

Aalborg Universitet

Characterization of deformation and cracking behavior of high Poisson's ratio oxide glasses with La2O3

Januchta, Kacper; Sun, Ruofu; Huang, Liping; Smedskjær, Morten Mattrup

Publication date: 2018

Link to publication from Aalborg University

Citation for published version (APA): Januchta, K., Sun, R., Huang, L., & Smedskjær, M. M. (2018). Characterization of deformation and cracking behavior of high Poisson's ratio oxide glasses with La2O3. Abstract from 15th International Conference on Physics of Non-Crystalline Solids & 14th European Society of Glass Conference, Saint Malo, France.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Characterization of deformation and cracking behavior of high Poisson's ratio oxide glasses with La2O3

Kacper Januchta *^{† 1}, Ruofu Sun ², Liping Huang ², Morten Smedskjaer ¹

¹ Department of Chemistry and Biosciences, Aalborg University – Aalborg, Denmark

² Dept. Materials Science and Engineering, Rensselaer Polytechnic Institute – Troy, New York 12180,

United States

Poisson's ratio () is the negative of the ratio of the transverse strain to the longitudinal strain for a uniaxial stress state. The adjustment of is receiving increasing interest as a means of tailoring the ductility of glasses. This has been motivated by the observation of intrinsic ductility in high- (above 0.32) bulk metallic glasses, but it is unknown whether the same relation between ductility and exists in oxide glasses since all known oxide compositions exhibit -values below or around 0.32. In this study, we attempt to manufacture high- oxide glasses using two approaches both based on La2O3 incorporation: (i) Known high- glass compositions (La2O3containing aluminoborate, aluminogermanate, and aluminosilicate) are first synthesized, and then subjected to hot compression treatment to further increase their atomic packing density and thus likely high . (ii) ZnO-B2O3 glass composition is doped with increasing amounts of La2O3 to increase. These glass systems are investigated using various characterization techniques to understand the mechanical response of high- oxide glasses. Elastic moduli including -values are determined through Brillouin light scattering and ultrasonic echography techniques. Hardness, crack resistance, and cracking patterns of all glasses are investigated using Vicker's microindentation. For selected compositions, annealing-induced volume recovery of indentation imprints is studied to shed light on the deformation mechanisms controlling the response of glass to sharp-contact loading. Finally, micro-Raman spectroscopy is used to acquire Raman spectra in the as-made and the hot compressed glasses, as well as inside the Vicker's indentation imprints of the as-made glasses. The deformation and cracking characteristics are linked with structural features of the investigated glass compositions.

Keywords: indentation, poisson's ratio, cracking, deformation

^{*}Speaker

[†]Corresponding author: kja@bio.aau.dk