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Limbal Epithelial Cells
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ABSTRACT

Ex vivo cultured human limbal epithelial stem/progenitor cells (hLESCs) are the main source for
regenerative therapy of limbal stem cell deficiency (LSCD), which is worldwide one of the major
causes of corneal blindness. Despite many stemness-associated markers have been identified
within the limbal niche, the phenotype of the earliest hLESCs has not been hitherto identified.
We sought to confirm or refute the use of tumor protein p63 (p63) and ATP binding cassette
subfamily B member 5 (ABCB5) as surrogate markers for hLESCs early within the limbal differen-
tiation hierarchy. Based on a robust fluorescence-activated cell sorting and subsequent RNA iso-
lation protocol, a comprehensive transcriptomic profile was obtained from four subpopulations
of cultured hLESCs. The subpopulations were defined by co-expression of two putative stem/pro-
genitor markers, the p63 and ABCB5, and the corneal differentiation marker cytokeratin 3. A
comparative transcriptomic analysis yielded novel data that indicated association between pig-
mentation and differentiation, with the p63 positive populations being the most pigmented and
immature of the progenitors. In contrast, ABCB5, either alone or in co-expression patterns, iden-
tified more committed progenitor cells with less pigmentation. In conclusion, p63 is superior to

ABCB5 as a marker for stemness. STEM CELLS 2018;36:1411–1420

SIGNIFICANCE STATEMENT

This study has first conducted a biomarker-oriented comparative transcriptomic analysis of cul-

tured and sorted human limbal epithelial stem/progenitor cells (hLESCs), and found out that the

p63 but not the ATP binding cassette subfamily B member 5 predicts the immaturity of niche

progenitors. The comparative analysis of the functional gene networks furthermore revealed an

association of stemness with pigmentation, which highlights the role of pigmentation in the pro-

tection of corneal limbus from radiation damage. These findings have implications for the

acceptance and use of p63 as a marker for early hLESCs, and contribute to better understanding

of hLESCs differentiation biology.

INTRODUCTION

The human limbal epithelial stem/progenitor

cells (hLESCs) are believed to play a central

role in renewing and repairing cornea [1]. How-

ever, this biological process may be disturbed

thus leading to a condition termed limbal stem

cell deficiency (LSCD). As a result, the cornea

becomes opacified and vascularized, with a

concomitant visual impairment that often

results in complete blindness [2]. At present,

transplantation of ex vivo cultured limbal epi-

thelial cells is considered to be the most effi-

cient treatment [2]. Since the first cultured

limbal epithelial transplantation (CLET) was

conducted in 1997 [3], thousands of CLET pro-

cedures have been reported from around the

world [4]. Despite its indisputable success, the

overall long-term success rate of this proce-

dure does not surpass 80% [5–7]. Considerable

effort is therefore currently being invested into

better understanding of the biomolecular and

developmental cues that control the limbal

stem cell niche, so that the current CLET may

be improved.

The hLESCs are usually identified by a

combination of markers, which include p63,

ABCG2, integrin α9, keratin 15, N-cadherin,

NGF/TrkA, integrin α6/CD71, Hes1, p75, nectin

3, importin 13, nucleostemin, CD38/157, Lrig1,

aLaboratory for Stem Cell
Research, Department of
Health Science and
Technology, Aalborg
University, Aalborg, Denmark;
bDepartment of Pediatric
Surgery, First Hospital of Jilin
University, Changchun, Jilin,
People’s Republic of China;
cDepartment of
Ophthalmology, Aalborg
University Hospital, Aalborg,
Denmark; dDepartment of
Ophthalmology, Aarhus
University Hospital, Aarhus,
Denmark

Correspondence: Vladimir Zachar,
M.D., Ph.D., Fredrik Bajers Vej
3B, 9220 Aalborg East, Denmark.
Telephone: (45) 99407556;
e-mail: vlaz@hst.aau.dk

Received January 26, 2018;
accepted for publication May 7,
2018; first published online in
STEM CELLS EXPRESS May
20, 2018.

http://dx.doi.org/
10.1002/stem.2857

This is an open access article
under the terms of the Creative
Commons Attribution-
NonCommercial License, which
permits use, distribution and
reproduction in any medium,
provided the original work is
properly cited and is not used for
commercial purposes.

TISSUE-SPECIFIC STEM CELLS

STEM CELLS 2018;36:1411–1420 www.StemCells.com © 2018 The Authors Stem Cells published by Wiley
Periodicals, Inc. on behalf of AlphaMed Press 2018

http://orcid.org/0000-0002-5279-2690
mailto:
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


ABCB5, and WNT7A [8]. Of special significance appears the

p63 marker, since Pellegrini et al. in 2001 suggested that its

deltaNp63α isoform is required to support the normal devel-

opment of corneal epithelium [9]. Furthermore, the propor-

tion of p63 positive cells in the limbal epithelial cell culture is

a key factor influencing the success of CLET [5]. Consequently,

it is being used as a surrogate marker for hLESCs in the

world’s first commercial stem cell product for the treatment

of LSCD, the Holoclar [10, 11]. While this marker has a nota-

ble prognostic value, enrichment strategies based on

antibody-sorting of cells are hindered by the fact that p63 is

an intracellular protein. Alternatively, the ATP binding cas-

sette subfamily B member 5 (ABCB5) surface protein, has

been suggested as a putative hLESCs marker. Recent findings

have shown that ABCB5 is critical for corneal epithelial

homeostasis and repair [12] and it is often co-expressed with

p63 in hLESCs both in situ [12] and ex situ [13, 14]. However,

many concerns were recently raised regarding the ability of

p63, as well as of ABCB5 to accurately detect hLESCs [11, 15, 16].

Thus, in spite of clear significance, the specific placement of these

markers within the limbal differentiation hierarchy remains

unresolved.

Earlier attempts to clarify the developmental biology and

differentiation hierarchy of hLESCs have been hampered by

the use of nondiscovery based methods such as microarray

analysis [17–23], poor study material such as nonhuman or

whole unfractionated tissue [24–29], or impure hLESC cultures

[30, 31]. A few discovery based next-generation sequencing

hLESCs transcriptomic studies have been conducted but these

were also limited by the use of in situ material [32, 33] or non-

human models [34–36].

To overcome these limitations, we have in this study com-

bined our earlier optimized pipeline for high quality transcripts

from human limbal epithelial cellular subpopulations sorted by

fluorescence-activated cell sorting (FACS) [37] with discovery

based next-generation sequencing. By using this strategy, we

have as the first conducted a biomarker-oriented comparative

transcriptome analysis of cultured and sorted hLESCs, and by

this sought to refute or confirm the use of p63 and ABCB5 as

surrogate markers for hLESCs.

MATERIALS AND METHODS

Cell Culture

For isolation of hLESCs, corneal scleral rings were procured

from the Danish Cornea Bank (Aarhus University Hospital,

Arhus, Denmark) in accordance with the applicable Danish leg-

islation. For a single isolation procedure, 10 to 12 randomly

collected rings (donor age 22–86 years, 64% men, and absence

of corneal disease) were used, and, altogether, three indepen-

dent primary cell lines were established. The protocol for isola-

tion and culture of hLESCs was based on our previous report

[38]. In brief, after gross debridement and removal of the

endothelium, the rings were incubated with 2.4 U/ml dispase

II (Life Technologies, Naerum, Denmark) in sterile phosphate-

buffered saline (sPBS; Gibco, Taastrup, Denmark) for 1 hour at

37�C. The limbal epithelial cell layer was then scraped and fur-

ther digested with TrypLE (Gibco) for 15 minutes at 37�C. The

obtained cell suspension was filtered through a 70 μm mesh

(BD Biosciences, San Jose, CA), seeded into T25 culture flasks

(Corning CellBIND, Sigma–Aldrich, Copenhagen, Denmark), and

cultured in complete keratinocyte-SFM (Life Technologies). At

80%–90% confluency, the cells were detached using TrypLE for

subsequent procedures.

In Situ Direct Immunofluorescence Assay

Live cell cultures at P2 to P3 were used to reveal the surface

ABCB5 epitope (LifeSpan BioSciences, Seattle, WA), whereas

cells fixed and permeabilized with 4% formaldehyde and 0.1%

Triton X-100 (both from Sigma–Aldrich), respectively, were

used to target the intracellular markers p63 and CK3 (both

from US Biological, Salem, MA). Specifications of the used

conjugates and their preimmune controls are listed in Sup-

porting Information Table S1. The antibodies were diluted as

recommended by manufacturers in sterile phosphate buffered

saline (sPBS) supplemented with 10% fetal bovine serum (FBS)

and 0.1% sodium azide in the case of unfixed cells, and incu-

bated with the cells for 1 hour at 4�C. After a brief washing

with PBS, the nuclei were stained with 0.1 μg/ml Hoechst

33342 for 10 minutes at 4�C., which was followed by the final

washing and mounting in fluorescent mounting medium

(DAKO, Glostrup, Denmark). The signal was visualized and

recorded with Axio Observer.Z1 microscope (Carl Zeiss, Göttin-

gen, Germany) equipped with Orca Flash 4.0 camera

(Hamamatsu, Ballerup, Denmark). The images were processed

using Zen (blue edition) software from Carl Zeiss. In additional

experiments, the ABCB5 antibody was validated against previ-

ously established ABCB5 monoclonal (clone 5H3C6) [14] (data

not shown).

Immunofluorescent Labeling for Cell Sorting

The experimental set up was previously optimized to reveal

markers pertinent to this study using a set of directly labeled

antibodies and to determine the sorting thresholds using

matching isotype controls for p63 and CK3 and fluorescence

minus one (FMO) for ABCB5 [39]. All buffers used in staining

and subsequent FACS sorting were sPBS based, supplied with

50% Accumax (Sigma-Aldrich) and 25 mM HEPES (Life Technol-

ogies) to prevent cell clumping and to maintain a proper pH

range. The cell suspensions were first stained for surface anti-

gen ABCB5 at a working dilution of 1:50 for 30 minutes at 4�C,

followed by washing, and then fixation and permeabilization

with 70% ethanol (VWR, Herlev, Denmark) for 10 minutes at

4�C. After permeabilization, an Rnase inhibitor (Rnasin plus;

Promega, Roskilde, Denmark) was utilized with each step. The

intracellular antigens p63 and CK3 were targeted after addi-

tional washing with p63 (1:200) and CK3 (1:100), or with iso-

type controls for 30 minutes at 4�C. Finally, the labeled cells

were transferred into a 5 ml round-bottom polystyrene tube

(BD Falcon, Albertslund, Denmark) for the flow cytometric

sorting and analysis. Using the previously established primary

cell lines, three independent staining and sorting experiments

were carried out.

FACS Cell Sorting

MoFlo Astrios cell sorter and Summit Software v4.3 (both from

Beckman Coulter, Brea, CA) were used for both FACS and flow

cytometric analysis. Gate strategies were set with reference to

isotype and FMO controls, and discrimination limit for positive

events was set at a fluorescence intensity higher than the top

2.5 percentile from the control samples. Before sorting, the

© 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press STEM CELLS
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instrument was sequentially decontaminated with RNaze ZAP

(Sigma-Aldrich), 70% ethanol, and milli-Q water. To minimize

mechanical stress during sorting, system pressure was set at

20 psi, and a 100 μm sorting nozzle was used. FACS sorting

was performed at 4�C, and it typically took 2 to 3 hours to

complete. Four hLESCs phenotypic subpopulations, including

p63+, ABCB5+, p63 + ABCB5+, and the differentiation control

p63 + ABCB5+ CK3+ were obtained. After each sorting, ali-

quots for total RNA quality control were withdrawn, and the

cell remainders were kept at −80�C as frozen pellets until RNA

extraction, at which point subpopulations from the three dif-

ferent sorting runs were pooled.

Total RNA Extraction and Next-Generation Sequencing

The RNA extraction and next-generation sequencing was car-

ried out on a commercial basis by the AROS Applied Biotech-

nology (Aarhus, Denmark). The technologies used were based

on the QIAsymphony RNA Kit (QIAGEN, Copenhagen, Denmark)

for RNA isolation and the SMART-Seq v4 Ultra Low Input RNA

Kit and Low Input Library Prep Kit V2 (both from Takara Bio,

Otsu, Japan) for cDNA and sequence library preparation,

respectively. The RNA-seq was done using an Illumina HiSeq

2000 instrument (Illumina Inc., San Diego, CA). Quality of

obtained raw sequencing data was assessed with the aid of

Qualimap v2.2 [40]. The sequences were submitted to Gene

Expression Omnibus (GEO, http://www. ncbi. nlm. nih. gov/-

geo/) under accession number PRJNA387095.

Transcript Assembly and Differential Expression
Analysis

After trimming, the sequenced transcripts were imported as

paired-ends reads into Cufflinks v2.21 for transcriptome

assembly and differential expression analysis [41, 42]. Assem-

bly of transcripts was performed against an annotated Homo

Sapiens reference genome (Human genome 19). Six distinct

RNA-seq experiments were created for each pair combination

from the four hLESC phenotypic variants. These included,

ABCB5+ versus p63+, p63 + ABCB5+ versus p63+, p63 + ABCB5

+ CK3+ versus p63+, p63 + ABCB5+ versus ABCB5+, p63 +

ABCB5+ CK3+ versus ABCB5+, and p63 + ABCB5+ CK3+ versus

p63 + ABCB5+. Significance of differential gene expression was

assessed at Benjamini & Hochberg false discovery rate (FDR)-

adjusted p-values (q-values) <.05 [43]. InteractiVenn was used

to render 4-way interactions among the independent libraries

according to selected criteria [44]. CummeRbund v2.0.0 was

invoked to produce heat maps of hierarchical clustering of

genes and samples based on fragments per kilobase of tran-

script per million mapped reads (FPKM) values [45].

Gene Ontology Analysis

Significant differentially expressed genes were annotated for

over-represented gene ontology (GO) terms in biological pro-

cess using Database for annotation, visualization and inte-

grated discovery (DAVID) [46, 47]. To graphically render the

relationships between significantly enriched (q < .05) GO

terms, hypergeometric tests were performed and the resulting

GO categories were visualized in a network fashion using

BiNGO [48] in the Cytoscape environment [49].

Statistics

Data represent the mean (� standard deviation, SD) of three

independent FACS procedures. For the data that is shown in

differential gene expression as well as gene ontology analyses,

an FDR adjusted p-value (q-value) was applied for multiple

hypothesis testing based on Benjamini-Hochberg proce-

dure [43].

RESULTS

Immunophenotype Analysis and RNA Isolation and
Sequencing

The staining patterns of the selected antibodies were first

confirmed by in situ immunofluorescence microscopy. The

ABCB5 antibody produced a cell surface signal, whereas the

p63 and CK3 antibodies reacted with intranuclear and cyto-

plasmic epitopes, respectively (Fig. 1A). The sorting was car-

ried out from three independent cultures of hLESCs, and after

averaging values from the sorted populations, the frequency

of individual markers was, 31.5% � 1.5% for p63,

27.7% � 5.1% for ABCB5, and 43% � 2.5% for CK3 (mean �

SD). The flow cytometric traces, which were obtained in one

of the sorting experiments are shown in Figure 1B as repre-

sentative data. The analysis of co-expression patterns further

revealed that most of the cells did not bear any of the studied

markers (40.4% � 4.4%), and of the sorted subpopulations,

the most prevalent phenotype was p63 + ABCB5 + CK3+ (red;

15.1% � 2.9%), followed by ABCB5+ (green; 7.8% � 3.0%),

p63+ (blue; 2.9% � 1.3%), and p63 + ABCB5+ (orange;

2.6% � 1.3%) (Fig. 1B).

Before sequencing, the RNA quality was analyzed using

parameters described previously [39], and the values pertinent

to individual populations are shown in Supporting Information

Table S2. Although the RNA yield varied broadly, up to 2.8-fold

between the highest and lowest values, the RIN appeared con-

sistent and sufficiently high (7.7 � 0.4, n = 4) to meet the

requirements of the protocol.

The analysis of the sequencing process by invoking the

PHRED quality score confirmed high reliability of the obtained

data, since more than 80% of all base calls scored higher than

30 (Fig. 1C). Importantly, a satisfactory depth of sequencing was

achieved to perform differential expression profiling, as on aver-

age 1.14E + 08 reads were acquired per sample. More than 80%

of these reads mapped in pairs, which translates into a total

average of 94.27 ×106 pair-end reads (Table 1). Additional qual-

ity parameters were explored, and they are included in

Figure 1B and Table 1. In particular, the average GC content for

the mapped reads was 49.25% and the GC content per sample

displayed a normal distribution. All four sequence libraries exhib-

ited expected, nearly identical log-normal profile of coverage per

mapped position (FPKM), and, similarly, appeared to cover the

whole genome, where on average 86.96% of the pair-end reads

mapped to exonic regions of the reference human genome 19.

Differential Gene Expression Between the Sorted
Cultured hLESC Subpopulations

Transcripts from the sorted subpopulations were analyzed for dif-

ferential expression. Global comparison revealed that the tran-

scriptomes were overall quite similar in terms of genes identified,
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quality of sequences and gene coverage. However, pairwise com-

parisons showed significant differential gene expression between

the individual subpopulations (Fig. 2A,B). The actual number of

significantly expressed genes (q < .05) regulated in either

direction varied from 24 to 81, and both the up- and downregula-

tion appeared to be in balance (Fig. 2C). The largest amount of

differential regulation was observed when comparing p63 +

ABCB5 +CK3+ vs. p63+ (159 genes), and the least when

Figure 1. Identification of subpopulations and analysis of RNA sequencing. (A): Localization of the targeted epitopes by in situ direct
immunofluorescence. The conjugates were applied to either unfixed or fixed and permeabilized cells to reveal surface (ABCB5) or intra-
nuclear (p63) and cytoplasmic reactivity (CK3), respectively. The scale bars indicate 20 μm. (B): Flow cytometric data from the sorted cul-
tured human limbal epithelial stem cells (hLESCs) population based on the three markers p63, ABCB5, and CK3. Marker positivity (grey)
was based on top 2.5 percentile of control intensity (dotted line). The plots demonstrate representative data from one sorting experi-
ment. Based on the co-expression pattern of these three markers, four subpopulations of interest, p63+ABCB5+ CK3+ (red), p63+ABCB5+
(yellow), p63+ (blue), and ABCB5+ (green), were identified and sorted. The co-expression profiles are shown as averages from three sort-
ing experiments. (C): The quality of the sequencing was assessed by base call quality (PHRED score), GC-content distribution compared
with the human genome 19, fragment rate distribution (log-normal profile of coverage per mapped position by fragments per kilobase
million ) and mapping coverage. Abbreviations: ABCB5, ATP binding cassette subfamily B member 5; CK3, cytokeratin 3; p63, protein p63.

Table 1. Parameters of RNA sequencing from fluorescence-activated cell sorting purified cultured human limbal epithelial stem cells
subpopulations

Reads count Reads mapped in pairs (%) Mapped reads GC content (%) Reads mapped to exonic regions (%)a

p63+ 1.23E+08 82.67 49.12 88.13
ABCB5+ 1.09E+08 81.18 48.91 85.61
p63+ABCB5+ 1.13E+08 82.54 49.22 85.33
p63+ABCB5+CK3+ 1.11E+08 85.87 49.76 88.78

aFraction out of pair-end reads mapped to human genome 19.
Abbreviation: GC, guanine-cytosine.

© 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press STEM CELLS
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comparing p63 + ABCB5+ versus p63 (53 genes) subpopulations.

These differences appeared sufficient to provide for a clear dis-

crimination of the four subpopulations by principal component

analysis (Fig. 2D). The co-expression patterns were further ana-

lyzed in by four-way Venn diagram plots to visualize the amount

of shared and uniquely expressed genes of significance (q < .05)

(Fig. 2E). The largest group is represented by genes that are

shared by all four subpopulations (21.5%). Genes that are shared

by two or three subpopulations in various combinations repre-

sent 38.4% and 21.8%, respectively, and the uniquely expressed

genes represent 18.3% (Supporting Information Table S3). Since

all the analyses above demonstrated that the isolated subpopula-

tions displayed unique although closely related transcriptional

activation, the degree of relatedness was explored by K-means-20

cluster analysis and hierarchical alignment (Fig. 2F). The dendro-

gram revealed a surprising pattern, where the ABCB5+ transcrip-

tional signature was closer to the CK3 subpopulation than to the

p63+ or p63 + ABCB5+ subpopulations. Significant differentially

expressed genes (q < .05) were subsequently annotated for func-

tional biological processes in the GO hierarchy.

GO Analysis

To evaluate the differentially expressed genes in terms of bio-

logical significance for a given subpopulation, functional anno-

tations were applied using the DAVID tool. Significantly

overrepresented (q < .05) GO terms are listed for each

Figure 2. Differential gene expression between the sorted cultured human limbal epithelial stem cell subpopulations. (A): Pairwise com-
parison of subpopulation transcriptomes by scatter plots of all transcripts. The log2 transformed transcript abundance of all transcripts
obtained are plotted against each other on the x-axis and y-axis, respectively. Each spot represents the intensity of a transcript. Diagonal
line represents equal expression. (B): Statistical analysis of the difference between subpopulation transcripts and identification of differ-
ential regulated genes between subpopulations. The results are visualized by a scatter plot. The −log10 FDR-corrected p-value is plotted
against the log2 fold change for each transcript. The transcripts were significantly differentially expressed between the samples (p < .05)
are in the top (red). (C): Number of significantly up- (green) or downregulated (red) genes between subpopulations by pairwise compari-
son of subpopulations. (D): Principal component analysis (PCA) on the 367 most regulated genes of the transcriptomes from the four sub-
populations. Shown are PCA score plots of PC1 and PC2. (E): Four-way Venn diagram showing the number of shared and uniquely
expressed genes for the four subpopulations. (F): Dendrogram based on a K-means-20 cluster analysis and hierarchical alignment of differ-
entially expressed transcripts between subpopulation based on fragments per kilobase of transcript per million mapped reads (FPKM)
revealing degree of relatedness between subpopulations. Color corresponds to differential gene expression level. Genes and samples
were hierarchically clustered based on Jensen-Shannon distance. Abbreviations: ABCB5, ATP binding cassette subfamily B member 5; CK3,
cytokeratin 3; FPKM, fragments per kilobase million; PC1, principle component 1; PC2, principle component 2; p63, protein p63.
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subpopulation in Table 2. The GO terms pertinent to stem or

progenitor cells, such as “positive regulation of exit from

mitosis,” “regulation of chromosome segregation,” or “spindle

organization” were markedly enriched in the p63+ subpopula-

tion. Another noticeable finding in this group was that the

pigmentation-related processes, such as “melanin biosynthetic

process” or “developmental pigmentation,” scored among the

highest overrepresented terms. As expected, the terms rele-

vant to cell differentiation, such as keratinocyte differentiation

or keratinization were enriched in p63 + ABCB5+ CK3+ subpop-

ulation. Surprisingly, however, they were found enriched

practically to the same degree also in ABCB5+ subpopulation.

As for the double marker-expressing p63 + ABCB5+ subpopula-

tion, the most notable processes were those that were found

in the single marker p63+ and the ABCB5+ associated with

extracellular matrix and collagen metabolism.

Further understanding of the implications of above

described biological processes for the relationship between

the subpopulations was provided by constructing GO networks

with the aid of BiNGO tool (Fig. 3). A pairwise comparison

clearly demonstrates that the p63+ subpopulation is set apart

by a predominance of pigmentation-associated processes,

Table 2. Enrichment of functional annotation terms using DAVIDa for genes differentially expressed between the cultured human limbal
epithelial stem cells subpopulations, with values <.05 after Benjamini multiple testing correction

BP_direct GO termsb
Fold

enrichment p value Benjamini

p63+
GO:0051301�cell division 8.27 2.78E-12 1.43E-09
GO:0008283�cell proliferation 5.14 7.89E-06 1.01E-03
GO:0008284�positive regulation of cell proliferation 4.04 8.41E-05 6.17E-03
GO:0031536�positive regulation of exit from mitosis 72.38 6.85E-04 3.02E-02
GO:0007067�mitotic nuclear division 10.51 1.05E-12 1.08E-09
GO:0051439�regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 31.47 1.67E-05 1.72E-03
GO:0051436�negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 10.19 1.42E-03 4.94E-02
GO:0051437�positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic
cell cycle transition

11.43 1.73E-04 9.86E-03

GO:0000086�G2/M transition of mitotic cell cycle 8.45 4.34E-05 3.72E-03
GO:0000070�mitotic sister chromatid segregation 28.95 2.36E-05 2.21E-03
GO:0007062�sister chromatid cohesion 14.05 3.54E-08 9.11E-06
GO:0051983�regulation of chromosome segregation 54.28 1.27E-03 4.56E-02
GO:0007059�chromosome segregation 10.64 1.21E-03 4.52E-02
GO:0007094�mitotic spindle assembly checkpoint 28.95 3.28E-04 1.67E-02
GO:0007052�mitotic spindle organization 19.30 1.11E-03 4.30E-02
GO:0007051�spindle organization 45.24 3.57E-06 5.24E-04
GO:0051310�metaphase plate congression 48.25 6.58E-05 5.20E-03
GO:0007080�mitotic metaphase plate congression 19.56 1.16E-04 7.43E-03
GO:0031145�anaphase-promoting complex-dependent catabolic process 14.66 1.13E-06 1.95E-04
GO:0000910�cytokinesis 15.08 3.22E-04 1.73E-02
GO:0000281�mitotic cytokinesis 19.97 1.00E-03 4.05E-02
GO:0042438�melanin biosynthetic process 77.95 1.49E-10 5.12E-08
GO:0030318�melanocyte differentiation 36.19 9.29E-06 1.06E-03
GO:0048066�developmental pigmentation 62.04 9.55E-04 4.02E-02
GO:0042787�protein ubiquitination involved in ubiquitin-dependent protein catabolic process 7.57 8.75E-05 5.99E-03
GO:1901215�negative regulation of neuron death 18.09 1.58E-04 9.51E-03
GO:0007517�muscle organ development 9.76 3.62E-04 1.76E-02
GO:0030574�collagen catabolic process 18.09 2.65E-07 5.45E-05
GO:0030198�extracellular matrix organization 5.91 4.01E-04 1.86E-02
ABCB5+
GO:0030216�keratinocyte differentiation 18.94 2.19E-08 1.47E-05
GO:0031424�keratinization 23.32 4.85E-07 8.12E-05
GO:0008544�epidermis development 16.93 5.35E-08 1.19E-05
GO:0018149�peptide crosslinking 25.59 2.29E-08 7.66E-06
p63+ABCB5+
GO:0030199�collagen fibril organization 31.31 2.65E-04 2.27E-02
GO:0030574�collagen catabolic process 42.93 2.57E-11 1.33E-08
GO:0070208�protein heterotrimerization 87.23 1.12E-05 1.93E-03
GO:0030198�extracellular matrix organization 12.46 2.95E-06 7.67E-04
GO:0071230�cellular response to amino acid stimulus 32.48 1.54E-05 2.00E-03
GO:0007155�cell adhesion 5.99 1.01E-04 1.05E-02
GO:0001649�osteoblast differentiation 14.68 3.46E-04 2.54E-02
p63+ABCB5+CK3+
GO:0030216�keratinocyte differentiation 18.04 2.72E-07 2.04E-04
GO:0031424�keratinization 17.85 1.68E-04 2.48E-02
GO:0008544�epidermis development 12.10 1.32E-04 2.44E-02
GO:0018149�peptide crosslinking 20.56 1.00E-05 3.74E-03
GO:0010951�negative regulation of endopeptidase activity 9.91 7.16E-05 1.77E-02

aDatabase for annotation, visualization, and integrated discovery.
Subset of biological process gene ontology terms.
Abbreviations: ABCB5, ATP binding cassette subfamily B member 5; CK3, cytokeratin 3; p63, protein p63.
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whereas all the other subpopulations are subject to epithelial-

specific differentiation. This indicates that the p63+ variant is

the common progenitor phenotype. On the other hand, as

expected due to the expression of cytokeratin, the p63 +

ABCB5+ CK3+ variant represents the most differentiated phe-

notype. Looking at the remaining two variants, the ABCB5+

and p63 + ABCB5+, intriguingly we found that the former phe-

notype appears developmentally downstream from the latter

one. These relationships thus provided for a framework, upon

which we based our proposal for a developmental hierarchy

within the limbal niche (Fig. 4). We hypothesize that within

the scope of studied phenotype variants, the p63+ represents

the most immature progenitor, and the ABCB5+ marker either

alone or in co-expression pattern identifies progressively more

committed precursors.

DISCUSSION

The gene ontology analysis revealed that pigmentation and

epithelial differentiation were mutually exclusive processes,

which enabled us to determine a developmental hierarchy

within the sample of isolated cultured hLESC phenotypical vari-

ants. Intriguingly, the most immature phenotype was found

associated with p63 as a single marker, whereas ABCB5 alone

or in co-expression was found on the descendant variants.

Relationship between melanin pigmentation and limbal stem-

ness has previously been investigated, and interestingly, the

initial indication of the presence of hLESCs was inspired by

observation of pigment movement from the limbus toward

epithelial defect in wounded corneas [50]. In situ, the limbal

palisades of Vogt, which contain pigment granules that are

aligned with the microplicae of the corneal epithelium, are

believed to be the source of hLESCs [51].

The physiological significance of the elaborate melanin pro-

duction and distribution in the stem cell niche has been

Figure 3. Biological processes of stemness and pigmentation. Gene ontology (GO) analysis of the biological processes of the upregulated
genes related to stem cell and pigmentation based on pairwise comparison of the four subpopulations. The analysis was performed in
Cytoscape using the BiNGO plug-in version 3.0.3. Presented is a reduced network showing the upregulated biological process categories
that were significantly over-represented based on the genes identified. The color scale indicates the level of significance of the overrepre-
sented GO category (adjusted p < .05). The size of the circles is proportional to the number of genes in each category. Abbreviations:
ABCB5, ATP binding cassette subfamily B member 5; CK3, cytokeratin 3; p63, protein p63.

Figure 4. Association between pigmentation and stemness.
Developmental hierarchy within the cultured limbal epithelial cells
based on correlation of pigmentation and cell differentiation
observed among hLESCs phenotypic subpopulations. Orange
arrows indicate more differentiated cells; blue arrows indicate
more pigmented cells. The p63+ represents the most immature
progenitor, and the ABCB5 marker either alone or in co-expression
pattern identifies progressively more committed precursors. Abbre-
viations: ABCB5, ATP binding cassette subfamily B member 5; CK3,
cytokeratin 3; LESC, limbal epithelial stem cells; p63, protein p63.
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attributed to the protection from ultraviolet radiation and oxida-

tive damage [52, 53]. Melanocytes that can be found scattered in

the basal limbus epithelium have been highlighted as a major site

of pigment production [54–57], nevertheless, our current investi-

gation, in line with some previous studies, demonstrates that the

limbal corneal progenitors are by themselves involved in melanin

turnover [19, 32, 58]. Importantly, a direct communication

between both cell lineages has as well as been documented [52–

54]. This observation thus provides structural basis for realization

that a cellular network, possibly also including players from addi-

tional compartments, that entails a comprehensive crosstalk is

essential in order to properly maintain the limbal niche.

Although the molecular basis for the relationship between

pigmentation and the hLESC maintenance or p63 is not fully

understood, there is a plethora of evidence that implicates the

SERPINF1, which encodes the pigment epithelium-derived factor

(PEDF). PEDF was first identified as a 50 kDa secreted protein in

conditioned medium from cultured fetal human retinal pigment

epithelium (RPE) cells [59], and was recognized as a potent inhibi-

tor of vascular endothelial growth factor (VEGF) [60]. Recently,

PEDF was proposed to regulate the proliferation and differentia-

tion of human embryonic stem cells[61] as well as multiple

tissue-specific stem cells [62], and was also found in developing

and mature human cornea [58]. With regard to hLESCs, it has

been reported that the PEDF has the capacity to promote self-

renewal [17] and that such effect may be associated with the p63

expression [63]. PEDF’s effect on regeneration of a functional lim-

bus was further confirmed by Yeh et al. in 2016 in the rabbit

model of LSCD [64, 65]. Interestingly, a possible regulatory mech-

anism was unveiled, when the PEDF was reported to be a direct

target gene for p63 [66]. The results from our current investiga-

tion provide additional support for the PEDF role by demonstrat-

ing its exclusive association with earliest developmental

phenotype, which is marked by single p63 expression.

Based on our model of differentiation hierarchy within the

cultured limbal epithelial cells, the ABCB5 designates a lineage

that is still of a precursor type, but is clearly distinct from the

pigmented lineage that is associated with p63. Previously,

based on the morphological criteria, differentially pigmented

precursor types have been identified in the palisades of Vogt

and in the transition zone closer to the peripheral cornea [67,

68]. It is highly likely, that the phenotypical variants analyzed

in our study correspond to the in situ progenitors from the

above studies, nevertheless, only direct identification of the

place of residence within the limbus of the four studied phe-

notypes can give a definitive answer. Such study would

undoubtedly shed more light on the developmental relation-

ship between p63 and ABCB5 as well as the role of pigmenta-

tion in the maintenance of the limbal niche.

CONCLUSION

Both p63 and ABCB5 have been well established as

markers associated with limbal stemness, nevertheless, their

placement within the differentiation hierarchy has not been

known until now. Although we were not able to confirm

that the variant bearing single p63 corresponds to the true

limbal stem cell, we have demonstrated that it is a more

immature progenitor than those featuring ABCB5 alone or

in co-expression patterns. Building on our approach, and

invoking phenotypes with complex marker repertoires, it

may be possible to infer in high detail the developmental

hierarchy relevant for the limbal niche. Such knowledge will

in turn have practical implications, so that the perspective

treatments would be based on the rational selection of the

earliest progenitors available.
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