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Abstract—Measurements of parameters in electricity

grids are frequently average values over some time inter-

val. In scenarios of distributed measurements such as in

distribution grids, offsets of local clocks can result in the

averaging interval being misaligned. This paper investigates

the properties of the so-called time alignment error of

such measurands that is caused by shifts of the averaging

interval. A Markov model is derived that allows for numer-

ically calculating the expected value and other distribution

properties of this error. Actual consumption measurements

of an office building are used to study the behavior of this

time alignment error, and to compare the results from the

trace with numerical results and simulations from a fitted

Markov model. For increasing averaging interval offset,

the time alignment error approaches a normal distribution,

whose parameters can be calculated or approximated from

the Markov model.

Index Terms—Distribution Grid Measurements, Time

Alignment Error, Data Quality, Markov Models.

I. INTRODUCTION AND MOTIVATION

The amount of digital data sources in electricity
distribution grids is rapidly increasing. Examples of
measurement devices include smart meters and smart
inverters at prosumer connection points or measurement
devices in junction boxes and secondary substations.
These devices typically provide values of voltages, cur-
rents, and power averaged over some logging interval of
duration T , where T ranges from a few seconds to tens
of minutes.

For some applications in energy grids such as the
calculation of electricity losses in part of the grid, the
data analytics software needs to correlate values from
different measurement devices averaged over the same
time interval [ti, ti + T ]. As the measurement devices
are geographically distributed, these time intervals may
be subject to clock deviations. Typical clock deviation
errors are in the order of few seconds [1], while they can
be also larger in case of infrequent clock synchronization
or slow and highly variable communication delays on
the communication network between master clock and
measurement devices. Any offset of the clock at the

measurement device will in fact lead to a shifted av-
eraging interval. Another cause of such shifted interval
can result when there is no synchronization of clocks
and the start of the averaging interval is determined by
a request message from a data concentrator; the offset of
the averaging interval is then determined by the selection
of the request trigger at the concentrator and by the sum
of the one-way communication delays and the required
processing times of this request.

This paper provides an analysis of the impact of such
offset, subsequently called �, of the measurement interval
on the value of the measured average. It thereby projects
a timing error into the value domain of the measurand,
making it possible to obtain confidence intervals for
the measurand or other indicators of data quality. The
paper then studies this error caused by the interval
misalignment for changing sizes of the averaging interval
T and for changing clock offset �. Results shows that the
error can for certain parameter ranges be approximated
by a normal distribution, whose expected value can be
calculated and standard deviation be approximated by a
proposed mathematical model.

The quantification of the impact of measurement
errors in different application contexts in general dis-
tributed systems has received increasing attention in the
last few years. As one example of relevant research,
measurement errors at the sensor may propagate through
the whole computation chain, see, e.g., [5] for work
characterizing such errors and their impact. Specifically
in energy grids, recent work has addressed how to handle
heterogeneous and noisy measurements in the context
of grid estimation [3], [6], [10], [12]. Those papers
focus mainly on noise on the measurands and how to
include such noise characterization in grid estimation
procedures. In contrast to that, this paper addresses the
impact of time alignment errors for measurands that are
averaged over a time interval.

The impact of timing in access to measurement
information in distributed systems has earlier been an-
alyzed in [4] and such analysis put into context of



different electricity grid applications in [7], [8] and also
in generalized networked control applications [11]. This
paper instead focuses on the deviations of a measurand
caused by time alignment deviations at the sensor. The
authors in [2] present an initial analysis of this aspect
of the problem, however, their focus was on an empiric
evaluation of the distribution of subsequent samples in
a smart meter measurement trace. In contrast, this paper
makes a detailed analysis of the impact of different
interval offsets on measurement of averages using trace
analysis, simulations, and a stochastic model.

In this paper we examine three views of electricity
grids. One is a real measurement trace from a particular
electrical grid. This trace is “exactly correct”, but only
for the four hours it measured. It tells us little about
any other four hour period, and even less about other
grids. A parameter-rich model must be made that in
some sense represents the data. We have created a linear
algebraic Markov model for that purpose, see [9] for
theoretical details. The numerical results from evaluating
the algebraic equations are very good for supplying
parameter dependent expected values and also part of the
distribution probabilities; furthermore, approximations of
the standard deviation of the time alignment errors can be
derived. The same model can be used in a Monte Carlo
simulation. If the model is good, a particular trace will
be probabilistically similar to the original measured trace
and one can then generate many traces, whose average
converges to the numerical results.

Section II formally introduces the time alignment er-
ror, ✏, caused by the timing offset. Section III introduces
a Markov-modulated model for the true measurand and
shows examples of errors caused by time offset from a
simulation of such models. Section IV derives expected
values and other properties of the distribution of ✏ in the
scenario of the Markov-modulated value process. Section
V uses a measurement of power values at a customer
connection point, fits a Markov-modulated process and
studies the behavior of the time alignment error via
numerical results from the Markov model and compares
to trace-driven simulations.

II. SYSTEM DESCRIPTION

In this paper, we focus on a single measurement
device that determines values of a measurand m; here
we assume that the physical measurand has the true
behavior m(t) and the measurement device determines
the average value m̂(T, �) of m(t) over a time interval
I = [�, � + T ]. Example scenarios are measurements of
average voltage or average power in an electricity grid.

Our goal is to study the error of this measured aver-
age value that results from the shift of the measurement
interval by some offset �. Without loss of generality, we
position the time interval of interest to start at t = 0. We

then define the time averaged value of the measurand
starting over a shifted interval with offset �:

m̂(T, �) := 1/T

Z T+�

�
m(t)dt. (1)

The desired value is for � = 0, but the offset � > 0
can be caused by different reasons including non-ideal
clock synchronization. Therefore, it is of interest to
examine their difference. In order to achieve this, this
paper derives and presents results on the behavior of the
random variable

✏(T, �) := m̂(T, 0)� m̂(T, �), (2)

for different stochastic processes m(t) and different
choices of T 2 R+ and � 2 R. We call ✏ the resulting
interval alignment error caused by an interval offset of
� and for an averaging period of duration T .

III. MARKOV MODEL

We model the behavior of m(t) by a Markov chain
model with generator matrix Q. The state of the Markov
chain model, S(t) = i, at time t determines the value of
physical measurand m(t) = ⌫i. While ⌫i can represent
any type of measurement, we explain and apply the
model in this paper in the context of power measure-
ments, so m(t) is the consumed (or, with a different sign,
produced) power at a grid connection, as e.g. measured
by a smart meter.

We assume that the measurement is taken at a
prosumer with n discrete levels of power and hence
dimQ = n. The time that the Markov chain spends
in level j is exponentially distributed, with mean time
1/µj =1/Qjj , where 1  j  n. [Note that we use the
convention in [9], which is the negative of other texts.]
The power consumed or injected when at that level is
⌫j .

For future reference, we also define the (diagonal)
power consumption matrix,

[E]jj = ⌫j .

There exists a steady-state ⇡⇡⇡ satisfying ⇡⇡⇡Q = 0
which can be normalized so that ⇡⇡⇡ "0"0"0 = 1.

Fig. 1: Example of 2-state Markov chain representation.

In order to illustrate the Markov model, we now
present and discuss simulation results for the distribution



Fig. 2: Simulation of two-state model: ⇡(0) = [1, 0]

of ✏(T, �) := m̂(T, 0)� m̂(T, �) for the simplest model
of a 2-state Markov process shown in Figure 1.

Figures 2 shows the resulting distribution of ✏ from
simulations of the same 2-state Markov model, where
the Markov process at the beginning of the measurement
interval starts in state 1. The figure shows that the value
of ✏ is bounded; the distribution shows discrete spikes
at 0 and at the minimum, with continuous density in
between. More discussion on this property will follow
in the next section.

IV. NUMERICAL CALCULATION OF TIME ALIGNMENT
ERRORS

This section uses the Markov model for the true
behavior of the physical measurand, here always as-
sumed to be power, in order to derive equations for
the calculation of different properties of the averaged
measurand m̂(T, �) and of the time alignment error
✏(T, �).

A. Expected values

One form of the Chapman-Kolmogorov equation
states that

d⇡⇡⇡(t)

dt
= �⇡⇡⇡(t)Q,

which has the solution

⇡⇡⇡(t) = ⇡⇡⇡(0)G(t) := ⇡⇡⇡(0) exp(�tQ). (3)

[⇡⇡⇡(t)]j is the probability that the system will be in state
j at time t, but we would like to know how long the
system spent in state j during a given time interval, T .
This is simply the system vector:

⌧⌧⌧(T ) =

Z T

0
⇡⇡⇡(t) dt

= ⇡⇡⇡(0)

Z T

0
G(t) dt =: ⇡⇡⇡(0)H(T ).

That is, [⌧⌧⌧(T )]j is the total time the system spent in state
j in the time interval T . Observe that since Q"0"0"0 = 0, it

follows that G(t)"0"0"0 = "0"0"0. Therefore H(T )"0"0"0 = T"0"0"0, and
thus

⌧⌧⌧(T )"0"0"0 = T.

The problem is, the integral cannot be carried out
formally, because Q has no inverse. Instead we must
replace it by its spectral decomposition. More precisely
we replace exp(�tQ). That is,

G(t) = exp(�tQ) = "0"0"0⇡⇡⇡ +

nX

j0

e�t�jv0
j uj, (4)

where �j is a non-zero eigenvalue of Q, and v0
j, anduj

are its right- and left-eigenvectors. The “ 0 ” with j tells
us that the sum excludes the eigenvalue, �j = 0.

Putting this into the integral yields

H(T ) :=

Z T

0
G(t) dt

= "0"0"0 ⇡⇡⇡T +

nX

j0

1

�j
[1� e�T�j ]v0

j,uj. (5)

Note that
lim

T!1

H(T )

T
= "0"0"0 ⇡⇡⇡.

In other words, if the measuring interval T is large
enough, the steady-state solution is seen, no matter what
the initial state was. The approach to its limit goes as
O(1/T ), which could mean that T has to be pretty big.

Another relation between G and H can be found by
observing that

QH(T ) =

Z T

0
QG(t) dt = I�G(T ). (6)

This will be useful below.
Next we have to calculate the expected value of the

average power in that time period:

EEE[m̂(T, 0)] :=
1

T
⌧⌧⌧(T )E"0"0"0 =

1

T
⇡⇡⇡(0)H(T )E"0"0"0. (7)

Note that the jth component of the column vector,
H(T )E"0"0"0, is the expected value of the average power in
the interval, T , when starting in state j, so we get them
all in one shot!

Figure 3 shows the numerical results for the behavior
of the average power for the two-state Markov chain
example. The figure shows the value of EEE[m̂(T, �)] for
two initial conditions and three values of � = 0, 1, 2.
All six curves are approaching the steady-state value of
⇡⇡⇡E"0"0"00 = 3.6667.

The next question to answer is “What if measurement
began a small time, �, later? What would the expected
value of the average power for the period be?” From (3)
we get the state of the system at time �, namely,

⇡⇡⇡(�) = ⇡⇡⇡(0)G(�).
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Fig. 3: Average power for 2-state model in Figure 1 as a
function of T for different initial state power levels. The
lowest three curves are for ⇡⇡⇡(0) = [1 0]. The innermost
pair are for � = 2.

Then
EEE[m̂(T, �)] =

1

T
⇡⇡⇡(�)H(T )E"0"0"0

=
1

T
⇡⇡⇡(0)G(�)H(T )E"0"0"0. (8)

The expected change in EEE[m̂] with change of offset is:

EEE[✏(T, �)] := EEE[m̂(T, 0)]�EEE[m̂(T, �)]

=
1

T
⇡⇡⇡(0) [I�G(�)]H(T )E"0"0"0. (9)

With the aid of (6) this can also be written as

EEE[✏(T, �)] = 1

T
⇡⇡⇡(0)Q H(�)H(T )E"0"0"0. (10)

Note that since ⇡⇡⇡Q = 0, the last equation shows that
EEE[✏(T, �)] = 0 when the Markov process is in its
steady state at the beginning of the measurement interval.
Therefore, the time alignment error will in this case be
an unbiased error.

B. Approximation of standard deviation of the alignment
error distribution

The mean power consumption as a function of time
can be very dependent on the initial conditions if the
measured time period is not too long, (see Figure 3).
Similarly, the expected values of ✏ also vary with dif-
ferent initial states. By removing ⇡⇡⇡(0) from Eq. 9 we
get:

EEE[✏j(T, �)] :=
1

T
[[I�G(�)]H(T )E"0"0"0]j .

If the initial condition is not known we can assume
steady state conditions. The variance of ✏ can then be
approximated by the variability of the EEE[✏j ] as follows:

(note that the expected value of ✏ is zero in steady state
initial condition):

�2
s := Var(✏) ⇡

nX

i=0

⇡i ·EEE[(✏i)]2.

C. Calculation of discrete probabilities of error distri-
bution

The earlier simulation results for a 2-state Markov
chain show discrete probabilities at three values of ✏. We
now explain the reason of these discrete components and
present equations for the resulting probabilities.

Fig. 4: Scenario causing discrete probabilities in the
mixed discrete continuous distribution of ✏ for a Markov
modulated value process

Figure 4 shows a scenario which has a discrete
occurrence probability:

• The Markov process is in State i at time t = 0 with
probability and remains in State i for at least the
duration of �. The probability of this first condition
to be true is:

pi = [⇡⇡⇡(0)]i · e�µi�. (11)

• At the end of the original averaging interval at time
T , the Markov process is in state j and remains
there for a time period of at least duration �. The
probability of the latter occurring is:

pj = [exp[�Q(T � �)]]ije
�µj�

= [G(T � �)]ije
�µj� (12)

Putting these two equations together, the probability
of having this case occur is:

pij := [⇡⇡⇡(0)]i · e�µi� · [G(T � �)]ij · e�µj�. (13)

The corresponding value of the resulting alignment error
that occurs with the probability as stated above is:

✏(T, � | i, j) := ⌫i · � � ⌫j · �
T

. (14)
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V. CASE STUDY: APPLICATION TO POWER
MEASUREMENT DATA

We now investigate the measurement error ✏ in an
actual power measurement trace. As it is practically
infeasible to have continuous measurements of m(t),
typically all traces already represent average values over
some time interval. We therefore utilized traces with
small measurement interval of 1s in order to allow
suitable evaluation of ✏ when � and T vary over ranges
of several seconds to few minutes.

A. Power Measurement Data

In order to apply the model and analysis of the
distribution of ✏ to some real power measurements, we
used a measurement trace of a grid connection point
that connects a medium-sized office building. Part of the
behavior of the measured power in 1 second intervals is
shown in Figure 5. The average power is 8.137 kW when
considering the full measurement of about 9650 samples.

Fig. 5: Measurements of energy in 1-sec intervals at
connection of medium-sized office building

The corresponding histogram of the 1s power values
is shown in Fig. 6. Based on the spikes of the histogram,
we fitted a Markov chain with 12 states to this data:
the dashed lines in the figure mark the discretization
boundaries; the corresponding levels ⌫i for state i were
determined by the mean of the values between boundary
i and i+ 1.

We use the resulting Markov model and the true mea-
sured trace subsequently to show properties of the mea-
surement error caused by clock offset. Figure 7 shows
the histogram of the error ✏ as resulting in the trace when
using an averaging window of size T = 100s and a clock
offset of � = 8s. The histogram has been obtained by
sliding the averaging interval over the measurement data.
The resulting mean error EEE(✏) ⇡ 0.4165W is small but
the standard deviation std(✏) ⇡ 20.6W , or relative to the
mean value of the measurand, about 2.5 ·10�3. Note that
this relative error is in the same order of magnitude of

Fig. 6: Histogram of the energy measurements and visu-
alization of the boundaries for discretization in Markov
model

what is typically seen as measurement noise in practical
smart meter deployments [], so it should be taken into
account.

Fig. 7: Histogram of ✏ as resulting from the measurement
trace using a sliding time interval of duration T = 100s
and an interval offset of � = 8s.

B. Simulation results for fitted Markov model

The fitted Markov model is now used in simulations
to investigate the behavior of the distribution of ✏ consid-
ering steady-state as initial condition. Steady-state is a
concept from probability theory, and it takes some effort
to apply it to actual traces and Monte Carlo simulations.
After all, a system can only be in one state at a time,
whereas the i�th component of ⇡ is the probability that
the system is in state i. In simulations, the simulation
is run many times with the starting state i occurring
according to ⇡i.

Figure 8 shows the alignment error distribution from
simulations of the fitted Markov model started accord-
ing to the steady-state probabilities at t = 0 and for
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Fig. 8: Histogram of ✏ for the fitted Markov model using
simulations with T = 10s, � = 1s and starting with
steady-state probabilities.

averaging interval size of T = 10s and offset � = 1s.
The resulting distribution is symmetric, has mean close
to 0 (as the analytic results in Equation (10) showed)
and shows a number of spikes due to the discrete
probabilities, see Equation 13 with i, j = 1...12. When
simulating the same case for different T , the resulting
distribution is just scaled on the x-axis with 1/T , not
shown here due to space limitations.

The spikes in the previous histograms are a conse-
quence of the discrete probabilities in the distribution of
✏ and their size reduces with increasing value of �, see
the calculations in Section IV-C. When increasing �, the
distribution of ✏ becomes close to a normal distribution,
as shown in Figure 9 (� = 8) and even more for Figure
10. The case of normally distributed alignment error
is interesting as it can be easily combined with other
normally distributed errors such as the measurement
error. A QQ plot and normality tests, not shown here,
confirm the fit to a normal distribution, when � > 10s
approximately.

Finally, the simulation estimate for mean and stan-
dard deviation of ✏ when using the fitted Markov model
is compared with an estimate directly from the trace in
Figure 11. Note that the plotted standard deviation in
the figure is scaled by 1/

p
� to show its convergence.

As a consequence of the scaling, the unscaled actual
standard deviations grow more strongly as opposed to
the scaled version shown in the figure. Note that the
full measurement trace contains about 9650 observations,
which results in a sample size of (9650�T ��)/� from
the sliding window calculation of ✏, so the number of
samples for the mean and standard deviation estimation
for the trace (blue curves in Fig. 11) reduces for in-
creasing T and deviations from the expected EEE[✏] = 0
value occur for large T due to the lack of samples.

Fig. 9: Histogram of ✏ for the fitted Markov model using
simulations with T = 100s, � = 8s and starting with
steady-state probabilities. The overlaid smooth curve is
that of a normal distribution with matching mean and
standard deviation.

Fig. 10: Same as Figure 9, but with � = 32s.

Note that the simulation of the Markov model leads to a
substantially larger standard deviation estimate std(✏);
this may be due to the discretization of the power
measurements in twelve discrete values.

C. Comparison with analytic model

Finally, we compare the analytic calculations of the
expected value of ✏ and the approximation of its variance
to both a simulation and the data. Figure 12 shows this
comparison, now for increasing T . Note that the increase
of T does not have the same strong impact on number
of samples contributing to epsilon estimates from the
trace as in the previous figure (that varied �). Hence,
the mean estimate of ✏ from the trace stays close to the
analytic results, which is exactly on zero. The standard
deviation of ✏ reduces as 1/T , so the variability of the
time alignment error reduces with the same decay in both
the simulation and the trace-based analysis. The standard



Fig. 11: Behavior of the mean and the scaled standard
deviation of the alignment error for fixed interval size
T = 60s and increasing offset � comparing the mea-
surement trace and simulation with the steady state as
the initial condition.

estimation from the simulation in Figure 12 is almost
exactly a factor 2 larger than the analytic approximation.
The standard deviation estimate from the trace, however,
is suprisingly close to the analytic approximation. This
observation will be investigated further in future work.

Fig. 12: Comparison of standard deviation of ✏.

VI. CONCLUSIONS

This paper defines and analyzes the time alignment
error caused by offsets of the averaging interval for
measurements in distribution grids. The time alignment
error is formally defined and its behavior is investigated
for an actual high-resolution power measurement trace,
for the simulation of a Markov-modulated process that is
fitted to the measurement data, and via matrix-algebraic
calculations on the same Markov process. The results
show that the time alignment error approaches a normal
distribution for increasing offset �. The mathematical

model can be used to determine parameters of the normal
distribution, so that this measurement error can be used
in further processing of the data.

Future analysis will investigate the impact of param-
eters for the Markov model fitting on the time alignment
error distribution; furthermore, the application of the
model and of the analysis can be applied to other
measurements than power, e.g. to average voltages in
distribution grids. A more detailed investigation of the
nearly constant factor between variance approximation
from the analytic model and observed variance estimate
for ✏ from the data should also be performed.
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