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Self-Organization Scheme for Balanced

Routing in Large-Scale Multi-Hop Networks

Mihai-Alin Badiu, David Saad, and Justin P. Coon, Senior Member, IEEE

Abstract

We propose a self-organization scheme for cost-effective and load-balanced routing in multi-hop

networks. To avoid overloading nodes that provide favourable routing conditions, we assign each node

with a cost function that penalizes high loads. Thus, finding routes to sink nodes is formulated as an

optimization problem in which the global objective function strikes a balance between route costs and

node loads. We apply belief propagation (its min-sum version) to solve the network optimization problem

and obtain a distributed algorithm whereby the nodes collectively discover globally optimal routes by

performing low-complexity computations and exchanging messages with their neighbours. We prove

that the proposed method converges to the global optimum after a finite number of local exchanges of

messages. Finally, we demonstrate numerically our framework’s efficacy in balancing the node loads and

study the trade-off between load reduction and total cost minimization.
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I. INTRODUCTION

Large-scale wireless networks employing multi-hop transmissions are an integral component of the

Internet of Things [1]. For example, such networks can consist of a massive number of sensors that

collect data from the environment and send it to central controllers. Since in multi-hop networks each

wireless node can relay other nodes’ messages, it is highly relevant to direct the information flows from

the source nodes to the destinations efficiently in terms of, e.g., energy consumption or reliability. Sending

the flows along the minimim-cost paths towards the destinations potentially leads to overloading those

nodes that provide favourable routes, which can cause quick battery depletion or decrease the resilience

of the network against node failures [2]–[5]. Therefore, information should be routed through the network

so as to minimize costs while trying to balance the node-loads. Moreover, given their scale, such networks

must be designed to be self-organizing and adaptive.

There is a large body of work studying energy efficient routing protocols (see, e.g., the survey [6]).

A typical objective is to maximize the network lifetime by maximizing the minimum lifetime over all

nodes, where the lifetime of a node is defined as the ratio between its residual energy and its energy

expenditure [2]–[4]. However, the network lifetime objective does not account for the total routing cost

(total energy in this case) and thus can be inefficient in this respect, similar to minimum-cost routing

being suboptimal for node balancing. It is therefore relevant to investigate objectives that favour solutions

that are somewhere “in-between” these two extremes.

In this work, we propose an algorithmic strategy for distributed multi-hop networking whereby the

nodes coordinate and organize themselves so as to route the information to the destinations in an efficient

and balanced way. To this end, we model balanced routing as the minimization of a network objective

function, which includes the overall cost of the routes (given by generic link costs) and an additional

term that penalizes the node-loads. The objective function provides a tunable trade-off between total

cost efficiency and fairness of the distribution of the node loads. The possible routes from source nodes

to destinations are coupled in the objective function, which creates a competition for the shortest (i.e.,

least cost) routes to the sinks. To solve the optimization problem, we use the min-sum version of the

belief propagation (BP) method [7]. In this way, we obtain a distributed algorithm which finds globally

optimal routes in a decentralized manner with low-complexity local computations and message exchanges

between neighbouring nodes. We also show that the proposed method converges to the global optimum

in a finite number of iterations.
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II. NETWORK MODEL AND PROBLEM FORMULATION

We assume a data collection scenario in which a set Vs = {1, . . . , n} of n nodes generate and/or relay

information that has to be delivered to any subset of the m destination nodes (e.g., gateways, access

points) in Vd = {n + 1, . . . , n + m}. The nodes in Vs are simple devices with constrained resources

(energy, memory, processing capabilities, etc.) and can participate in routing each other’s packets towards

the destination nodes. Packets generated by a source node in Vs can travel to a destination in Vd over

different routes; moreover, they can be delivered to different destination nodes.

We model the wireless network as a directed graph G(V, E), with V = Vs ∪Vd and E being the set of

edges (links). An edge (i, j) ∈ E indicates that node i can transmit to node j directly. For each i ∈ V ,

Ei denotes the set of all edges incident to i, while Eout
i and E in

i stand for the sets of its outgoing and

respectively incoming edges. Node i ∈ Vs generates information at a rate of ri units (we assume a certain

unit rate [r]), where ri ∈ N; if ri = 0, the node is just a relay node. The capacity of edge e ∈ E is

ue units, ue ∈ N>0, such that the amount of flow xe units carried by e satisfies 0 ≤ xe ≤ ue. The

assumption that the rates and capacities are integer multiples of [r] is not restrictive, because any set

of rational numbers can be expressed in this way by finding an appropriate unit [r]. Moreover, if any

of the rates and capacities have irrational values, it is necessary to convert them to rational numbers

to represent them on a computer. We associate each link e ∈ E with the weight ce > 0 representing

the cost of transferring a unit over edge e. For example, the cost can be the transmit power required

to ensure a certain data rate, the expected transmission count (ETX), or hop-count (when ce = 1). We

further assume that the network is in the unsaturated traffic regime and packets are transferred between

neighbours according to a medium access scheme, which we do not concern ourselves with here.

The routing solution space consists of those configurations {xe}e∈E which satisfy the flow conservation

constraints
∑

e∈Eout
i

xe −
∑

e∈E in
i

xe = ri, for all i ∈ Vs, (1)

and the capacity constraints 0 ≤ xe ≤ ue, for all e ∈ E . The two constraints ensure that all generated

flows are delivered to the destinations such that edge flows do not exceed the respective capacities. We

assume that the solution space is non-empty. The total cost of a configuration {xe}e∈E is
∑

e∈E cexe.

Furthermore, we define the load of node i to be the amount of flow
∑

e∈Eout
i

xe it has to forward.

In general, there are many feasible configurations, each implying different sets of routes, path lengths,

total costs, distribution of node loads, etc. A common objective is to minimize the total cost, which, as one

can notice, turns data collection into a (linear) minimum cost network flow problem [8]. However, such
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an approach may yield solutions wherein some nodes that provide low-cost forwarding edges experience

high loads. We are therefore interested in balancing the node loads in a cost-effective manner.

III. PROPOSED OBJECTIVE FOR LOAD BALANCING

We seek a trade-off between minimization of the total cost and minimization of the loads of individual

nodes. To this end, for each i ∈ Vs we introduce the strictly-increasing convex function φi : [0,∞) → R

to penalize the load of the ith node. The functions can vary over the nodes to reflect their different

load-tolerances depending on residual energies, capabilities etc. Now, we formulate the optimization

problem

minimize
x∈R|E|

(1−w)
∑

e∈E

cexe + w
∑

i∈Vs

φi

(

∑

e∈Eout
i

xe

)

subject to
∑

e∈Eout
i

xe −
∑

e∈E in
i

xe = ri, ∀i ∈ Vs,

0 ≤ xe ≤ ue, ∀e ∈ E ,

(2)

where w is a parameter that balances cost-efficiency and load minimization. When w = 0, we recover the

linear minimum cost flow problem [8], which gives the most cost-efficient flow configuration; however,

this setting usually does not provide well-balanced loads and therefore we focus on w > 0.

In the following, we assume that the functions φi are piecewise-linear convex (PLC) with integral

breakpoints, which is very convenient for obtaining a simple message-passing algorithm with provable

convergence to the correct solution, as we show next in Prop. 1 and Prop. 2. An example of such

function is one that takes the value yα, with α > 1, at each breakpoint y ∈ N and varies linearly between

consecutive breakpoints; the higher the value of α, the stronger the load y is penalized. Such a choice

provides a simple way to select the efficiency-fairness trade-off by tuning the parameter α.

IV. BP ALGORITHM FOR BALANCED ROUTING

BP is a generic message-passing algorithm for solving large-scale inference and optimization problems

in graphical models. It has a distributed nature whereby the nodes of the graph perform simple local

computations and exchange messages with their neighbours. While BP provides correct solutions when the

underlying graph is a tree, its correctness and convergence cannot be generally guaranteed for graphs with

cycles, with few exceptions [7], [9]. Nonetheless, for graphs with cycles, the BP heuristic often performs

very well. In network problems, the min-sum algorithm is applied to find the shortest path between two

nodes [10] or minimize path lengths and link congestion [11]. For the min-cost network flow problem

with linear or PLC costs on edges, BP was shown in [9] to converge to the correct solution (if the solution
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is unique). Compared to [9], our objective (2) (with w > 0) additionally includes node costs given by

the PLC functions {φi}; therefore, the application of BP gives the novel algorithm described next.1

For each node i ∈ Vs, we define a function ψi that reflects the flow conservation constraint at node i,

i.e., it maps each vector z ∈ R
|Ei|
+ of edge flows to

ψi(z) =















0, if
∑

e∈Eout
i

ze −
∑

e∈E in
i

ze = ri,

∞, otherwise.

Furthermore, we define

fi(z) = ψi(z) + w φi

(

∑

e∈Eout
i

ze

)

,

which additionally includes the load penalty for node i ∈ Vs. On the contrary, destination nodes do not

have any constraints and “accept” any flows on their incoming edges, so we set fi(z) = 0, for any i ∈ Vd

and z ∈ R
|Ei|
+ . Next, we capture the cost and capacity constraint of edge e ∈ E by introducing the function

ge : R → R ∪ {∞} given by

ge(z) =











(1− w)cez, if 0 ≤ z ≤ ue,

∞, otherwise.

We can now reformulate (2) as the equivalent problem

minimize
x∈R|E|

∑

e∈E

ge(xe) +
∑

i∈V

fi(xEi
), (3)

where xEi
includes those components of x with indices in Ei.

We apply the min-sum version of BP to solve (3). Given that each edge variable node has exactly two

neighbour function nodes from the set {fi}, we simplify the standard message updates by defining the

messages (4) in Algorithm 1. At iteration t, for each node i ∈ Vs and incident edge e ∈ Ei, where either

e = (i, j) ∈ Eout
i or e = (j, i) ∈ E in

i , the algorithm computes the message mt
i→e, which becomes an input

to neighbour j at the next iteration. Since fi is the zero function for all i ∈ Vd, the messages computed

by destination nodes do not change with t and thus are not updated.

1Alternatively, by using the node splitting technique [8, p. 41], one can transform (2) into a min-cost network flow problem

with PLC costs on edges, which can be solved using BP [9, Th. 6.1]. However, BP on the transformed graph is different from

Algorithm 1 that we obtain here, see footnote 2.
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Algorithm 1 Distributed algorithm for balanced routing.

Input: The graph G(V, E), edge costs {ce} and capacities {ue}, data rates {ri}, parameters α and w

Output: Estimates {x̂e}e∈E of the optimal edge flows of (2)

1: Initialize m0
i→e(z) = ge(z), for all i ∈ V , e ∈ Ei, z ∈ R+

2: for t = 1 to T do

3: For each i ∈ Vs and e ∈ Ei, update

mt
i→e(z) = ge(z) + min

z̃∈R
|Ei|

+ :z̃e=z







fi(z̃) +
∑

e′∈Ei\e

mt−1
k→e′

(z̃e′)







, (4)

for all z ∈ R+, where e′ = (i, k) or (k, i).

4: end for

5: For each e = (i, j) ∈ E , compute the belief function

bte(z) = mt
i→e(z) +mt

j→e(z)− ge(z) (5)

and determine its minimizer

x̂te = argmin
z

bte(z) (6)

6: return x̂
t =

(

x̂te
)

e∈E

Algorithm 1 has the following interpretation. Every node is seeking to determine the flow on each of

its incident edges while satisfying its local flow conservation constraint and minimizing its load. The

message mt
i→e(z) can be viewed as a local cost that node i attributes to allocating z units to edge e;

thus, the message is a function of the flow. For any z, the message update (4) includes: (i) the cost of

sending flow z over edge e and (ii) the minimum cost of allocating flows to the rest of the edges that are

incident to i such that flow conservation is ensured. The latter cost is the result of a local optimization,

which looks for the feasible configuration of the flows on the incident edges that minimizes an objective

function that includes the cost of the load of node i and the local costs (messages) estimated by the

neighbouring nodes.2 The message updates have low-complexity, as we show next.

Proposition 1 (Complexity): For each i ∈ Vs, e ∈ Ei and t ≥ 1, the message mt
i→e is a piecewise-linear

convex (PLC) function with breakpoints in {0, 1, . . . , ue}. The complexity of its update (4) is linear in

the total capacity of the input and output edges of node i and logarithmic in |E in
i | and |Eout

i |.

2If using BP on the augmented graph obtained by node-splitting (see footnote 1), then mt

i→e effectively depends on messages

over incoming (if e ∈ E out
i ) or outgoing (if e ∈ E in

i ) edges that were computed at t− 2, i.e., it uses outdated information, which

slows down convergence, as Fig. 1c shows.
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Proof: The proof is by induction on t. At t = 0, Algorithm 1 initializes the messages to trivial PLC

functions. Suppose at iteration t−1 all messages are PLC functions with integral breakpoints. We provide

the proof for mt
i→e with e ∈ Eout

i , as the case e ∈ E in
i is very similar. Let ψ

(1)
y : R|E in

i | → R ∪ {∞},

y ∈ R, be

ψ(1)
y (z) =















0, if
∑

e′∈E in
i

ze′ + ri = y,

∞, otherwise,

and define ψ
(2)
v : R|Eout

i
|−1 × R → R ∪ {∞}, v ∈ R, given by

ψ(2)
v (z, y) =















0, if y −
∑

e′∈Eout
i

\e

ze′ = v,

∞, otherwise.

Now, we define the function

h(y) = min
z̃∈R|E

in
i
|







ψ(1)
y (z̃) +

∑

e′=(k,i)∈E in
i

mt−1
k→e′

(z̃e′)







+ wφi(y).

The minimization in the r.h.s. is a so-called interpolation of PLC functions whose complexity is logarith-

mic in the number of functions and linear in the total number of their linear pieces [9]. Since mt−1
k→e′ has

breakpoints in {0, 1, . . . , ue′} and φi is also PLC with integral breakpoints, it follows that the function h

is itself PLC with integral breakpoints and at most U in
i pieces, where U in

i =
∑

e′∈E in
i

ue′ + ri; moreover,

h can be computed in O(U in
i log |E in

i |) operations. Now, we write (4)

mt
i→e(z) = ge(z) + min

z̃,y







ψ(2)
z (z̃, y) + h(y) +

∑

e′=(i,k)∈Eout
i

\e

mt−1
k→e′

(z̃e′)







.

Given that h and the messages at t − 1 are PLC with integral breakpoints, the interpolation in the

second line gives again a PLC function; its computation takes O (U e
i log |Eout

i |) operations, where U e
i =

∑

e′∈Ei\e
ue′ . The addition of ge, which is linear in [0, ue], makes mt

i→e PLC with integral breakpoints.

We establish that Algorithm 1 outputs the optimal solution after a finite number of iterations.

Proposition 2 (Convergence): Suppose (2) has a unique optimal solution x
∗.3 Then, there exists a finite

integer T ∗ such that the output of Algorithm 1 satisfies x̂
t = x

∗, for any t ≥ T ∗.

Proof: Although our objective function (2) is different than that of the min-cost network flow problem

with linear (or PLC) edge costs, we can use the same proof strategy as in [9, Th. 4.1, Th. 6.1]. The

3When the costs {ce} are generic (e.g., random), it is highly likely that (2) has a unique solution. Otherwise, it is possible to

add small noise to the costs such that the modified problem has a unique solution which very closely approximates the solution

of the original problem [9].
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Fig. 1. Simulation results for n = 50, m = 1 and various fractions k/n of source nodes: (a) Improvement of the total cost and

maximum load relative to minimum-cost routing; (b) Jain’s fairness index for the node loads; (c) empirical cdf of the minimum

number T ∗ of iterations required for Algorithm 1 to converge when k/n = 0.3.

difference is that we need to define an appropriate residual graph [8]. Denote by G(x) the residual graph

of G(V, E) with respect to the flow x ∈ R
|E|. G(x) has the same vertices V , while we define its edges

and their costs as follows: for any e = (i, j) ∈ E , if xe < ue, then e is also an edge in G(x) with

capacity ue−xe and cost cxe = (1−w)ce+w limz→0+ (φi(y + z)− φi(y)) /z, where y =
∑

e′∈Eout
i

xe′ is

the load of node i; if xe > 0, then G(x) additionally includes the directed edge e′ = (j, i) with capacity

xe and cost cxe′ = −(1 − w)ce + w limz→0− (φi(y + z)− φi(y)) /z. At the unique optimal solution x
∗,

all the directed cycles of the residual graph G(x∗) must have positive costs (according to the negative

cycle optimality criterion [8]). The proof relies on this property and follows the same steps as that of [9,

Th. 4.1]; therefore we omit the details.

V. NUMERICAL RESULTS

We consider n = 50 nodes independently and uniformly distributed inside the unit square and m = 1

sink node at the center of the square. Any two nodes i and j that are spaced by less than 1.6/
√
n ≈ 0.23

are connected by the directed edges (i, j) and (j, i). We discard the network realizations that are not

connected. For each realization, we randomly select k sources out of the n nodes; the sources generate

information at unit rate, while the remaining n − k nodes act as relays. The cost associated with each

link is the expected transmission count (ETX), which is drawn uniformly at random from the interval

[1, 3].

For the proposed balanced routing scheme (Algorithm 1 with w = 0.5 and power α > 0), we evaluate

the total cost, the maximum of the node loads {yi}ni=1, the Jain’s index, J = 1
n
(
∑n

i=1 yi)
2 /

∑n
i=1 y

2
i ∈

[1/n, 1], as a measure of fairness in the distribution of the loads and the empirical distribution of the

minimum number T ∗ of iterations required for Algorithm 1 to converge. We compare the results obtained
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using our algorithm against minimum-cost routing which is instantiated by setting w = 0 in Algorithm 1.

The results in Fig. 1 are obtained by averaging from 200 independent trials. In Fig. 1a, we observe that

balancing with α = 1.5 reduces the maximum load by 20–25% compared to minimum-cost routing across

all fractions of source nodes, while the total cost increases by < 5%; increasing α to two brings larger

reduction of the maximum load, of about 30–40%, and a higher relative total cost of about 5–10%. Fig. 1b

shows that the balanced routing scheme provides significantly fairer load-distributions. As illustrated in

Fig. 1c, the number of iterations required to find a balanced solution is higher than for min-cost routing

and increases with α. We also evaluated BP on the graph transformed by node splitting (see footnotes 1

and 2) and, while it outputs the same solutions, it requires a higher number of iterations than our method,

as shown in Fig. 1c.

VI. CONCLUSION

We formulated balanced routing in large-scale networks (such as Internet of Things) as optimization

of an objective function that provides a tunable trade-off between total cost efficiency and fairness of

the distribution of the node loads. In the proposed decentralized scheme, the nodes collectively find the

globally optimal routing solution through low-complexity local computations and exchanges of messages

with neighbours. The scheme provides significantly fairer solutions than minimum-cost routing at the

expense of slightly increased total cost and higher number of required iterations.

There are several interesting directions to explore further, such as adapting the framework to specific

models of energy consumption, including in the design the notions of reliability, trust among nodes and

security, but also extending the framework to take into account the scheduling of the transmissions.
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