional layer
uses zero-padding,thus, the frequency dimension is reduced
to 1 before entering the recurrent layers only by applying
max pooling similarly as in the CVSSP system. The pur-
pose of the very last convolutional layer is to extract the
cross-channel correlations. The GRB is replaced with three
stacked bidirectional layers with residual connections and
the final part is the unchanged BLC from the CVSSP sys-
tem. The full architecture is depicted in Figure (7) using the
Xception separable convolutions block (XSCB) from Fig-
ure (5) and the Xception residual connection block (XRCB)
from Figure (6).

3. EXPERIMENTS

For audio tagging (AT) and sound event detection (SED),
we will compare the performance of our system (XRRNN)
and the CVSSP system, using three different audio feature
configurations as input: log Mel spectra, MFCC, and a
fusion of both. We evaluate the performance using f-score
(AT and SED) and error rate (SED).
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Figure 5: The Xception separable convolutions block
(XSCB).
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Figure 6: The Xception residual connection block (XRCB).

3.1 Input Data

All network architectures were trained on subset of Google
AudioSet [6] formed by warning and vehicle sounds of 17
classes. We use the development dataset of the DCASE
2017 available at the website of Task 4 2 consisting of
51172 sound clips in the training partition and 488 sound
clips in the test partition. These sound clips were prepro-
cessed as described in Subsection (2.1.1) to reduce the size
of the data. The number of created T-F units from 160k
samples is 240⇥ 64 = 15, 360 per one clip.

3.2 Training Details

The data preprocessing is described in Subsection 2.1.1.
The models are trained batch-by-batch using a batch gener-
ator of size 44 with data balancing [9] running in parallel
with the model. The training lasts thirty epochs with 100
steps in each epoch.

For training, the binary cross-entropy loss function and the
Adam stochastic optimization method [24] with learning
rate 0.001 are used.

3.3 Evaluation Metric

The evaluation of the individual models was done using
the saved states of the models from last ten epochs on the
testing set. For AT, F-score is used as an evaluation metrics,
and for SED, error rate is used. For each model architecture
(XRRNN and CVSSP) and for both feature representations,

2
http://www.cs.tut.fi/sgn/arg/dcase2017/

challenge/task-large-scale-sound-event-detection
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Figure 7: The architecture of the XRNN.



logMel spectra and MFCC, 30 identical models are trained.
For the fusion models, 30 times, the posteriors for the same
architecture trained with logMel spectra and with MFCCs
are fused. Then for the AT sub-task, the F-scores and for the
SED sub-task, the error rates between XRRNN and CVSSP
are compared via a one-tailed independent t-test for each
of the three input feature settings, resulting in 2 · 3 · 3 = 18
independent t-tests. To correct for multiple testing, we use
Bonferroni correction and multiply the resulting p-values
of the individual tests by 18 to account for the performed
18 tests.

3.4 Implementation

Calculations were performed using an NVIDIA Titan X
GPU. Keras 2 [25] with Tensorflow 1.4 [26] back-end was
used for running the program. Also we used the Xu et al.
(2017)’s implementation of their system 3 .

4. RESULTS

In Table (1), performance means (F-score and error rate)
across 30 runs for audio tagging (AT) and sound event de-
tection (SED) are shown for our system (XRRNN) and the
CVSSP system, using different audio features: log Mel
spectra (first row), MFCC (second row), and a fusion of
both (third row). In Table (2), the Bonferroni-corrected p-
values for one-tailed independent t-tests comparing means
across 30 runs for our system (XRRNN) and the CVSSP
system are shown, using our three different audio feature
configurations. As a result, for SED, our system (XRRNN)
significantly outperforms the CVSSP system for all fea-
ture sets. The relative decrease of the error rate for the
three feature sets is: 4.5% (logMel), 4.9% (MFCC), 4.2%
(fusion). For AT, our system performs significantly better
than CVSSP when using logMel features with a relative
improvement of 3.1% in the F-score. XRRNN with logMel
features performs significantly better than CVSSP with fu-
sion (p = 0.016) with a relative improvement of the F-score
of 1.3%. Tables (3, 4, 5) show the F-scores per class of the
best XRRNN model trained on logMels. The best accuracy
was achieved in the classes with loudest sounds like train
horn, or civil defense siren and the worst in the car passing
by class, which can easily get lost in the background noise.

5. DISCUSSION

The XRRNN was build step-by-step by replacing parts of
the CVSSP architecture one-by-one. First we replaced the
consecutive blocks of gated convolutional neural networks
by an Xception front-end. Then we replaced their gated
bidirectional RNN by a sequence of stacked residual bidi-
rectional layers enhanced with residual connections. Later
on, both of these components were integrated into the archi-
tecture together after they showed improved results individ-
ually. Finally we introduced the 1⇥ 1 - convolution placed
in between the convolutional front-end and the recurrent
layers. The only attention mechanism that remained in the

3
https://github.com/yongxuUSTC/dcase2017_

task4_cvssp

architecture from the orginal CVSSP system is the BLC.
It appears that one of the key ideas in Xu et al (2017)’s
system, the gated convolutions, can be outperformed by
using residual connections both in the front-end (within
an Xception block) and in the RNN (by stacking recurrent
layers with residual connections).

Looking at the F-score per class results, we see that not
all loud sound classes achieved high accuracy. This can be
caused by the fact that our dataset contains two groups of
similar categories. First, in Table 3, we can see the f-scores
of for vehicles with engine sounds. Those sounds contain a
wide range of long-lasting static frequencies formed by car,
bus, truck and motorcycle classes. Second, in Table 4, there
is the group of sirens with constant modulating frequencies
formed by ambulance (siren), fire truck (siren) and police
car (siren). The XRRNN model achieved a high F-score
within classes that have a unique sound opposed to the
other ones, e. g. reversing beeps with periodic behavior, or
skateboard with specific mid frequencies and a short burst
when the wheels make an impact with the ground after a
jump.

Our results for the CVSSP system differ a bit from the
results reported in [9]. This might be due to the following
reasons. From the paper by Xu et al. [9] and their accompa-
nying implementation on github that we used to reproduce
those results, some details in their system remained unclear.
E.g. whereas in Fig.1 [9], they refer to 3 gated convolu-
tional neural network blocks, in their github, they use 4
of those blocks. Their second strategy of system fusion is
explained (in their Section 2.4) as ”to average the posteri-
ors from different systems with different configurations”,
where it remains unclear which configurations had been
used exactly. For our XRRNN architecture, the concept of
system fusion seems to be effective for solving the SED
task but not for the AT task.

6. CONCLUSION

In this paper, we present the XRRNN system, based on the
following modifications with respect to the CVSSP system
that won the DCASE 2017 challenge for AT: an Xception
module as front-end, followed by a 1⇥ 1 convolution, fol-
lowed by stacked residual recurrent neural networks. For
AT, XRRNN significantly outperforms the CVSSP system
with a 1.3% improvement in F-score (XRNN-logMel vs
CVSSP-fusion). For SED, XRRNN reduces the error rate
by 4.5% on average.
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F-score (AT) Error rate (SED) F-score (SED)
XRRNN-logMel 0.542 0.597 0.447
Gated-CRNN-logMel 0.526 0.625 0.434
XRRNN-MFCC 0.511 0.620 0.419
Gated-CRNN-MFCC 0.505 0.652 0.407
XRRNN-Fusion 0.540 0.579 0.447
Gated-CRNN-Fusion 0.535 0.604 0.446

Table 1: Performance means (f-score and error rate) across 30 simulations for audio tagging (AT) and sound event detection
(SED) for our system (XRRNN) and the CVSSP system, using different audio features: log Mel spectra (first row), MFCC

(second row), and a fusion of both (third row).

F-score (AT) Error Rate (SED)
XRRNN-logMel

1.74 · 10�6 1.01 · 10�11

Gated-CRNN-logMel

XRRNN-MFCC
0.24 3.10 · 10�10

Gated-CRNN-MFCC

XRRNN-Fusion
0.14 2.96 · 10�16

Gated-CRNN-Fusion

Table 2: P-values with for one-sided independent t-tests comparing means of 30 runs (cf. Table (1)) for our system
(XRRNN) and the CVSSP system, using different audio features. (see Table (1)) The p-values account the Bonferroni

correction with respect to the total of 18 tests performed. Significance w.r.t. ↵ = 0.05 is indicated in boldface.

Bicycle Skateboard Car Car passing by Bus Truck Motorcycle Train
0.483 0.712 0.462 0.178 0.400 0.460 0.476 0.688

Table 3: F-scores (AT) of individual vehicle classes for the best XRRNN-logMel model.

Car alarm Ambulance (siren) Fire engine, fire truck (siren) Civil defense siren Police car (siren)
0.706 0.455 0.568 0.744 0.586

Table 4: F-scores (AT) of individual warning classes with siren-like sounds for the best XRRNN-logMel model.

Train horn Air horn, truck horn Reversing beeps Screaming
0.784 0.522 0.727 0.654

Table 5: F-scores (AT) of individual warning classes for the best XRRNN-logMel model.
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