
 

  

 

Aalborg Universitet

The electricity market in a renewable energy system

Djørup, Søren Roth; Thellufsen, Jakob Zinck; Sorknæs, Peter

Published in:
Energy

DOI (link to publication from Publisher):
10.1016/j.energy.2018.07.100

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Djørup, S. R., Thellufsen, J. Z., & Sorknæs, P. (2018). The electricity market in a renewable energy system.
Energy, 162, 148-157. https://doi.org/10.1016/j.energy.2018.07.100

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 27, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/304608518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.energy.2018.07.100
https://vbn.aau.dk/en/publications/2b5026f6-97ca-45d5-90b1-0e096b7c5616
https://doi.org/10.1016/j.energy.2018.07.100


Accepted Manuscript

The electricity market in a renewable energy system

Søren Djørup, Jakob Zinck Thellufsen, Peter Sorknæs

PII: S0360-5442(18)31397-5

DOI: 10.1016/j.energy.2018.07.100

Reference: EGY 13365

To appear in: Energy

Received Date: 31 October 2017

Revised Date: 9 July 2018

Accepted Date: 15 July 2018

Please cite this article as: Djørup Sø, Thellufsen JZ, Sorknæs P, The electricity market in a renewable
energy system, Energy (2018), doi: 10.1016/j.energy.2018.07.100.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.energy.2018.07.100


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 1/16 
 

The Electricity Market in a Renewable 1 

Energy System 2 

 3 

Søren Djørupa1, Jakob Zinck Thellufsenb, Peter Sorknæsc 4 

aDepartment of Planning, Aalborg University, Rendsburggade 14, DK-9000 Aalborg, Denmark; 5 

djoerup@plan.aau.dk 6 

bDepartment of Planning, Aalborg University, Rendsburggade 14, DK-9000 Aalborg, Denmark; 7 

jakobzt@plan.aau.dk 8 

cDepartment of Planning, Aalborg University, Rendsburggade 14, DK-9000 Aalborg, Denmark; 9 

sorknaes@plan.aau.dk  10 

 11 

Abstract 12 

The transition to a 100% renewable energy system based on variable renewable energy raises technical but 13 

also institutional questions. The smart energy system concept integrates variable renewable energy by 14 

addressing the technical challenges through the integration of different energy sectors, but integration of 15 

variable renewable energy also entails a change in the cost structures, especially related to electricity. The 16 

effect of this change in cost structures on market prices is investigated. This is done through simulation of a 17 

100% renewable energy system that utilises a large degree of cross-sector integration but maintaining the 18 

current electricity market structure. The paper uses a 100% renewable energy system scenario for a 2050 19 

Danish energy system. This is reflected in the use of wind energy as the primary renewable energy source. 20 

It is concluded that the current electricity market structure is not able to financially sustain the amounts of 21 

wind power necessary for the transition to a 100% renewable energy system. Since earlier research shows 22 

that neither electricity production costs nor the total system costs is higher for the renewable path than the 23 

fossil-based alternatives, the conclusion in this paper points towards a need for reshaping the institutional 24 

structure of electricity trade. 25 

Keywords: Smart energy systems, electricity market, wind power, renewable energy 26 

 27 

Abbreviations 28 

SES: Smart Energy System 29 

CHP: Combined heat and power 30 

CHP2: Decentralised combined heat and power plants 31 
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CHP3: Centralised combined heat and power plants 32 

PP: Power plants 33 

VRES: Variable Renewable Energy Sources 34 

DK1: Western Denmark  35 

 36 

1 Introduction 37 

The radical change of traditional fossil fuel-based energy systems to systems based on variable renewable 38 

energy sources involves both technical and institutional challenges. In the transition towards 100% 39 

renewable energy systems, one suggested pathway is the smart energy system (SES) [1–4]. Smart energy 40 

systems rely on three main components: smart electricity grids, smart thermal grids, and smart gas grids 41 

[5]. These main components are all interconnected to achieve the most efficient solutions to the 42 

integration of variable renewable energy sources (VRES). 43 

Smart energy systems are founded on the idea of basing future energy systems on VRES [5]. This means 44 

that production of energy from wind turbines, photovoltaics, solar thermal, etc., is the main source of 45 

energy in the system [6]. This creates a large amount of VRES [7], especially in the form of electricity that 46 

has to be utilised in the energy system to supply demands that to a large extent might not timely align with 47 

the variable production. Smart energy systems utilise system integration [4,8], where the different energy 48 

sectors are interconnected in order to create flexibility between the energy supply and the energy demand 49 

in 100% renewable energy systems and to deliver energy as efficient as possible in the right time, quantity 50 

and quality [9]. 51 

To create these integrated energy systems, smart energy systems rely on several technologies to increase 52 

the utilisation of variable renewable energy systems. Smart energy systems utilise heat pumps to convert 53 

electricity to heat, both in individual heating and district heating. This allows for the use of efficient thermal 54 

storages that are more cost efficient than electricity storages [1,10]. It utilises power-to-gas technologies to 55 

convert electricity from wind and solar to synthetic gases and electrofuels [11,12] that can be used in 56 

power plants, combined heat and power plants, and the transportation sector [12]. These fuels are also 57 

easily stored in already available storage facilities, like oil tanks and gas grids [1].  58 

The technical aspects of the SES are investigated in several papers. These can primarily be divided into two 59 

groups. The first group focuses on designing entire integrated energy systems. For example, for the 60 

European Union [12,13], countries such as Denmark [14,15], Ireland [16], Portugal [17], as well as cities and 61 

municipalities such as Copenhagen [18,19], Aalborg [20], and Sønderborg [18]. The second group of papers 62 

investigates specific aspects of the smart energy system. Examples are the benefit of flexible energy 63 

demand [2], the implementation of heat pumps [21], how Smart energy systems work in relation to 64 

electricity interconnection with other countries [22], the interplay between energy savings and integrated 65 

energy systems [23,24], utilising vehicle-to-grid technology [25], and the role of different type of energy 66 

storages [1,10].  67 

Common for these studies is that they investigate the technical operation of the energy system. Together 68 

they create a framework where the goal is to lower the fuel consumption. This article takes point of 69 
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departure in the technical scenarios developed within the SES framework. Studies have shown the technical 70 

and economic feasibility of such systems [15,26]. The central economic question regarding SES, thus, has an 71 

institutional and organisational character [9,27–30]. A pertinent question is: to what extent current market 72 

structures can support the massive increase in variable renewable energy capacities that are the main 73 

pillars of future SES?  74 

From an economic perspective, the replacement of fuels with wind and solar energy is a substitution of 75 

short-term fuel costs with long-term capital costs. The radical change in the technical aspects of the system, 76 

therefore, leads to questions about how the market and governance structures should be shaped [9]. A 77 

pertinent issue is the match between the current electricity spot market design and the introduction of 78 

fuel-free technologies, such as wind turbines and photovoltaics. The low marginal production costs of these 79 

fuel-free technologies affect the market prices in a downward direction. In the literature this is referred to 80 

as the merit order effect [28,31–34]. 81 

In this article, we briefly outline a theoretical basis of the merit order effect and recent empirical 82 

indications of this theoretical effect. Afterwards, our purpose is to investigate to what extent the mismatch 83 

between technologies and institutions is so severe that the current electricity market structure becomes a 84 

barrier for realising the visions of a 100% renewable energy supply. The starting point for this analysis is the 85 

SES approach. Thus, in order to create a more efficient energy system with high utilisation of variable 86 

renewable energy, the analysed energy system contains implementation of heat pumps—both in individual 87 

heating and in district heating—smart charge technology and vehicle-to-grid in combination with other 88 

flexible electricity demand, and power-to-gas technologies. 89 

To illustrate the potential issues, the study deals with the example of a 100% renewable energy system for 90 

Denmark. Studies [35–37] point to a high demand for wind power in a future Danish energy system. Thus, 91 

this study specifically investigates the potential gross revenue from a marginal price market with a high 92 

penetration of wind power. 93 

2 Current market structures: The merit order effect in theory and 94 

practice 95 

In the research regarding electricity wholesale markets, it is standard economic theory to assume the 96 

supply curve and the resulting market prices, which are derived from the marginal cost of supply in an 97 

auction-based system [38]. This textbook assumption is based on the premises of the so-called full 98 

competition. We understand the requirement of full competition as a market condition, where the 99 

individual supplier is disciplined by the competition from other suppliers to not bid into the market with a 100 

price above the marginal supply costs. 101 

What constitutes the marginal supply costs is not specified in standard economic textbooks. Which 102 

marginal cost that matters for the price formation is a result of the concrete institutional setting. Thus, the 103 

expected marginal cost formation must rely on an analysis of the concrete rules and procedures that 104 

structure the trade in the specific market that is analysed. 105 

In the Nordic countries, the Nord Pool Spot market is designed as an hourly auction. In principle, it will be 106 

the hourly supply cost, which becomes the marginal costs. These shape the market prices.  107 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 4/16 
 

Having no fuel consumption, wind power, and photovoltaics have no marginal costs within such a market 108 

structure. The effect of this is well known in the literature and is usually referred to as the merit order 109 

effect [28,31–34, 39].  110 

Combining the textbook theory from economics with the knowledge of trade procedures at the Nord Pool 111 

Spot, the expectation that the introduction of wind power and photovoltaics into the electricity system 112 

should have a downward pressure on market prices. 113 

The existence of the merit order effect is observed in several publications. It is well described how the 114 

introduction of wind, photovoltaics, and other alike technologies will lead to declining market prices when 115 

introduced in the current market structures [28, 31–34, 39]. 116 

An empirical supplement to the existing literature is presented below. Figs. 1–3 presents some calculations 117 

carried out on basis of hourly spot market data. The data behind the calculations is achieved from a 118 

database with electricity production and market data hosted by the Danish TSO, Energinet.dk [55).  119 

Fig. 1 shows the development in average spot market prices in the Western Denmark (DK1) price zone in 120 

Nord Pool Spot. The general trend is declining prices, and it can also be observed that the prices for wind 121 

production is, on average, lower than the average for the total yearly production. Fig. 2 shows the 122 

correlation between wind power and market prices. As depicted, the trend is that increased wind power 123 

production results in a stronger correlation between wind power production and market prices. The 124 

correlation, of course, is negative; therefore, hours of high wind production results in lower prices. Fig. 3 125 

shows that the increase in wind power production is more-or-less mirrored in a decrease in central power 126 

plant production—as would be expected from the market theory. 127 

 128 

Fig. 1. The development in spot market prices in Western Denmark (DK1). 129 
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 130 

Fig. 2. Development in wind power production and the correlation between wind production and market prices in Western 131 
Denmark (DK1). 132 

 133 

Fig. 3. The share of electricity production in Western Denmark (DK1) from wind power and central power plants. 134 

In a broader system perspective, the declining market prices can be understood as a natural consequence 135 

of the condition that the primary energy production is undergoing a substitution of fuels with physical 136 

capital, such as wind turbines. 137 

As a consequence of this technical substitution, this study argues that smart energy systems require 138 

different electricity markets than the traditional fuel-based systems. Currently, electricity markets are in 139 

most cases based on a short-term marginal cost approach. This makes sense in a fuel-based energy systems 140 

where the supply costs are more closely linked to the short-term marginal costs (e.g., fuel costs), and there 141 

is a mix of different units with different short-term marginal cost. Since short-term costs are higher in a 142 

fuel-based system, it is relevant with a market that is designed to minimise these costs. As costs become 143 
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more connected to long-term capital costs, and less related to short-term fuel costs, institutional structures 144 

addressing the short-term costs become less influential to the total system costs. 145 

The actual price development within the current market design, now and in the future, is shaped by many 146 

other factors than the development in marginal supply cost. However, it is the view in this paper that there 147 

will be a long-term downward pressure on electricity wholesale market prices if current market structures 148 

are kept in place during the technological transition. Referring to the merit order effect, the economic 149 

properties of the supply side forces must be manifested in the prices as the transition proceeds. In systems 150 

where the bulk part of primary energy supply is stemming from wind turbines, the sustainability of 151 

electricity market structures becomes vital for the system as these should financially sustain investments in 152 

wind turbines. 153 

The critical question is, therefore, whether the implications of the described economic properties are so 154 

significant that it will prevent the transition from succeeding, as the market conditions might make needed 155 

investments in wind power unfeasible for investors. To address this question, we carry out a market 156 

analysis in a simulated SES, assuming the current electricity market structures remains unchanged. 157 

Specifically, we use a designed SES for Denmark with 100% renewable energy, assuming electricity markets 158 

structure equivalent to the current Nord Pool Spot market. The method behind the analysis is described in 159 

the next section. 160 

3 Methods 161 

Several steps are needed to investigate whether a payment corresponding to the price derived from hourly 162 

marginal production cost is sufficient to cover the investments of renewable energy in a SES. Due to the 163 

electricity market structure that wants to be investigated, the study needs to analyse the hourly operation 164 

of a 100% renewable SES. In each hour, the marginal electricity producing unit must be identified, as well as 165 

the production on all the units in the energy system. Based on fuel prices and other variable operation 166 

costs, the marginal cost for each unit in each hour must be identified as well. By having these three 167 

outputs, it is possible to identify the theoretical market price in every hour and, thus, identify the specific 168 

hourly payment to the variable renewable energy sources.  169 

By taking the simulated production profile into account, the study then summarises these hourly revenues 170 

into total yearly earnings. Knowing the yearly income from the produced energy, the private return on 171 

capital can be estimated on basis of assumed investment costs. 172 

To identify the hourly operation of a SES, the study uses EnergyPLAN as the energy system simulation tool. 173 

The ‘IDA’s Energy Vision 2050’ scenario for a 100% renewable energy system of Denmark in 2050 is used as 174 

the scenario simulated in EnergyPLAN [15]. ‘IDA’s Energy Vision 2050’ explores a pathway towards 175 

transitioning the Danish energy system to 100% renewable energy. It compares the path to similar studies 176 

for Denmark, to create an efficient scenario with less sensitivity to the development of energy prices in the 177 

future. This results in a scenario for a future Danish energy system. In that sense, the scenario takes 178 

advantage of system integration technologies to reach an efficient utilisation of variable renewable energy. 179 

Therefore, the ‘IDA’s Energy Vision 2050’ scenario illustrates the principles of a fully integrated SES in 2050 180 

based on large amounts of variable renewable energy. 181 
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EnergyPLAN is an advanced energy system tool, developed at Aalborg University [40]. EnergyPLAN 182 

simulates the operation of an entire energy system, including electricity, heating, industry, and transport, 183 

on an hourly basis [41]. Either these simulations can be based on the objective of reducing fuel 184 

consumption (i.e., technical simulation) or on the objective of reducing short term marginal costs (i.e., 185 

market simulation). EnergyPLAN runs deterministic simulations based on analytical programming; 186 

therefore, with the same inputs, the same outputs are achieved. Fig. 4 illustrates the links between the 187 

different energy sectors in EnergyPLAN. 188 

The links shown in Fig. 4 are tied to the smart energy systems concept. It shows that each energy sector is 189 

modelled and that EnergyPLAN creates links between them. EnergyPLAN models the electricity system by 190 

including the classical electricity demand, such as for appliances and lightning, but also electricity demand 191 

derived from heating and transport systems running on electricity. The user defines the size of the potential 192 

units for producing the needed electricity. This includes renewable energy sources as wind and solar, but 193 

also power plants of different types, combined heat and power plants, hydropower, and electricity storage. 194 

EnergyPLAN can prioritise between these units, depending on either a marginal cost perspective or a fuel 195 

efficiency perspective. The black lines in Fig. 3 show the structure and flows of the electricity system as well 196 

as how it plays together with industry, transport, and heating demands. 197 

EnergyPLAN models the heating sector as two different types of demands: either an individual heated 198 

building or buildings connected to district heating. The individual heated building, in this case, operates on 199 

heat pumps and biomass boilers and, therefore, results in either an increased electricity demand or an 200 

increased fuel demand. The district heating system interoperates with the electricity system and transport 201 

system. The system includes combined heat and power plants, which produce both electricity and heat. 202 

The district heating system also includes thermal storages, on which heat from the combined heat and 203 

power (CHP) plant can be stored. Furthermore, the storage can store heat produced on a heat pump, 204 

generating flexibility excess electricity from wind turbines and the heat demand. The transport sector in 205 

EnergyPLAN utilises electrolysers and electrofuels to supply the heavy transport. From these processes, 206 

waste heat can be produced to the district heating grid. Thus, there is a link between excess electricity 207 

production and hydrogen production, heat production, the gas system, the heat system and the electricity 208 

system. Finally, the industry sector can also deliver waste heat to district heating. The interoperability and 209 

flows can be identified on the orange line in Fig. 3. 210 

The transport demand primarily gives an option of using electricity and electrofuels as energy carriers. 211 

However, this interconnects the transport system directly to the electricity system, and indirectly to the 212 

district heating system.  213 

The final energy system utilised in EnergyPLAN is the fuel system. The yellow line in Fig. 3 highlights the fuel 214 

system. In a traditional energy system, the system is primarily reliant on imported fuels, like oil, gas, and 215 

coal. However, EnergyPLAN allows for production of fuel from excess electricity or other biomass 216 

resources. While biogas and biofuels are produced separately, the production of electrofuels enables the 217 

use of excess electricity; whereas, the plants also produce waste heat for district heating. These fuels are 218 

used for transport, but also for energy generation in boilers and power plants. Thus, the production of fuels 219 

creates a loop, where excess electricity in hour can be stored as a fuel, used in a heavy duty truck in 220 

another hour, or utilised in a power plant in hours with low availability on the VRES. 221 
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This large degree of interoperability between all the main energy sectors makes EnergyPLAN useful for 222 

analysing the impact of renewable energy in an integrated energy system. The interoperability makes it 223 

possible to utilise the VRES in multiple sectors, such as heat pumps for heating, electric vehicles with smart 224 

charge and vehicle to grid, hydrogen production, and storages. Together, this should create a higher 225 

utilisation rate and demand for electricity, thus, creating more situations with potential for income for 226 

VRES. Thus, the EnergyPLAN model creates a better framework for analysing the impacts of large shares of 227 

VRES, such as wind, compared to a tool that only can model the electricity sector for instance. EnergyPLAN 228 

takes into account the potential ways of using VRES in a SES. 229 

 230 

 231 

Fig. 4. Overview of EnergyPLAN’s approach to smart energy systems showing the sectors being analysed and their links [39]. 232 

EnergyPLAN has been used for many aspects of energy systems analysis and based on the large amount of 233 

potential measure points, it is possible for the user to discuss possible solutions for an energy system [42]. 234 

For instance, it has been used for modelling future energy scenarios for countries [17,35,43–46], regions, 235 

and cities [18,19,47–49]; it has been used for the investigation of the implementation of certain 236 

technologies [10,23–25,50,51]; and it has been used to investigate pathways for different renewable 237 

energy sources [44,52].  238 

The first step of the analysis is to simulate the operation of the scenario from ‘IDA’s Energy Vision 2050’. 239 

The 2050 scenario is used, which is simulated based on the technical simulation strategy, achieving a fuel-240 

efficient operation of the entire energy system. The scenario is based on a range of different potential 241 

future fuel costs. The scenarios are run exactly as they are described in ‘IDA’s Energy Vision 2050’, meaning 242 
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they rely 100% on renewable energy and an integrated energy system utilising heat storages, gas storages, 243 

heat pumps, and power-to-gas. Also, flexible electricity demands and electric vehicles with smart charge 244 

technology are implemented. Since the primary source of energy is wind power, this is the main emphasis 245 

of the analysis. Table 1 shows installed capacity of VRES. For comparison, the annual electricity 246 

consumption is 94.11 TWh in the 2050 scenario. This also shows why this study emphasises onshore wind 247 

power and offshore wind power, as these are the main producers of energy, not only in the electricity 248 

sector but in the entire energy system. 249 

Table 1  250 

Assumptions for variable renewable electricity capacity and production in the IDA’s Energy Vision 2050 251 

scenario [15]. 252 

 

Installed capacity [MW] Yearly production [TWh] 

Share of annual 

electricity 

consumption 

Onshore wind 5 000 16.20 17% 

Offshore wind 14 000 63.76 68% 

Photo voltaic  5 000 6.35 7% 

Wave power 300 0.05 0% 

 253 

The focus on wind power is due to the analysed energy system of Denmark. However, the study should be 254 

seen as principal in terms of the SES, which could potentially be of any size, and the main energy source 255 

could be solar power in a different system. As discussed earlier in this paper, solar power also has low 256 

short-term marginal costs and, therefore, also reduces the electricity wholesale market price in hours of 257 

production.  258 

Based on a simulation of the SES, it is possible to identify the production of each unit in every hour. Thus, 259 

the marginal electricity producer in every hour is found. In principle, in terms of electricity, the following 260 

order is used to determine the marginal electricity producer in each hour: 261 

1) VRES are the only producers of electricity. VRES are the marginal electricity production unit. 262 

2) Centralised combined heat and power plants (CHP3) are producing electricity, but not 263 

decentralised combined heat and power plants (CHP2). CHP3 are the marginal producers. 264 

3) CHP2 are producing electricity alongside CHP3. CHP2 are the marginal producing unit. 265 

4) Condensing power plants are producing electricity. Condensing power plants are the marginal 266 

producing unit. 267 

This order is determined based on the operation of the future energy system as fuel efficient as possible. 268 

Thus, the first units set to operate are the technologies that do not use any fuel. Then, the combined heat 269 

and power plants sets the price since they are more fuel-efficient than running a power plant and a boiler. 270 

In this specific example, the CHP3 are more efficient than the CHP2. Finally, the least efficient way of 271 

producing electricity in this scenario is the operation of condensing power plants. In the specific example 272 

here, this order also corresponds to the order of the marginal prices on the different units. Table 4 shows 273 

that the merit order above is equal to the order of the marginal prices.  274 
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The simulation applied in EnergyPLAN is based on a technical priority order that is identical to the one 275 

outlined above, and it aims to reduce fuel consumption. However, the outlined order corresponds to the 276 

hourly marginal cost merit order, which is why the fuel minimising simulation strategy in this instance is 277 

applicable as a market analysis. 278 

By comparing the outlined order of determining the marginal producing unit with the simulated hourly 279 

production profiles over the year, it is possible to determine which supply unit sets the price in every hour. 280 

The actual marginal production cost in every hour, Mcost (see Equation 1), that each unit has, is dependent 281 

on fuel costs (Fcost) and variable operation and maintenance costs (VO&Mcost), as the short-term electricity 282 

demand is assumed inelastic to price. Flexible demand in this study serves the purpose of limiting fuel 283 

consumption. In this study, the fuel costs and operation and maintenance costs are fixed for the whole 284 

year. 285 

 ����� = ����� + 	
&����� (1) 286 

Future fuel prices are by nature uncertain, so this study operates with three scenarios of fuel prices: low, 287 

medium and high. Table 3 shows the assumption for fuel prices. These are based on the three scenarios in 288 

“IDA’s Energy Vision 2050” [53], Table 2 shows the variable operation and maintenance costs which are 289 

held fixed while fuel costs are varied. These are based on the Danish Energy Agency’s cost database [54]. 290 

The resulting marginal production costs for each of the units are highlighted in Table 4. 291 

Table 2  292 

Variable operation and maintenance costs [53]. 293 

Category Technology VO&M Cost [EUR/MWh] 

District heating and CHP Systems 

Boiler 0.15 

Combined heat and power 2.70 

Heat pump 0.27 

Electric heating 0.50 

Power plants 

Hydro power 1.19 

Condensing power plant 2.65 

Geothermal 15.00 

Gas to liquid Module 1 1.80 

Gas to liquid Module 2 1.01 

Storage 

Electrolyser 0.00 

Pump (charging unit) 1.19 

Turbine (discharging unit) 1.19 

Vehicle to grid discharge 0.00 

Hydro power pump 1.19 

 294 

Table 3 295 

Fuel costs in the different price scenarios [53]. 296 

[EUR/GJ] Coal Fuel Oil Diesel Petrol Gas Biomass 
Dry 

Biomass 

Low 2.7 8.8 11.7 12.7 5.9 5.6 4.7 
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Medium 2.8 11.6 16.0 16.4 8.3 6.0 10.9 

High 3.4 16.1 19.6 20.6 10.4 8.1 6.3 

 297 

Table 4 298 

Resulting marginal costs depending on fuel costs and the marginal production units [53,54]. 299 

  Low fuel costs Medium fuel costs High fuel costs 

Variable renewable energy 

sources (VRES) 0 EUR/MWh 0 EUR/MWh  0 EUR/MWh 

Running power plant 52 EUR/MWh 66 EUR/MWh 79 EUR/MWh 

Running central CHP 44 EUR/MWh 59 EUR/MWh 68 EUR/MWh 

Running decentral CHP 49 EUR/MWh 64 EUR/MWh 73 EUR/MWh 

 300 

By combining the knowledge of exactly how the 100% renewable energy system operates in each hour of 301 

the year, what the marginal producing unit is in every hour, and what the cost is of operating that unit, it is 302 

possible to find the electricity market price and the resulting annual income for wind turbines. These 303 

earnings are compared with the investment costs for the onshore and offshore wind turbines, respectively. 304 

Here, the study uses two different assumptions for investment costs and fixed operation and maintenance 305 

costs. The first scenario is based on current 2015 prices, while the second scenario is based on assumed 306 

2050 prices. Both price scenarios are from the Danish Energy Agency [54]. Table 5 shows the cost scenarios 307 

for onshore and offshore wind turbines. 308 

Table 5  309 

Cost data on onshore and offshore wind turbines for 2015 and 2050 price scenarios [54]. 310 

 2015 price scenario 2050 price scenario 

Total onshore wind investment [M€/MW] 1.07 0.83 

Annual onshore wind O&M [M EUR] 173 140 

Onshore wind technical lifetime [years] 25 30 

Total offshore wind investment [M€/MW] 2.46 1.39 

Annual offshore wind O&M [M EUR] 1,076 590 

Offshore wind technical lifetime [years] 25 30 

 311 

With the above information, it is possible to calculate the private profitability of wind power. It is important 312 

to highlight that this economic return cannot be conceived as the socioeconomic feasibility of wind power, 313 

but it should be understood as the return on capital a private investor can obtain within the current 314 

electricity market structure, excluding feed-in tariffs and other possible non-market payments but 315 

assuming a 100% renewable smart energy system. The system is only simulated for one year, and the study 316 

assumes the same income every year throughout the wind turbines’ lifetime. Thus, the estimated yearly 317 

income may be interpreted as a yearly average income. 318 
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4 Results 319 

What becomes apparent from simulating the system is that approximately 55% of the hours have wind or 320 

solar power as the marginal producer. This means that in over half the hours of a year the only production 321 

of electricity comes from VRES. In those hours, the electricity market price is zero; thus, there will only be 322 

an income for the wind turbine owner in 45% of the hours during the year. Power plants determine the 323 

marginal price in 36% of the hours during the year, while CHP plants determine the marginal price in 9% of 324 

the hours of the year. The specific hours can be seen in Table 6. Please note that EnergyPLAN simulates 325 

leap years. 326 

Table 6  327 

Number of hours where different technologies set the marginal price. 328 

Marginal producer Hours Share of annual hours 

Variable renewable energy sources (VRES) 4850 55% 

Centralised combined heat and power plants 1 0% 

Decentralised combined heat and power plants 808 9% 

Power plants 3125 36% 

 329 

The financial challenge for wind energy investments becomes clearer when looking at the energy amounts 330 

produced from various technologies. In the simulation, most of the yearly wind production occurs in hours 331 

where VRES are the marginal producer. Fig. 5 illustrates this by comparing the energy production from the 332 

different units in every hour with the marginal producer. Fig. 5 also shows that for onshore wind turbines, 333 

81% of its energy production is sold at zero prices; in other words, hours where a variable renewable 334 

energy technology is the marginal producer, 74% of the offshore wind production hours occur at a zero 335 

price. Onshore wind turbines, therefore, only receive an income on 19% of their supplied energy to the 336 

system. For offshore wind turbines the income situation is slightly better, with 26% of their energy traded 337 

in hours where a fuel-fired plant is the marginal supplier. 338 

 339 

 340 

Fig. 5. The share of production on wind turbines that occurs when different technologies are marginal producers. VRES include both 341 
wind and solar, CHP3 is centralized combined heat and power plants, CHP2 is decentralized combined heat and power plants, and 342 

PP is condensing power plants. 343 
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To illustrate how this income is distributed through the year, Fig. 6 shows a duration curve of the hourly 344 

income on onshore and offshore wind, using the medium fuel prices. This shows that 50% of the income 345 

comes from producing only around 1,000 hours a year, both for onshore and offshore wind. 346 

 347 

Fig. 6. Duration curve of the income on the installed onshore and offshore wind turbines in a medium fuel price scenario. 348 

It is apparent from the figures that current electricity market structures may only be a limited source of 349 

income for wind power in the future. It should be underlined that these results are the output of a system 350 

where there is a high implementation of technologies for integrating wind energy in the heat and gas 351 

sector. The results indicate that these technologies—despite their large and well-documented technical 352 

and socioeconomic benefits—may not suffice as long term means for sustaining the current electricity 353 

market structure. Even though the demand side is boosted in hours of high wind, the supply side force of 354 

the large amounts of wind energy in the system will dominate the price formation. As long as zero marginal 355 

cost technologies are the marginal supplier in a competitive environment, this study indicates that demand 356 

side initiatives do not raise price levels significantly within an hourly auction design.  357 

To conclude whether the income from the electricity market is enough, the income level has to be 358 

compared with the investment costs. To do this, the study calculates the internal rate of return as an 359 

expression of private profitability. Table 6 and Table 7 show the internal rate of return for all scenarios, 360 

based on the assumption that each year generates the same income and that this income can be generated 361 

for all the wind turbines’ lifetime. The “N/A” results indicate scenarios where the annual earnings are lower 362 

than the annual costs, meaning annual cash flows throughout the lifetime is negative. The results, here, 363 

show that the internal rate of return is negative in most scenarios, meaning the yearly income is not large 364 

enough to give a positive return on capital. In one scenario, the estimated internal rate of return is zero, 365 

which is not enough to attract private capital for the investment. In general, this simply means that there 366 

are too small revenues in the market to sustain investments in VRES. Therefore, the current market 367 

structure is unable to financially sustain wind energy in a smart energy system. 368 

This points to the conclusion that complementary institutions, such as feed-in tariffs, or a more 369 

fundamental restructuring of the electricity market design is necessary for providing sufficient VRES in a 370 

100% renewable energy system. 371 
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 372 

Table 6 373 

Internal rate of return for onshore wind. 374 

  Low fuel costs Medium fuel costs High fuel costs 

2015 prices N/A -12% -7% 

2050 prices -10% -4% -2% 

 375 

Table 7 376 

 Internal rate of return for offshore wind. 377 

  Low fuel costs Medium fuel costs High fuel costs 

2015 prices N/A N/A -11% 

2050 prices -5% -2% 0% 

 378 

4.1 Discussion of key methodological choices 379 

Some methodological choices are important to discuss, as these choices potentially influence the estimated 380 

price levels and the private profitability of wind power investments. 381 

First, the simulation is run as a closed market model, meaning that no exogenous market has been linked 382 

up to the simulated energy system. Naturally, if a system dominated by variable electricity sources is 383 

surrounded by high price fuel-based systems, connecting to these areas may be a strategy to sustain the 384 

market revenues for wind power and alike technologies. However, there are both methodological as well as 385 

analytical reasons for why the system has been simulated as a closed system. 386 

In the long run, it is assumed that all countries strive towards fossil fuel free systems. In this perspective, it 387 

is not a viable strategy to analyse smart energy systems as small renewable islands surrounded by 388 

neighbouring high price fuel-based systems. The very premise for this paper is to investigate the economic 389 

properties of a system where wind power and photovoltaics are the dominant sources of energy.  390 

In addition, because the external markets would be modelled as exogenous parameters—including those in 391 

the analysis—they may cover up financial imbalances in the system as the one uncovered above. Because 392 

the external market prices are not derived from a specified system, but is only included as an assumed 393 

price distribution, they enter the analysis as a sort of ‘random’ factor that might potentially have a large 394 

influence on the model outcome. Such element, therefore, potentially blurs the intrinsic economic 395 

dynamics of the SES, which is the subject of this paper. 396 

It should also be added that the present analysis is done based on a technical scenario for Denmark with no 397 

significant internal bottlenecks. For the present purpose, the geographical location and extent of the 398 

scenario is not the main issue. The analysis is based on the chosen scenario due to the character of its 399 

technical design: a full scale SES. In principle, a SES for Europe could be simulated as a closed system, thus, 400 

implying no limitations in electricity flow between nations. 401 

Second, there is an assumption of full competition on the supply side. This means that it is assumed that 402 

prices strictly reflect marginal production costs. Weakened competition among suppliers may clearly allow 403 
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marginal producers to charge above marginal costs and, thereby, raise price levels. However, since market 404 

structures, such as the Nord Pool Spot market, is designed with the assumption of full competition, it is 405 

appropriate to evaluate these markets structures with the assumption of full competition. In other words, 406 

we assume the markets to work as they are designed to work. 407 

5 Conclusions 408 

The introduction of VRES, such as wind power and photovoltaics, poses both technical and organisational 409 

challenges to the energy system.  410 

The technical challenges of VRES have been addressed in literature under the concept smart energy 411 

systems. An organisational challenge is derived from the parallel shift from short-term to long-term costs 412 

associated with the substitution of fuels with physical capital. 413 

It is well documented that this change in the technical production basis results in a downward pressure on 414 

electricity spot-market prices with the current electricity market paradigms in use. In this paper, we have 415 

addressed whether this economic effect is so severe that it will undermine the financial sustainability of the 416 

technical and economic efficient solutions proposed in the smart energy systems literature. By calculating 417 

theoretical market prices in a 100% renewable energy system, we find the force of the merit order effect to 418 

be a barrier for realizing a 100% renewable energy system based on variable renewable electricity sources. 419 

It is shown that the estimated return on capital for private wind energy investors is non-existent and might 420 

even be negative. These results suggest that it is not probable that the current electricity market structures 421 

will be able to financially sustain VRES as the dominating primary sources of energy. As at least half of the 422 

primary energy supply is fed in through the electricity system, these identified shortcomings in its current 423 

financial structure may be perceived as a barrier for the provision of primary energy supply in a SES. 424 

So far, the introduction of renewable energy has—to a large extent—been provided through feed-in tariffs 425 

and other comparable schemes. These schemes are often referred to as subsidies, implying that they are 426 

temporary necessities until renewable energy technologies mature. This study suggests that the long-term 427 

necessity of the schemes is not related to technological inefficiency but a permanent mismatch between 428 

cost structures and the current specific market structures. 429 

Thus, as wind power (and photovoltaics) gradually matures, it may be a misinterpretation to regard the 430 

feed-in tariffs as temporary subsidies that are to be removed. While these policies may have originally been 431 

introduced to the system as subsidies for wind power at an early technological stage, they should now be 432 

understood as market supporting instruments that ensures the financial sustainability of the system in a 433 

long-term perspective. 434 

However, this financial necessity of feed-in tariffs is due to the specific design in the Nord Pool Spot market 435 

that induces the hourly cost based low market prices. There is nothing faulty with the spot market 436 

construction in itself, as long as its limitations is understood and supplementing financial institutional 437 

elements (e.g., feed-in tariffs or comparable arrangements) are kept in place. Currently, the feed-in tariffs 438 

fulfil the gap between long term production costs and market prices derived from short term marginal 439 

costs. This gap seems to be a permanent condition – at least while the transition proceeds over the next 3-4 440 

decades. 441 
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The calculations in this paper assume that market participants keep bidding based on (hourly) short term 442 

marginal costs. It could be discussed whether the bids in the very long term would stabilize at long term 443 

marginal costs. However, in the radical transition we are undergoing towards renewable energy systems, 444 

new capacity would constantly have to be introduced to the market. As long as this happens, we believe 445 

there will be a condition of competition on short term marginal costs.  446 

For example, the political goal in Denmark is to have transitioned to a renewable energy system in 2050. 447 

This implies hard competition on short term marginal costs at least until 2050 - a condition that prevents 448 

the establishment of a long term marginal costs equilibrium. Meaning if a wind turbine is build today, it will 449 

be replaced two times before the long-term market equilibrium can possibly be established. Based on this, 450 

it is the conclusion that the current market design cannot be a financial engine for the transition to happen. 451 

 452 

If the spot market is not redesigned while feed-in tariffs are removed, the results in this paper suggest that  453 

the electricity spot market design becomes a barrier to the transition to a 100% renewable energy system. 454 

The solution to the market effects investigated in this article must be either: (1) keep market 455 

supplementing institutions, such as feed-in tariffs, in place or (2) redesign the market where wind energy is 456 

traded. 457 

It is beyond the scope of this paper to investigate alternative market structures in any detail. Indeed, this 458 

important issue seems to call for its own paper. However, at least two basic requirements for an alternative 459 

market arrangement appears to us as important. First, since costs of wind power are long term in nature, 460 

contracts that finance this supply should be the same.  Second, it is important that consumers of electricity 461 

bear the full cost of energy supply. While the first requirement is not met by present hourly spot market 462 

trading, current state-financed feed-in tariffs for wind power fails at the second requirement. 463 

 464 
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Highlights 

• Calculates electricity prices in a renewable energy system with current market design. 

• Calculates private profitability of wind power investments within such system. 

• The market design cannot financially sustain wind power in a renewable energy system. 

 


