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Abstract 

Pile heat exchangers are thermo-active ground structures with built in geothermal heat exchanger 

pipes. As such, the foundation of the building both serves as a structural component and a 

heating/cooling supply element. The existing geotechnical and structural design standards do not 

consider the nature of the thermo-active foundations, what hampers their implementation. Several 

studies tackle different aspects of the thermo-mechanical behaviour of pile heat exchangers by 

experimental and numerical approaches. This document aims to compile the main literature in the 

field. We depart from understanding how an energy pile behaves under mechanical and thermal 

loads and then, we look into the different aspects affecting the phenomena. It is concluded that, even 

though the thermal loads resulted from the geothermal use applied to the energy piles are not likely 

to lead to geotechnical or structural failure, they need to be considered in the analysis and design of 

such structures. More data under operational conditions will ease the development of regulations 

and unified guidelines.    
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Scope 

First, the main principles of ground source heat pump (GSHP) systems are presented in order to 

establish a framework. Then, the main challenges associated to the mechanical aspects of pile heat 

exchangers are treated. This document does not look into the thermal aspects of energy piles, 

treated in other documents linked to this series of technical reports. 

Foundation piles as ground heat exchangers 

Ground source heat pump (GSHP) systems produce renewable thermal energy that offer high levels 

of efficiency for space heating and cooling [1,2]. Ground heat exchangers are critical components in 

any GSHP system. Horizontal heat exchangers, vertical borehole heat exchangers and energy piles 

comprise the main different types of closed loop ground heat exchangers (Figure 1). Energy piles 

are concrete piles with built in geothermal pipes, i.e., they are thermo-active ground structures that 

utilize reinforced concrete foundation piles as vertical closed-loop heat exchangers [3]. They vary in 

length from 7 to 50 m with a cross section of 0.3 to 1.5 m and can be either cast in place or precast 

driven.  

 

Figure 1: Description of main closed loop GSHP systems: a) horizontal heat exchangers; b) vertical borehole 

heat exchangers; c) pile heat exchangers. d), e) and f) illustrate the cross sections for horizontal, borehole and 

pile heat exchangers, respectively. Reproduced after [4]. 
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The foundation of the building both serves as a structural and a heating and/or cooling component. 

Therefore, different aspects need to be considered (Figure 2). Thermal aspects affect the mechanical 

behaviour of soils and piles, whereas the influence of the mechanical loads on the temperature field 

is usually insignificant. Thermal loads may induce changes in pore pressure and in groundwater flow 

regime and fluids can transport heat through the pores of the soil. Finally, effective stresses are 

affected by variations of pore pressure [5]. The analysis of pile heat exchangers is mainly governed 

by thermo-mechanical influences, hence, the focus of this report.  

 

Figure 2: Relevant couplings in shallow geothermal energy systems, after [5]. 

Load trans er mechanisms o  pile heat exchangers 

Pile heat exchangers are structural elements subject to time varying thermal loads, additional to 

those due to static axial loading, and as such, an assessment of the structural implications needs to 

be carried out in any project. Pile design approaches in Europe are based on the determination of 

the ultimate and serviceability limit states, ULS and SLS respectively, according to the Eurocode 7 

(DS/EN 1997-1/AC, 2010 [6]). Yet regulations do not consider the geothermal use in the foundation 

design process with regards to structural and geotechnical requirements.  

Energy piles will be subject to a net change of the temperature relative to the initial condition over 

time, which causes thermal stresses and head displacements. Under thermo-elastic conditions, if 

the pile is a free body, i.e. it has no restraints, it will expand while heating and contract during cooling 

to yield a thermal free strain εT-Free: 

εT−Free =  α ∙ ∆T (1) 

where α [1/K] is the coefficient of thermal expansion of the reinforced concrete and ΔT [K] is the net 

change in temperature of the pile. This strain will provoke a change in the pile geometry and this 

way no axial load will be mobilised: 

∆L = L0  ∙  εT−Free (2) 
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Where ΔL [m] is the change in length caused by the temperature change and L0 [m] is the initial 

length of the body. If the pile is perfectly restrained, it will keep its length, but thermally induced 

stresses will be created ΔσT [N/m2]: 

∆σT  =  α ∙ ∆T ∙ E (3) 

where E [MPa]        Y    ’                                 

In reality, a pile will not expand or contract freely as it will be confined by the structure on top and 

the surrounding soil, at different levels of restrain (Figure 3). As a result, the measured strain changes 

due to temperature changes εT-Obs will be less than the free axial thermal strain εT-Free [7]: 

 

Figure 3: Response mechanism of a pile heat exchanger to thermal loading; a) for heating and b) for cooling. 

Reproduced after [8]. 

εT−Free ≥  εT−Obs (4) 

From here, the restrained axial strain εT-Rstr can be estimated as: 

εT−Rstr =  εT−Free −  εT−Obs (5) 

The restrained strain provokes a thermal stress in the pile and the thermally induced axial load PT 

[N] for a given strain increment is calculated as: 

PT =  −E ∙ A ∙  εT−Rstr =  −E ∙ A ∙ (α ∙ ∆T − εT−Obs ) (6) 

where A [m2] is the cross-sectional area of the body. When a mechanically loaded pile is heated or 

cooled, the total mobilised strain εTotal is the sum of the mechanically imposed strain εM and thermal 

strains εT-Obs: 

εTotal =  εM +  εT−Obs (7) 
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The mechanical strain is directly developed by a mechanical load PM applied in the pile head: 

PM =  −E ∙ A ∙  εM (8) 

Consequently, the total load PTotal is the sum of the mechanical load PM and the thermal load PT: 

PTotal =  PM +  PT (9) 

Pile foundations are used when settlements of buildings need to be limited, to increase bearing 

capacities or to reach a deeper soil layer which is more resistant. Therefore, the geotechnical bearing 

capacity of the pile and the prediction of its displacements need to be considered when designing a 

pile [9].  

Under structural (mechanical) load only (Figure 4a), the maximum axial stress is found at the pile 

head, reducing with depth as load is transferred into the ground by the shaft friction (or side shear 

resistance) mobilised at the soil-pile interface. I.e., the surrounding soil confines the movement of 

the pile and mobilises the reaction forces along the pile shaft and the pile toe. The axial stress will 

decrease to zero if the shaft resistance is enough to support the building load; otherwise, the 

remaining load is transferred at the pile toe and supported by the underlying material, known as end-

bearing resistance [10–12]. 

The maximum load that an axially loaded pile can support QLIM is defined as a sum of the tip (toe or 

base) and friction (side shear or shaft) resistances: 

QLIM =  QS +  QP − WP (10) 

 

Where QS is the share of the pile bearing capacity provided by the friction between the pile and the 

soil and QP is the share of the pile bearing capacity delivered by the soil below the pile tip and WP is 

its own weight. The tip resistance QP depends on the resistance of the soil below the pile toe 

(undrained shear strength and vertical stress) whereas the shaft resistance QS depends on the 

friction angle at the interface and the stress state of the pile-soil interface. The total load applied to 

the pile PTotal should be less than the design limit, considering a safety factor [6]. 

Depending on the way the load is transferred to the soil, we may find three different types of piles: i) 

end-bearing piles where the main resistive mechanism is the pile tip resistance; ii) floating piles 

(a.k.a. friction piles or surface bearing piles) where the shaft friction provides the main resistance 

capacity; iii) semi-floating piles which involve an intermediate configuration between the previous 

two. 
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The pile-soil interaction under working mechanical and thermal loads provokes complex systems 

which depend on: ground conditions, different levels of pile confinement and magnitude of the 

thermal loads. Therefore, the behaviour of the piles is place dependent and it makes it hard to 

establish general rules. Fortunately, simple descriptive mechanistic frameworks have been 

established based on observed behaviours, which make it easier to understand the phenomena [13–

15]. 

In the following the main load transfer mechanisms occurring due to combined mechanical and 

thermal solicitations are described. Simplified axial load and shaft resistance distribution diagrams 

are shown where the effect of standard mechanical load and combined thermo-mechanical loads 

are described. A soil with uniform strength, a linear elastic pile with constant cross-sectional area 

and a        v                                          ’         are considered. When temperature 

changes are applied, the change is considered uniform over the pile length.  

Figure 4 represents a floating pile heat exchanger. It is assumed that the mechanical load (Figure 

4a) will be resisted by the shaft resistance, which is assumed uniform along the shaft for this simple 

model. When cooling occurs, the pile contracts and any restriction offered to the pile shaft will lead 

to tensile strains and stresses developing. Along the upper part of the shaft, shear stress on the pile-

soil interface will be mobilised in the same direction as that mobilised by compression loading applied 

at the pile head. It will take the opposite direction in the lower part of the pile (Figure 4b). When 

heating (Figure 4d), the pile expands, and any restriction offered to the pile shaft will lead to 

compressive strains and/or loads developing. At the shaft resistance development, the opposite 

effect to a cooling load will occur. Shear on the pile-soil interface will have the same direction in the 

lower part of the pile and will oppose that induced by compressive pile loading in the upper. When 

cooling occurs in combination with compression loading (Figure 4c), axial loads become less 

compressive (potentially tensile stresses), while the mobilised shaft resistance reduces in the lower 

part of the pile and increases in the upper part. When a heating cycle is applied to a pile under 

compressive mechanical load (Figure 4e), the axial load will become more compressive and while 

the mobilised shaft resistance reduces in the upper part of the pile, it increases in the lower part.  
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Figure 4: Response mechanism for pile undergoing thermo-mechanical loading: heating and cooling with no 

end restraint: a) load only; b) cooling only; c) combined load and cooling; d) heating only; e) combined load 

and heating. After [13]. The figure is not to scale neither to relative scale. 
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Figure 5 represents the effects of end-restraints, provided by the building and a stiff bearing layer 

around the tip. During heating, the restricted pile expansion strains will generate additional 

compressive stresses. Therefore, the resultant load profile will change depending on the relative 

stiffness of the end-restrains (Figure 5a). And because of the restrained axial deformation, the 

mobilised shaft resistance will be less than for the case of the pile without end-restraint. Pile cooling 

will result in opposite responses (Figure 5b) [16].  

 

Figure 5: Effect of end-restraint on the thermal response: a) pile heated; b) pile cooled. After [16]. The figure is 

not to scale neither to relative scale. 

A pile heat exchanger will expand or contract at different levels of restraint [7]. The level of restraint 

n is defined as the ratio between the observed and the free axial strains [15] and it is minimal in the 

null-point, which represents the plane where zero thermally induced displacement occurs in the pile 

[17]: 

n =  
εT−Obs

εT−Free
 (11) 

The section of the pile above the null point experiences upward displacements when heated and 

downward displacements during cooling, whereas the pile section below the null point experiences 

downward displacements during heating and upward movements when cooled down. As it has been 

shown in Figures 4 and 5, as a result of the temperature change, the mobilised end-bearing and 

shaft resistances of energy piles will vary and will be redistributed according to the position of the 

null point [18].    



Alberdi-Pagola et. al (2018)  DCE Technical Report No. 250 
Thermo-mechanical aspects of pile heat exchangers: background and literature review 

 

16 

 

In luence o  temperature on soil  ehaviour 

In the previous section, it has been described how the load transfer from the pile to the soil is 

expected to rearrange due to temperature variations of the pile. In the following, it is analysed 

whether the temperature variations resulted from the geothermal use affect the stress state at the 

pile-soil interface and the shear strength of the soil. I.e., a review of the influences of temperature 

on the soil resistance parameters is provided. 

The temperature range imposed by the geothermal exploitation of the foundations are relatively 

modest, falling between 2 °C to 30 °C [15], and the nature of the ground thermal loads depend on 

the needs of the building [19]. The upper temperature limit might be more restrictive due to 

environmental regulations. E.g. in Denmark, the injection temperature can be limited to 25 °C [20]. 

Ref. [21] shows operational temperatures in cooling mode of a 1.2 m diameter energy pile, with 

centrally placed pipes: the temperature of the fluid in the geothermal pipes shows quick variation in 

response to the building thermal needs while the temperature changes near the edge of the pile are 

smoother. The changes in pile temperature in the centre vary from 12.5 °C (end of winter) to 27 °C 

(end of summer), while the corresponding temperatures near the edge vary from 14 °C to 19 °C. 

Therefore, any temperature change in the ground will show rather small amplitude and seasonal 

period. The temperature disturbance and its magnitude in the pile-soil system will also depend on 

the thermal properties of the concrete and the surrounding soil. Hence, an assessment of the 

induced temperature changes with respect to the initial undisturbed temperature needs to be carried 

out in order to estimate the induced thermal stresses and strains.  

Soil behaviour 

The temperature dependency of the geotechnical properties of the soil has mainly been treated by 

the nuclear waste disposal research, where much greater temperature variations are expected [21]. 

The principal thermo-hydro-mechanical processes that affect the mechanical behaviour of soils are 

the thermal hardening, the thermally induced water flow, the excess pore pressure development and 

the volume changes due to thermal consolidation, possibly the most critical factor [21,22].  

When a thermal load is transmitted from the pile to the soil, the soil reacts by changing its volume 

(expansion or contraction of the porewater and soil structure) and by modifying the strength of 

contact between soil particles [23,24]. Coarse-grained soils do not seem to be affected by 

temperature variations due to their drained behaviour [25]. On the other hand, fine-grained soils 

show a densification and a reduction in the undrained shear strength with increasing temperature 

due to an increase in the pore water pressure that cannot be dissipated. This results in a reduction 

in effective stresses (short-term). Ref. [26] reported that an excess pore water pressure of 0.7% of 

the effective stress is generated by 1 °C increase in soil temperatures. In the long term (drained 
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conditions), the behaviour differs for over- and normally-consolidated clays since the void ratio might 

increase for the first while it may decrease for the latter (Figure 6a) [7]. Normally consolidated clays 

show an irreversible volume change while highly over-consolidated clays show reversible behaviour, 

as shown in Figure 6b. The thermally induced volumetric strains expected for energy pile applications 

fall in the lower part of the curves in Figure 6, where the thermally induced volumetric strains are 

very low. To the knowledge of the authors, the range from 0 to 10 °C has not been measured. 

a)  

 

b)  

 

 

Figure 6: a) Thermal volumetric strain of Kaolin clay during drained heating from 22 to 90 °C; initial 

consolidation pressure 600 kPa, after [27] and [28]. b) Numerical simulations of a heating-cooling cycle at 

different degrees of consolidation under oedometric conditions (vertical preconsolidation pressure= 200 kPa). 

Points: experimental results; lines: numerical simulations, after [29]. OCR stays for Over-Consolidation Ratio, 

defined as the ratio of the vertical effective preconsolidation stress to the current effective stress. 

According to [21], soft normally consolidated clays require main attention because large plastic 

volume changes may occur upon heating. However, after hardening, further cycles of temperature 
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change within the same temperature range will show an elastic behaviour. Hence, temperature 

changes can affect the stress state at the pile-soil interface and the shear strength of the soil that 

affects the tip resistance of the pile [22]. 

The stress and strain relations occurring in soils due to temperature changes is described by 

constitutive models. Ref. [30] proposed a thermo-plastic model based on the modified cam-clay and 

      ’        -plasticity theory. Ref. [29,31] developed a thermo-elastoplastic model, which 

considers the possible plastic behaviour under non-isothermal conditions. This type of models define 

yield surfaces that depend on temperature and outside their limits, the soil behaves thermo-

plastically. Further discussions and literature reviews are available in [5,32].  

Soil-pile interface behaviour 

Recent studies on the impact of thermal loading at the pile-soil interface indicate that the pile bearing 

capacity is not reduced to a critical level in terms of structural integrity [7,9,33,34]. Mechanical cyclic 

load studies of the pile-soil interface at +1.1 °C to -16 °C are reported by [35–37] but studies of the 

long-term behaviour of energy piles under cyclic thermal loads for the operational range have not 

been reported. Ref. [9,34] have analysed monotonic temperature variations in the range from 6 °C 

to 50 °C - 60 °C and have concluded that higher temperatures increase the strength of the clay-

concrete contact. This is explained by the thermal consolidation of the clay that results in an increase 

of the contact surface, even though the interface friction angle is reduced. Ref. [38] analysed the 

interface between concrete and a low plasticity clay and observed no impact of temperature on the 

interface shear strength as observed in Figure 7. The sand-concrete interface is hardly affected by 

the monotonic temperature changes [9]. 

 

Figure 7: Clay/concrete interface behaviour assessed using thermal borehole shear device. Impact of 
temperature on failure envelope, after [38]. 
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In order to characterize the degradation of the pile-soil interface under thermal cyclic loads, 

constitutive laws, such as the Modjoin law [39] and numerical models [40,41], can be applied to 

reproduce the cyclic behaviour of energy piles. 

O served  ehaviour o  energy piles 

The main research programs covering the thermo-mechanical behaviour of the energy pile-soil 

systems encompass full-scale, lab-scale and numerical studies which are shortly described in the 

following and in appended tables. A comprehensive review on published studies is available in [26]. 

Full-scale setups 

Two main full scale studies of energy piles have leaded the investigation in the field: the Lambeth 

College setup in London [13,42], which behaves as a floating pile, and the EPFL setup in Lausanne 

[33,43,44], which shows a semi-floating behaviour. Both studies conclude: i) short-term plastic 

response of soils has not been observed due to the geothermal use since effective stresses typically 

are within yield surfaces, i.e., within the thermo-elastic domain; ii) the additional stresses produced 

in the energy pile due to thermal loads depend on the level of restraint of the pile, i.e., they depend 

on the allowance of the pile to move (expand or contract).  

Full scale demonstrations of precast energy piles have also been reported in [45]. The 17.4 m long 

pile, with a 35-cm side size and centrally placed pipes, is subjected to 14 cycles of heat injection at 

80 W/m during 14 hours per day, resembling cooling operation mode. The results show that the 

increase of the axial load in the pile (compared to the existing mechanical) is in the order of 12% and 

that the maximum increase of temperature in the pile during the test does not reach 5 °C at any 

depth. The maximum displacement observed during heating is 0.4 mm after 6 cycles and the elastic 

recovery is 0.2 mm. An accumulated permanent upward displacement of 0.2 mm is measured. The 

recovery to initial conditions is not shown.  

A similar behaviour has been reported in [46], where the thermal strains and stresses for intermittent 

tests (20 days long at different operation modes resembling building heating, i.e., pile cooling) were 

cyclic and returned to initial values, i.e., the pile experiences thermo-elastic behaviour for daily 

thermal cycles. The maximum thermal strain measured 0.09 mm downwards and the thermally 

induced average stress are around 900 kPa for 8 hours working cycles. The absolute decrease of 

temperature in the pile at the end of the test is 9 °C and 10 °C, for 8 hours and 16 hours operation 

cycles, respectively. It was concluded that intermittent operation (resembling operational conditions) 

is advantageous in terms of generating lower pile thermal loading for long term operations and 

regarding a more efficient heat transfer capacity than a continuous operation. 
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As a rule of thumb, it could be said that 1 °C of increased temperature results in an increase of the 

pile axial stress of approximately 100 - 200 kPa and a change in mobilised shaft friction at the soil-

pile interface of - 2.1 to + 2.5 kPa, corresponding to the upper- and the lower-half of the pile 

[13,14,43]. 

Group effects 

Current research focuses on the analysis of energy pile group effects [44,47–50]. Combined 

experimental and numerical studies of energy piles operating in groups [51] suggest that the 

assessment of thermally induced vertical strains needs to be assessed by considering group effects. 

This happens because, as the number of operating energy piles increases, higher thermally induced 

vertical strains arise. Conversely, as the number of operating energy piles increases, lower thermally 

induced vertical stresses arise. Hence, analyses of single energy piles are valid and conservative 

for the assessment of additional stresses. In addition, the same authors suggest in [48] that the 

serviceability mechanical performance of energy pile groups (i.e., deformation related) depends on 

the relative thermally induced deformation of the soil to that of the energy piles, i.e., the ratio between 

the linear thermal expansion coefficient of the soil and the pile. Meaning that in the long term, if the 

thermal expansion coefficient of the soil exce            ’ , the deformation of energy pile groups is 

governed by the thermally induced deformation of the soil surrounding the piles. 

Numerical studies 

Numerical tools are used to analyse not just experimental conditions but also potential scenarios, 

supporting the understanding of the physics behind the problem and assisting the development of 

behavioural rules. Several numerical studies explore the thermo-mechanical phenomena of energy 

piles by different methods. Regarding load transfer mechanisms, [43,52–54] encompass good 

examples of finite element models validated with experimental data. The load transfer method 

[15,55], modified to account for thermal loads has been used by [15,18,40,56,57]. This method 

allows reliable analysis of mechanical and monotonic thermal changes in a practical way. 

Computational tools such as ThermoPile [58] and Oasys Pile [59] have been develop based on this 

approach. Ref. [26,40,60] have adapted the load transfer model to account for cyclic thermal loads. 

Operational demonstration 

Ref. [61] analyses two energy piles that have been coupled to a conventional GSHP system. 

Measurements under operational conditions over a period of 658 days show fluid temperatures 

ranging from 7 to 35 °C. It concludes that the values of thermal axial displacement and the thermo-

mechanical axial stresses are within reasonable limits and are not expected to cause any structural 

damage to the building. However, it is highlighted that in complex soil layers, the pile soil systems 

might not behave in a thermo-elastic manner in the long term. This is also in accordance with 
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numerical studies [54] that highlight that it is critical to maintain stable temperature of the ground 

over seasons for long-term sustainability of heat exchange operations to avoid potential plastic 

effects on the soil around the piles. Ref. [3] states that appropriate operating conditions of energy 

pile installations, where the temperatures range from 5 to 20 °C, hardly affect the shaft resistance of 

the pile. More operational data will aid the understanding of the performance of energy foundations 

in terms of structural integrity. 

Recent developments on the design o  energy pile  oundations 

Regulations do not consider the geothermal use in the foundation design process with regards to 

geotechnical and structural requirements. To ensure that the geotechnical performance of the pile is 

not negatively affected, conservative safety procedures are applied, which potentially reduce their 

cost-effectiveness. The fluid temperature in the ground loop is not allowed to go below 0 - 2 °C, to 

avoid freezing of the pile interface, and there is a tendency to place more energy piles than required 

[7,33,62–65]. 

The analysed research concludes that the thermal loads and displacements resulted from the 

geothermal use of the energy piles are not likely to lead to geotechnical or structural failure. However, 

energy piles are structural elements and they need to be treated as such. Therefore, the energy pile 

design needs to integrate geotechnical, structural and heat transfer considerations [66]. 

Ref. [57] launched the development of a design method that could be incorporated within the 

Eurocode agenda, based on the load transfer method. The pile (15 m long and 0.6 m square section) 

head-building structural interaction was modelled by means of a spring restraint with different 

stiffness. For a typical application of +10 K temperature change from initial undisturbed soil 

temperature and a 200 MN/m pile head stiffness, the thermally induced compression axial load is 

175 kN and the pile heave, 0.5 mm. See Figure 8 for more stiffness. A discussion about this can be 

followed in [67,68]. 

To build a design framework, it needs to be decided how the thermal loads derived from the 

geothermal use are considered in the load combination processes and whether their consideration 

is relevant just for SLS or it also needs to be addressed in ULS.  

Ref. [18] demonstrated that under monotonic thermal loading the null point (previously described) 

will always move towards the pile end in order to maintain the equilibrium, even if the ultimate bearing 

force (friction and base) is mobilised, as it happened at the Lambeth College pile [13]. Regarding 

serviceability, it was demonstrated that over-sizing energy piles, by projecting a longer length, can 

have a negative impact. This happens because the null point will prevent excessive settlement/heave 

since at least, this point remains stable under temperature variations. If a pile is over dimensioned 
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structurally, the head heave or settlement will increase with temperature because there is a 

considerable amount of bearing force that the pile could still mobilise after mechanical loading. This 

has been observed in the Lambeth College test pile [18]. Therefore, enlengthening for geothermal 

reasons could go against safety. 

 

Figure 8: Interaction diagram relating change in thermally induced pile axial load and pile head movement as 

function of applied temperature change and pile head stiffness, after [57]. 

Based on these findings, the EPFL research team has continued developing a method to consider 

the thermal loads within the Eurocode framework. The latest work is still under review [69], but 

personal communication with the authors and the recent attendance to a course in EPFL [70], 

provided the following main outcomes: 

The thermal loads are deformation related problems. Hence, for geotechnical design, the thermal 

loads are more relevant in SLS than in ULS. This happens because the presence of the null point 

will always ensure equilibrium with regards to a collapse mechanism. Hence, it should suffice with 

checking that the thermally induced pile head heave or settlement resulted from thermal expansion 

or contraction, respectively, remain within acceptable limits for the structure. For this verifications, 

numerical tools such as the load transfer method [15,26,40,60,71], can be used. Stresses caused 

by thermal loads may be generated in the reinforced concrete section. Hence, sufficient compressive 

and tensile strengths need to be ensured to verify structural ULS [26]. Extensive reviews about this 

topic are available in [10,67,68]. 
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Conclusions 

The literature review shows a vast amount of information and studies regarding thermo-mechanical 

aspects of pile heat exchangers. However, more data of the thermo-mechanical behaviour under 

operational conditions is required to ease the development of regulations and unified guidelines and 

to boost the implementation of this technology. 

The analysed research concludes that the thermal loads and displacements resulted from the 

geothermal use of the energy piles are not likely to lead to geotechnical or structural failure. However, 

energy piles are structural elements and they need to be treated as such. Therefore, the energy pile 

design needs to incorporate geotechnical, structural and heat transfer considerations.  

The induced thermal stresses and strains depend on the temperature change caused by the ground 

thermal load, which results from the building heating and/or cooling needs. The temperature 

disturbance and its magnitude in the pile-soil system will also depend on the thermal properties of 

the concrete and the surrounding soil. Hence, a prior assessment of the induced temperature 

changes with respect to the initial undisturbed temperature needs to be carried out in order to 

estimate the induced thermal stresses and strains. The ULS and SLS verifications for geotechnical 

design can be addressed by numerical tools such as the load transfer method. 
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Appendix 

Table A: Main case studies reported in literature. 

More case studies are available in [72]. 

Pile type, 
length [m] / diameter [m] 

Pipe 
configuration 

Number of 
energy piles 

Seasonal 
performance 
factor [SPF] 

Heat transfer rate [W/m] Reference 

Precast driven, 15 / 0.3m x 0.3m W-shape 220 Heating: 3 Max. 43; average 12. [73], updated 

Precast driven, 12 - 52 Heating: 4.3 - [72] 

Cast in place, 26.8 / 0.9 to 1.5 5U 306 Heating: 3.9 Max. 72; average 45. [74] 

Cast in place, 8.5 1U 196 Cooling: 6.5 Average heating 50; average cooling 5-35. [75] 

Precast driven, 9 / 0.30 1U 26 Heating: 3.2  [76] 

Cast in place, 26 - 198 
Heating: 4.0; 
cooling: 4.4 

Max. heating 18.5; average heating 1; max. Cooling 23.3; 
average cooling 11.6. 

[77] 

Cast in place, 10/0.3 1U 21 Heating: 3.2 Average heating 26. [78] 

Cast in place, 14.8/0.91 3U 1 - Average heating 91. 
[61] 

Cast in place, 13.4/0.91 4U 1 - Average heating 95. 

Cast in place, 20/1.5 8U 2 
Heating: 3.2; 
cooling: 3.7 

Average heating 44-52; average cooling 100-120. [79] 

Cast in place (-) - 196 
Heating 5.4; free-
cooling: 24.5 

Max. heating: 12 heating; Max. cooling: 17. [80] 

Cast in place, 10 / 0.3 1U 16 Heating: 3.62 Average heating 26 W/m. [81] 

Cast in place, 15 / 0.5 1U 54 - Max. 300. [82] 

 

  



Alberdi-Pagola et. al (2018)  DCE Technical Report No. 250 
Thermo-mechanical aspects of pile heat exchangers: background and literature review 

 

34 

 

Table B: Main full-scale studies reported in literature. 

Pile type, length 
[m]/ diameter [m] 

Ground conditions 
Restrain 
condition 

Induced 
temperature 
changes 

Mechanical 
load 

Main conclusions Source 

2 cast in place 
piles, 23-26/0.6 

5 m river deposits 
over London clay 

Floating pile 

Fluid temperature 
imposed in test pile: -
6 to 40 °C; test pile 
Δ    - 20 °C; sink 
    : Δ    +      , 3-
day tests. 

1200 kN 
(failure 3600 
kN) 

Pile-soil system shows thermo-elastic behaviour. 
Sufficient margin between mobilised shaft. 

[13,42,83] 
Lambeth College 
(UK) 

Cast in place, 
25.8/0.88 

Alluvial deposits 12 
m, glacial till to 25 
m, driven to 
sandstone 

End-bearing 

              : Δ    
+ 21 and + 15 °C, 12 
days heating and 16 
days recovery. 

Building load 
(1300 kN) 

Pile strain shows thermo-elastic behaviour and 
depends on the surrounding soil. 

[43,84] and 
numerical 
analysis [85]. 
EPFL (CH) 

4 cast in place 
piles, 25.8/0.88 

Alluvial deposits 12 
m, glacial till to 25 
m, driven to 
sandstone 

End-bearing 

Two test modes: i) 1 
pile heated at a time; 
ii) 3 piles heated 
before last. TRT for 6 
days and recovery, 
Δ    +      . 

Building load 
(800 - 2100 
kN) 

Group effect: differential displacements between test 
piles are reduced as more piles are heated.  

[86,87] EPFL 
(CH) 

Cast in place, 
9/1.2 

Silty sand/clayey silt 
over highly fissured 
weathered stiff 
clayey, sandy silt 

Head 
restrained 
(raft) + 
floating 

Operational 
conditions: 5 to 20 °C. 

1100 kN 
Appropriate operating of energy piles hardly affects 
the shaft resistance. 

[3] 

2 cast in place 
piles, 13.4 - 
14.8/0.91  

Embedded into 7.6 
m of claystone 
(Denver Blue Shale) 

End-bearing 
Operational 
conditions: 7 to 35 °C. 

Building load 
(3700 kN) 

Thermal axial strains are within acceptable limits. [61,88] 

8 cast in place 
piles, 15.2/0.61 

12 m of dense 
sand, silt and gravel 
on top of sandstone 

End-bearing 
TRT conditions: 10 - 
50 °C, 120 - 500 
hours. 

Building load 
(833 kN) 

Linear thermo-elastic behaviour observed. Pile head 
displacements should not cause significant angular 
distortions. 

[89] 

Precast driven, 
17/0.35x0.35 

Driven into gravel 
with coarse sand 

End-bearing 

TRT conditions: 23-
29 °C, 120 hours; 
stages TRT 20 days 
and cyclic thermal 
loads for 15 days. 

1000 kN 

The increase of the axial load in the pile is around 
12% of the mechanical load. The maximum increase 
of temperature in the pile does not reach 5 °C at any 
depth. 

[45,90] 

3 cast in place 
piles, 14/0.46 

8.7 m of clay on top 
of dense sand 

- 

Different thermal 
patterns between 7 
and 45 °C, 4 to 14 
days. 

2560 kN 
The thermal loads need to be considered during the 
design of energy piles. The behaviour of energy piles 
depends on the level of restrictions of the pile. 

[26,91] Virginia 
Tech (Richmond, 
Texas, USA) 
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Pile type, length 
[m] / diameter 
[m] 

Ground conditions 
Restrain 
condition 

Induced 
temperature 
changes 

Mechanical 
load 

Main conclusions Source 

5 cast in place 
piles, 35/0.25 

Silty sand layer (13-
19 m) underlain by 
a shale layer 

End-bearing 

Different thermal 
patterns between 6 
and 50 °C, 2 to 16 
days. 

1300 kN 
(ultimate load) 

The thermal loads need to be considered during the 
design of energy piles. 

[66] Virginia Tech 
(Virginia, USA) 

Cast in place, 
16.1/0.6 

Unsaturated, very 
dense sand 

- 
TRT conditions: 15 - 
50 °C; 3 to 52 days. 

1850 kN 
The pile shaft resistance gained strength during 
thermal heating loads. 

[92,93] Monash 
University (AU) 

Cast in place, 
16.1/0.6 

Unsaturated, very 
dense sand 

- 
Intermittent thermal 
loads for 20 days. 

- 

Thermal strains and stresses for intermittent tests 
were cyclic and returned to initial values. Intermittent 
operation is advantageous since generates lower pile 
thermal loading for long term operations.  

[46] Monash 
University (AU) 

Cast in place, 
12.20/1.07 

3 m soft clay 
topping shale 

End-bearing 
TRT conditions: 17 - 
37 °C, 39 days. 

- 
The load transfer model reproduces the monotonic 
thermal load implications.  

[94] Oklahoma 
State University 
(USA) 
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Table C: Main laboratory-scale studies reported in literature. 

Laboratory studies, either physical or centrifuge models, allow to uncouple uncertainties as they are reproduced under controlled environments. 

Pile type Methodology Soil 
Heat 
source 

Restraints Main conclusions Source 

Concrete Experimental data Dry sand 
PVC 1U 
tube 

Free thermal 
expansion 

Increase in bearing capacity after heating pile. Similar behaviour in [95]. [96,97] 

Aluminium 
pipe pile 

Experimental data Dry sand 
Aluminium 
1U 

End-bearing 

During thermal cycles under constant axial head load, for a head load lower 
than 30 % of the pile resistance, thermo-elastic behaviour of the pile is 
observed. For higher head load, significant cumulative settlement can be 
observed. 

[98–
100] 

Stainless steel Experimental data 
Soft 
Kaolin 
clay 

Metallic 1U - 
The working load for shallow geothermal energy pile embedded in soft soil 
should be reduced adequately to prevent failure of the pile. 

[101] 

Steel pipe pile 
Centrifuge 
experimental data + 
THM* FEM analysis 

Saturated 
sand 

Heating 
wire 

- 
The null point position depends on the magnitude of the thermal and 
mechanical loads.  

[102] 

Reinforced 
concrete 

Centrifuge 
experimental data + 
TM FEM analysis 

Dry 
Nevada 
sand 

- - 
Negligible variation between the evolutions of the load settlement curves. This 
indicates a very limited impact of temperature on the bearing behaviour of the 
pile.  

[103] 

Concrete 
Centrifuge data + 
axisymmetric TPM*2 
FEM analysis 

Partially 
saturated 
silt 

PFA 3U 
tube 

Semi-floating 
Thermally-induced liquid water and water vapor flow inside the soil were found 
to have an impact on soil-structure interaction. 

[104] 

Reinforced 
concrete 

Centrifuge 
experimental data + 
load transfer analysis 

Bonny silt 
Aluminium 
1U 

- 
By heating the pile, its bearing capacity increased, because of an increase in 
drained shear distribution along the pile due to soil compression during the 
heating phase. 

[95] 

* THM: Thermo-hydro-mechanical; *2 TPM: Thermo-poro-mechanical
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