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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.

© 2017 The Authors. Published by Elsevier Ltd.
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Abstract 

Thermoelectric generators (TEGs) are environmentally friendly and have become a promising technology for different waste heat 
recovery applications. An experimental study is carried out to examine the performance of four TEGs that are connected in series 
used for electric power generation over a range of different operating conditions and resistance loads. After obtaining I-V-P curves, 
the transient thermal response of the TEGs to a load change is investigated. The significance of the impact of volumetric flow rate 
in the hot and cold sides of the TEGs and the temperature in the constant temperature reservoir on power generation and transient 
behavior of the TEGs are determined and discussed in details. The results show the substantial effect of the volumetric flow rate 
and temperature in the power generation and transient thermal behavior of the TEGs. 
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1. Introduction 

Having no moving parts and long lifetime, silent operation and low maintenance costs make thermoelectric 
generators (TEG) a promising technology for waste heat recovery. TEGs convert waste heat into electricity 
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directly [1–5]. Due to depletion of conventional energy resources, replacement of them by clean and renewable 
energies is very crucial. TEGs are small, robust and compact devices that make them an appropriate choice for different 
applications. There are a lot of studies that considered TEGs under transient conditions. Alata and Naji [6, 7] used an 
analytical model to investigate the transient performance of thermoelectric cooler (TEC). Generally, mathematical 
modeling of transient heat conduction problems involves a complex treatment. Due to thermoelectric multi-physics 
effect in the TEG, the condition is more challenging. Jia et al. [8] established a finite element model to investigate the 
transient response of linear-shaped TEGs. The results indicated reducing the time to reach steady condition, the entire 
generated electric power and conversion efficiency can be increased. 

Savani et al. [9] studied the behavior of a Bi-Te based TEG under the transient condition of a silicon production 
plant. The results showed that by increasing the cooling capacity, it would be more advantageous to use the TEG with 
a higher fractional area and locate it as close as possible to the silicon melt. Blandino and Lawrence [10] investigated 
both numerically and experimentally transient response of a TEG exposed to spatially non-uniform heating, resulting 
in small temperature gradients across its thickness. They found that in such application it is crucial to use a highly 
efficient heat sink over the whole back area of the module. 

To minimize the response time of the TEG and then higher working frequency, Fisac et al. [11] developed a TEG 
structure. The performance of the new TEG’s structure is validated by comparing numerical simulation and 
experimental results. The finite-difference method is used by Nguyen and Pochiraju [12] to solve a transient TEG 
model subjected to an unsteady state heat source on the hot side. It has found that Thompson effect has a substantial 
impact on power generation by the TEG. The steady-state and transient models for a gas/liquid cylindrical TEG 
presented and validated by Crane et al. [13, 14]. The transient model can simulate a wide range of working 
circumstances. 

One of the main advantages of the TEGs is that they are environmentally friendly and can recycle wasted heat 
energy and convert it into the reusable form of energy. There are many studies on different models and prototypes for 
different applications of waste heat recovery that have been established and validated with very promising outcomes. 
Most of them have been examined under steady-state conditions. However, in the real applications, we face unsteady 
situations, and this transient condition leads to substantial deviation in TEG performance. This experimental work 
presents an analysis of the transient electrical and thermal behavior of a TEG system to a load change. Moreover, 
mutual electrical and thermal response of the TEG system under transient condition will be discussed. 

2. Experimental setup 

Fig. 1 shows a view of the test rig. Power generation by the TEG system is obtained by data derived from 
experiments. Four 30 mmꞏ30 mmꞏ4.2 mm Bi-Te based TEGs are used in the experiments that electrically connected 
in series. Force convection cooling of the cold side of the TEG is provided by an axial fan. A DC power supply is 
used to apply different fan powers and different mass flow rates in the heat sink. For the hot side of the TEGs, a hot 
gas supplier and a constant temperature reservoir is used. The temperature and mass flow rate of the hot side of the 
TEG can be controlled by the constant temperature reservoir and hot gas supplier, respectively. Four T-type 
thermocouples are placed just behind of the TEGs. A programmable DC electronic load device is used for applying 
different loads to the TEGs. Temperatures in the different points, volumetric flow rates, and output voltage are the 
main parameters recorded during experiments. All experimental data are collected by LXI (34972A) data 
acquisition system. 
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Fig. 1. A view of the TEG test rig. 

2.1. Uncertainty analysis 

Uncertainty analysis has been carried out using the method proposed in [15, 16]. To ascertain the accuracy of the 
equipment, they were calibrated before experiments. The measuring value and the resolutions of all the devices are 
presented in Table 1. The relative uncertainty of the devices is calculated by [15]: 

 
Relative uncertainty = 0.5 ∙ resolution ∙ measuring value –1 (1) 

 
As it can be seen, the maximum relative uncertainty of the equipment is 2 %.  

Table 1. List of equipment relative uncertainties. 

Equipment Measuring range Resolution Relative uncertainty 

Hot gas supplier 30–90 L/min 0.1 L/min 0.17 % 
Constant temperature reservoir 100–400 °C 0.1 °C 0.05 % 
DC power supply (for voltage) 3–13 V 0.00125 0.02 % 
Programmable DC electronic load (for electric current) 0.025–1.2 A 0.001 A 2.00 % 

 
An error analysis of experiments also is carried out. For a typical test, results for temperature in the different points 

of the system, voltage, and current are shown in Table 3. The mean value (X�) and the standard deviation (SX) of the 
data are defined by [16]: 
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Then the uncertainty (SJ) is: 
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As it can be seen in Table 2, the maximum uncertainty is 1.98 % which is less than 6 %. It shows that the 
experiments are reliable. 
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Table 2. List of experiment uncertainties. 

Variable 1st 2nd 3rd Mean value Sample standard deviation Uncertainty 

THA (°C) 215.1 °C 216.39 °C 217.84 °C 216.44 °C 1.37 °C 0.63 % 

TH (°C) 165.37 °C 166.52 °C 163.91 °C 165.26 °C 1.31 °C 0.79 % 

TC (°C) 65.86 °C 63.3 °C 64.46 °C 64.54 °C 1.28 °C 1.98 % 

VOC (V) 11.8747 V 11.9194 V 11.9326 V 11.9089 V 0.0303 V 0.25 % 

V (V) (@Pmax) 5.7635 V 5.6979 V 5.7241 V 5.7285 V 0.0330 V 0.58 % 

I (A) (@Pmax) 0.4513 A 0.4502 A 0.4489 A 0.4501 A 0.0012 A 0.27 % 

3. Results and discussion 

Four Bi-Te based TEGs are tested under different operating conditions. In the experiments, the volumetric flow 
rate of the fan in the heat sink and temperature, and volumetric flow rate of the air flow on the hot side are changing 
to provide different working circumstances. The volumetric flow rate of the fan (Qc) and hot gas supplier (Qh) are 
varied between 406.3 L/min to 1229 L/min and 30 L/min to 90 L/min, respectively. 

The variations of the open circuit voltage with the temperature difference for different volumetric flow rates are 
obtained. Due to electrical resistance in the wires, switches, connections and other devices, the measured open circuit 
voltage is always less than the actual value, but if TEG produces high voltage and low current, this error is almost 
negligible [17]. The Seebeck coefficient of a material depends on the temperature [18, 19] but in this framework the 
open circuit graphs are linear, and it shows that in the tested temperature range, the magnitude of the Seebeck 
coefficient is approximately constant. From Eq. (5), the value of the Seebeck coefficient can be measured by using 
the open circuit voltage and the temperature difference between hot side and cold side of the TEGs. 

)( choc TTTV    (5) 

where 
Voc the open circuit voltage; 
α the Seebeck coefficient; 
Th and Tc  the temperatures of the hot and cold side of the TEG, respectively. 

  
Using Eq. (5) shows that the Seebeck coefficient values for tested material and in this temperature range are varied 

between 0.104 V/K and 0.121 V/K for four TEGs. 
V-I, R-I and P-I curves for four TEGs at a specific temperature difference (ΔT = 107.8 °C) and with Qc = 406.3 L/min 

are illustrated in Fig. 2. 
 

 

Fig. 2. V-I, R-I and P-I curves for (ΔT = 107.8 °C), Qh = 90 L/min and Qc = 406.3 L/min. 

0

50

100

150

200

250

0

2

4

6

8

10

12

14

0 0,2 0,4 0,6 0,8 1

Po
w

er
, W

 a
nd

 V
ol

ta
ge

, V

Current, A
Voltage Power Resistance

R
esistance, Ω



	 Sajjad Mahmoudinezhad et al. / Energy Procedia 147 (2018) 537–543� 541
 Author name / Energy Procedia 00 (2018) 000–000  5 

The focus of this investigation is on the transient thermal response of the system to an electrical load change. 
After reaching the steady state condition, the I-V-P curves for all the operating conditions are obtained. Then 
the equivalent voltage for the maximum power can be achieved. The same operating condition is applied again to 
the system with open circuit voltage. This time the voltage suddenly drops to the equivalent voltage of the maximum 
power which is obtained before. Fig. 3 displays the thermal response of the TEGs to the load change for Qh = 30 L/min 
and Qc = 406.3 L/min and TTSR = 250 °C, TTSR is the temperature of the constant temperature reservoir.  

 

 

Fig. 3. Variation of the hot and cold side temperatures and voltage versus time for Qh = 30 L/min and Qc = 406.3 L/min and TTSR = 250 °C. 

As can be observed, the open circuit voltage is equal to Voc = 3.45 V. By applying equivalent current for the 
maximum power I@Pmax = 0.175 A, the equivalent voltage for the maximum power is V@Pmax = 1.66 V. In this condition, 
the temperature of the hot side of the TEG drops around 2.5 °C, but the cold side temperature does not change a lot. 
This variation is owing to the Peltier effect that is working against power generation and deviates the peak working 
point from the generally known maximum power point (MPP). As a matter of fact, the heat transfer across the TEG 
from the hot to the cold side varies with the load current produced by the TEG according to the Peltier effect.  

By increasing the volumetric flow rate in the hot and cold sides of the TEG, these variations are more sensible. 
Fig. 4 shows the same graphs for higher volumetric flow rates and the same temperature in the constant temperature 
reservoir. The open circuit voltage is Voc = 8.67 V and equivalent current and voltage for maximum power are I@Pmax = 0.4 A 
and V@Pmax = 3.98 V, respectively. Fig. 4 indicates that the drop in the hot side temperatures is around 5 °C, while the 
cold side temperature enhances 1 °C. 

 

Fig. 4. Variation of hot and cold side temperatures and voltage versus time for Qh = 90 L/min and Qc = 1015.7 L/min and TTSR = 250 °C. 
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Fig. 5 illustrates that increment in the value of the temperature of the constant temperature reservoir has 
a substantial effect on the characteristics of the TEGs. As can be seen, in this condition the open circuit voltage reaches 
Voc = 15.05 V. When the current is increased to I@Pmax = 0.55 A, the equivalent voltage for reaching the maximum 
power is V@Pmax = 7.42 V. In this operating condition, the hot side temperature decreases more than 7.5 °C and the 
cold side temperature enhances around 2.5 °C. 
 

 

Fig. 5. Variation of hot and cold side temperatures and voltage versus time for Qh = 90 L/min and Qc = 1015.7 L/min and TTSR = 400 °C. 

The significant effect of volumetric flow rate in the heat source can be observed in Fig. 6. Identical condition with 
the Fig. 5 is considered except the volumetric flow rate in the hot side that is decreased to Qh = 30 L/min. A huge drop 
in the open circuit voltage can be seen. In this working circumstance, by increasing the current from 0 to I@Pmax = 0.275 A, 
the voltage drops from Voc = 5.70 V to V@Pmax = 2.65 V. The hot side temperature drop is around 4 °C and the variation 
of the temperature in the cold side is small. 

 

 

Fig. 6. Variation of hot and cold side temperatures and voltage versus time for Qh = 30 L/min, Qc = 1015.7 L/min and TTSR = 400 °C. 

4. Conclusion 

Four Bi-Te based TEGs are examined experimentally. I-V-P curves in different operating condition are obtained. 
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open circuit voltage to the equivalent voltage for maximum power is discussed. The results indicate that in the low 
volumetric flow rate values of the heat source, the variation of the temperature of the cold side is small. With increasing 
the volumetric flow rate on both sides of the TEG, the temperature drop on the hot side and the enhancement of the 
temperature on the cold side is increased. The maximum variation in the temperatures is related to the higher 
temperature in the constant temperature reservoir and higher volumetric flow rate on both sides of the TEG. 
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