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English Summary

In this thesis we consider sparseness properties of classical Gabor expansions
and adaptive nonstationary Gabor expansions. A classical Gabor expansion
decomposes a signal into a convergent sum of time-frequency (TF) localized
atoms, which are constructed as TF-shifts of a single fixed window function.
In contrast, nonstationary Gabor expansions allow for the usage of multi-
ple window functions to obtain an adaptive TF resolution. Both classical
and nonstationary Gabor expansions have proven to be extremely useful for
representing music signals as they provide sparse and structured TF repre-
sentations. Sparseness of a TF representation is desirable since it reduces the
computational cost involved in processing the expansion coefficients. Also,
the sparseness property allows for efficient approximations of the signal by
thresholding the associated expansion coefficients. This kind of approxima-
tion belongs to the area of approximation theory known as nonlinear approx-
imation.

In paper A of this thesis we consider sparseness properties of classical Ga-
bor expansions in the general framework of nonlinear approximation theory.
The main contribution of this paper is an upper bound (a Jackson inequal-
ity) on the approximation error occurring when thresholding the expansion
coefficients with respect to certain weight functions. These weight functions
seek to exploit the coherence between expansion coefficients which is not
accounted for in traditional greedy algorithms.

Nonstationary Gabor frames extend the concept of classical Gabor frames
by allowing for a flexible TF resolution along either the time or the frequency
axis. In paper B of this thesis we use decomposition spaces to characterize
those signals which permit sparse expansions with respect to certain nonsta-
tionary Gabor frames with flexible frequency resolution. In paper C we con-
sider a similar approach for nonstationary Gabor frames with flexible time
resolution and provide a numerical analysis of the associated approximation
rate. Finally, in paper D we consider a practical application and construct
a new time-stretching algorithm based on the theory of nonstationary Ga-
bor frames. Time-stretching is the task of modifying the length of a signal
without affecting its frequencies.
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Dansk Resumé

I denne afhandling undersøger vi sparseness egenskaber ved klassiske Gabor
udviklinger og adaptive ikke-stationære Gabor udviklinger. En klassisk Ga-
bor udvikling nedbryder et signal til en konvergent sum af tids-frekvens (TF)
lokaliserede atomer, der er konstruerede som TF-skift af en enkelt vindues-
funktion. I modsætning hertil så anvender ikke-stationære Gabor udviklinger
flere vinduesfunktioner til at opnå en adaptiv TF opløsning. Både klassiske
og ikke-stationære Gabor udviklinger har vist sig at være særligt nyttige til
at repræsentere musiksignaler, da de producerer sparse og strukturerede TF
repræsentationer. Sparseness af en TF repræsentation er ønskværdigt, da det
nedsætter mængden af computerkraft, der skal bruges til at bearbejde koef-
ficienterne. Desuden medfører sparseness egenskaben, at man effektivt kan
approksimere signalet ved at thresholde de tilhørende koefficienter. Denne
type approksimation tilhører det felt af approksimationsteorien, der kendes
som ikke-linear approksimation.

I artikel A af denne afhandling undersøger vi sparseness egenskaber ved
klassiske Gabor udviklinger i det generelle framework, som benyttes i ikke-
lineær approksimationsteory. Hovedresultatet af denne artikel er en øvre
grænse (en Jackson ulighed) på den approximationsfejl, der opstår, når man
thresholder koefficienterne mht. visse vægtfunktioner. Disse vægtfunktioner
forsøger at udnytte sammenhængen mellem koefficienterne, hvilket der al-
mindeligvis ikke tages højde for i traditionelle grådige algoritmer.

Ikke-stationære Gabor frames generaliserer klassiske Gabor frames ved
at tillade en fleksibel TF opløsning langs enten tids- eller frekvensaksen.
I artikel B af denne afhandling bruger vi dekompositionsrum til at karak-
terisere de signaler, der har sparse udviklinger mht. ikke-stationære Gabor
frames med fleksibel opløsning i frekvens. I artikel C benytter vi en lignende
tilgang for ikke-stationære Gabor frames med fleksibel opløsning i tid og
inkluderer desuden en numeriske analyse af den tilhørende approksimation-
srate. Til sidst, i artikel D, ser vi på en praktisk anvendelse og konstruerer
en ny time-stretching algoritme baseret på teorien om ikke-stationære Gabor
frames. Time-stretching er anvendelsen, hvor man modificerer længden af et
signal uden at ændre ved dets frekvenser.
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Introduction

This thesis investigates sparseness properties of time-frequency (TF) repre-
sentations obtain with classical Gabor frames and adaptive nonstationary Ga-
bor frames. In particular, the theory is relevant for analyzing music signals
as these signals tend to produce sparse TF representations when expanded
in a (nonstationary) Gabor dictionary. In this first part of the thesis we give
an introduction to TF analysis in the general framework provided by frame
theory. Both classical Gabor frames and nonstationary Gabor frames are (as
the words suggest) special cases of frames and it therefore make sense to
consider them in a unified framework. To illustrate the concepts from TF
analysis we include a real world example and analyze the associated TF rep-
resentations. With this approach, the abstract theory presented in the papers
in the second part of the thesis will hopefully be easier to grasp as many of
the deep theoretical concepts take their roots in practical problems from TF
analysis.

1 Frame theory

The main property of a frame {gk}k∈N in a separable infinite dimensional
Hilbert space H is that every f ∈ H has a stable expansion of the form
f = ∑k∈N ckgk with {ck}k∈N ⊂ C. In general, frames are redundant systems
with non-unique expansion coefficients {ck}k∈N. The notion of frames was
first introduced in 1952 by Duffin and Schaeffer [35] who studied the prop-
erties of overcomplete families of exponential functions. Much later in 1986,
Daubechies, Grossmann, and Meyer [19] revisited the theory and considered
new types of frames not restricted to the framework of nonharmonic Fourier
series. We also mention the work by Young [109], Heil and Walnut [63], and
Daubechies [16, 17] as examples of some of the early work done on frame
theory. A modern and thorough introduction to frame theory can be found
in the book by Christensen [13].

Formally, a sequence {gk}k∈N ⊂ H is a frame for H if there exist frame

3



bounds A, B > 0 such that

A ‖ f ‖2
H ≤ ∑

k∈N

|〈 f , gk〉|2 ≤ B ‖ f ‖2
H , ∀ f ∈ H.

If A = B then the frame is said to be tight. It follows from Parseval’s identity
that any orthonormal basis is a tight frame with A = B = 1. For a given
frame {gk}k∈N ⊂ H, we define the associated frame operator S : H → H by

S f = ∑
k∈N

〈 f , gk〉 gk, f ∈ H.

The frame property implies that S is a bounded, invertible, self-adjoint, and
positive operator, which permits a dual frame {g̃k}k∈N := {S−1gk}k∈N which
is also a frame but with frame-bounds B−1, A−1 > 0 [13, 55, 61, 86]. It follows
that every f ∈ H has a frame expansion of the form

f = SS−1 f = ∑
k∈N

〈
S−1 f , gk

〉
gk = ∑

k∈N

〈 f , g̃k〉 gk,

with unconditional convergence in H. Similarly, f possesses an expansion
with respect to the dual frame {g̃k}k∈N in the sense that

f = S−1S f = ∑
k∈N

〈 f , gk〉 S−1gk = ∑
k∈N

〈 f , gk〉 g̃k. (1)

We choose to work mainly with the expansion given in (1). The frame coeffi-
cients {〈 f , gk〉}k∈N can be shown to minimize the `2−norm among all possi-
ble reconstruction coefficients {ck}k∈N satisfying f = ∑k∈N ck g̃k, see [109].

For a tight frame we note that 〈S f , f 〉 = ∑k∈N |〈 f , gk〉|2 = A‖ f ‖2, which
implies S = AI with I denoting the identity operator on H. Hence, for an
orthonormal basis we obtain S = I and the frame expansion in (1) reduces to
the well-known unique reconstruction formula f = ∑k∈N〈 f , gk〉gk. However,
for many practical purposes it is beneficial to consider redundant frames
where the reconstruction coefficients are not uniquely determined [14, 27, 95].

2 Gabor frames

In this section we consider an important kind of frames for L2(Rd) known as
Gabor frames. These frames are named after D. Gabor [52] who in 1946 con-
sidered a new approach for signal decomposition using TF localized atoms.
These decompositions was later studied by Janssen [70, 71] in the early 1980s
and was combined with frame theory by Daubechies, Grossmann, and Meyer
[19] in their paper from 1986. Further studies on the fundamental proper-
ties of Gabor frames were performed in the late 1980s by Feichtinger and
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2. Gabor frames

Gröchenig [40, 42, 45, 46], in the early 1990s by Daubechies [16] and Heil
and Walnut [63, 106], and later in the 1990s by several other authors (see
[20, 73, 96] and references therein). We also mention the two books [47, 48]
by Feichtinger and Strohmer which contain surveys on various topics of Ga-
bor analysis.

Gabor frames are based on two classes of unitary operators on L2(Rd),
namely translation and modulation. For α, β ∈ Rd we define the translation
operator Tα : L2(Rd)→ L2(Rd) and the modulation operator Mβ : L2(Rd)→
L2(Rd) by

Tα f (x) = f (x− α) and Mβ f (x) = f (x)e2πiβ·x.

Given lattice parameters a, b > 0, and a fixed window function g ∈ L2(Rd),
we define the Gabor system {gm,n}m,n∈Zd := {MmbTnag}m,n∈Zd . If the sys-
tem constitutes a frame for L2(Rd) then it is referred to as a Gabor frame.
Explicitly written, the frame elements of a Gabor frame are given by

gm,n(x) = g(x− na)e2πimb·x, m, n ∈ Zd,

and the associated frame operator by

S f = ∑
m,n∈Zd

〈 f , gm,n〉 gm,n, f ∈ L2(Rd).

By cumbersome calculations it can be shown that S (and consequently S−1)
commutes with translation and modulation [55]. The dual frame of {gm,n}m,n
is therefore given by

{g̃m,n}m,n = {S−1gm,n}m,n = {MmbTnaS−1g}m,n = {MmbTna g̃}m,n,

with g̃ := S−1g denoting the so-called dual window of g. The fact that the
dual frame is also a Gabor frame is a special property of Gabor frames not
shared by general frames. The frame expansions in (1) take the form

f = ∑
m,n∈Zd

〈 f , gm,n〉 g̃m,n, f ∈ L2(Rd).

The Gabor frames we consider here are often referred to as regular Gabor
frames since the sampling points {na, mb}m,n∈Zd form a separable lattice
aZd × bZd in R2d. The lattice parameters a, b > 0 determine the density
of the Gabor frame, which is usually divided into three cases:

1. ab > 1: This is called undersampling and implies that {gm,n}m,n cannot
form a frame for L2(Rd). This was proved for the rational case ab ∈ Q

by Daubechies [16] and for the general case by Baggett [5] (see also the
paper by Janssen [72]).
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2. ab = 1: This is called critical sampling. In this case, {gm,n}m,n is a frame
for L2(Rd) if and only if it is also a Riesz basis, i.e., a basis of the form
{Uek}k∈N with {ek}k∈N being an orthonormal basis and U a bounded
bijective operator on L2(Rd), see [13]. Additionally, if {gm,n}m,n is a
frame for L2(Rd) then the Balian-Low theorem states that g cannot be
well localized in both time and frequency [7, 9, 84]. We elaborate further
on this point in Section 4.1.

3. ab < 1: This is called oversampling. In this case, if {gm,n}m,n is a frame
for L2(Rd) then it cannot be a Riesz basis. A frame which is not a
Riesz basis is called redundant since there exist coefficients {cm,n}m,n in
`2 \ {0} with ∑m,n cm,ngm,n = 0, see [13].

The original expansion considered by D. Gabor in 1946 was in the crit-
ical case with ab = 1 and g(x) = e−x2/2 being the Gaussian function [52].
This expansion has later been shown to be unstable as the Gaussian window
posses the special property that the corresponding Gabor system {gm,n}m,n
is a frame for L2(Rd) if and only if ab < 1. This result was first conjectured
by Daubechies and Grossmann [18] in 1988 and later proven in 1992 inde-
pendently by Lyubarskiı̆ [85] and Seip and Wallstén [99, 100]. For a general
window function g ∈ L2(Rd) it is difficult to find an exact range of parame-
ters a, b > 0 guaranteeing that {gm,n}m,n is a frame for L2(Rd) [56, 75, 81]. It is
therefore important to note that the terminology introduced above is slightly
misleading. Even with heavy oversampling ab < 1 we are not guaranteed
that {gm,n}m,n forms a frame for L2(Rd).

We now consider a simple construction of Gabor frames, which is of
great practical importance. Let a, b > 0 and assume g ∈ L2(Rd) satisfies
supp(g) ⊆ [0, 1/b]d. With G(x) := b−d ∑n∈Zd |g(x− na)|2, the frame opera-
tor for {gm,n}m,n turns out to be the multiplication operator [19]

S f (x) = G(x) f (x), f ∈ L2(Rd).

Consequently, {gm,n}m,n is a frame for L2(Rd) with frame bounds A, B > 0 if
and only if

A ≤ G(x) ≤ B, for a.e. x ∈ Rd.

Furthermore, if {gm,n}m,n is a frame for L2(Rd) then the dual frame is given
by g̃m,n(x) = G−1(x)gm,n(x). Such frames are traditionally referred to as
painless nonorthogonal expansions [19]. To be consistent with the notation
in Section 3 we choose to simply call them painless Gabor frames.

3 Nonstationary Gabor frames

One of the shortcomings of classical Gabor frames is the stationarity resulting
from applying only one window function. A straightforward generalization
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3. Nonstationary Gabor frames

of the theory is to choose a countable set of window functions {gn}n∈Zd ⊂
L2(Rd), with corresponding sampling parameters {bn}n∈Zd ⊂ R+, and then
define the system {gm,n}m,n∈Zd by

gm,n(x) = Mmbn gn(x) = gn(x)e2πimbn ·x, m, n ∈ Zd. (2)

We obtain classical Gabor systems by choosing, for all n ∈ Zd, gn := Tnag
and bn := b with g ∈ L2(Rd) and a, b > 0.

The generalized Gabor systems defined in (2) were originally studied by
Hernández, Labate, and Weiss [64] and later by Ron and Shen [97] under the
name of generalized-shift invariant systems (see also [13, 69, 74, 80]). Techni-
cally, generalized-shift invariant systems are obtained by applying a Fourier
transform to the systems in (2), thereby producing the equivalent systems
defined in Section 3.2. The systems in (2) are defined in the time domain
whereas the systems in Section 3.2 are defined in the frequency domain. The
term nonstationary Gabor frames (NSGFs) was introduced by Jaillet [68] for
frames of the form (2) and further used by Balazs et al. [6], Holighaus [65],
and Dörfler and Matusiak [33, 34]. We choose to work with the terminology
of [68] to emphasize the connection with classical Gabor frames. Likewise,
we will often refer to a classical Gabor frame as a stationary Gabor frame.

The important paper [6] by Balazs, Dörfler, Jaillet, Holighaus and Velasco
contains the first practical implementations of NSGFs. This paper is accom-
panied by a Matlab toolbox, which provides source code for construction NS-
GFs in both the time domain and the frequency domain. The main author of
this toolbox is Holighaus and the source code applies routines from the Large
Time-Frequency Analysis Toolbox (LTFAT), which was originally founded by
Søndergaard [101] and is currently maintained by Průša [94]. The practi-
cal implementations presented in [6] shows that NSGFs can be used to create
fast adaptive TF representations, which for certain signal classes outperforms
classical (stationary) Gabor frames.

Finally, it should be noted that NSGFs can be considered a special case of
the more general concept of multi-window Gabor frames [30, 108, 110]. How-
ever, so far NSGFs are the only realization of multi-window Gabor frames
which permit perfect reconstruction and a fast implementation based on the
FFT [83]. These properties makes NSGFs particular interesting from a practi-
cal point of view.

3.1 NSGFs in the time domain

We first describe NSGFs in the time domain, i.e., NSGFs of the form (2). The
frame operator for a NSGF {gm,n}m,n is defined by

S f = ∑
m,n∈Zd

〈 f , gm,n〉 gm,n, f ∈ L2(Rd),

7



and the resulting frame expansions take the form

f = ∑
m,n∈Zd

〈 f , gm,n〉 S−1gm,n, f ∈ L2(Rd).

In general, the dual frame {S−1gm,n}m,n does not produce a new NSGF
as is the case for stationary Gabor frames [65]. However, by generalizing
the painless condition to the nonstationary case we do obtain dual frames
with this property. Let {bn}n∈Zd ⊂ R+ and assume {gn}n∈Zd ⊂ L2(Rd)
satisfy supp(gn) ⊆ [0, 1/bn]d + an with an ∈ Rd for all n ∈ Zd. With
G(x) := ∑n∈Zd b−d

n |gn(x)|2, the frame operator for {gm,n}m,n is the multi-
plication operator [6, 19]

S f (x) = G(x) f (x), f ∈ L2(Rd).

It follows that {gm,n}m,n is a frame for L2(Rd) with frame bounds A, B > 0 if
and only if

A ≤ G(x) ≤ B, for a.e. x ∈ Rd.

If {gm,n}m,n is a frame for L2(Rd) then the dual frame is given by

g̃m,n(x) = Mmbn

gn(x)
G(x)

, x ∈ Rd.

We note that this result completely generalizes the painless case for stationary
Gabor frames. For this reason we refer to the system {gm,n}m,n as a painless
NSGF [6].

3.2 NSGFs in the frequency domain

As mentioned in the beginning of Section 3, NSGFs have an equivalent im-
plementation in the frequency domain. We use the following normalization
for the Fourier transform

f̂ (ξ) =
∫

Rd
f (x)e−2πix·ξdx, f ∈ L1(Rd),

which by standard arguments extends to a unitary operator on L2(Rd), see
[82]. Given {hm}m∈Zd ⊂ L2(Rd) and {am}m∈Zd ⊂ R+, we define the system
{hm,n}m,n∈Zd by

hm,n(x) = Tnam hm(x) = hm(x− nam), m, n ∈ Zd.

In complete analogy with the painless condition in the time domain, we de-
fine H(ξ) := ∑m∈Zd a−d

m |ĥm(ξ)|2 and assume supp(ĥm) ⊆ [0, 1/am]d + bm
with bm ∈ Rd for all m ∈ Zd. The frame operator is then given by [6, 19]

S f (x) = (F−1H ∗ f )(x), f ∈ L2(Rd),

8



4. Time-frequency analysis

which corresponds to a multiplication operator in the frequency domain.
Consequently, {hm,n}m,n is a frame for L2(Rd) with frame bounds A, B > 0 if
and only if

A ≤ H(ξ) ≤ B, for a.e. ξ ∈ Rd.

If {hm,n}m,n is a frame for L2(Rd) then the dual frame is given by

h̃m,n(x) = TnamF−1
(

H−1ĥm

)
(x), x ∈ Rd.

In the next section we consider applications of stationary Gabor frames and
NSGFs in connection with TF analysis.

4 Time-frequency analysis

The purpose of TF analysis is to combine the information of a signal f ∈
L2(Rd) and its Fourier transform f̂ ∈ L2(Rd) into a 2d−dimensional TF rep-
resentation V(x, ξ) containing information about the frequencies ξ occurring
at time x. A common analogy for a TF representation is the musical score [21].
In Fig. 1 we see the musical score for the first 4 bars of a piece of piano music.

Fig. 1: First 4 bars of "Moanin" by Bobby Timmons.

A musician reads the musical score from left to right and the vertical
position of each note determines the pitch of the note. A note on a piano
corresponds to a fundamental frequency and overtones with frequencies that
are integer multiples of the fundamental frequency. It is the presence of
overtones that determines the particular timbre of the instrument. The first
note of the musical score in Fig. 1 is F4 which has a fundamental frequency
of 350 Hz and overtones of frequencies 700 Hz, 1050 Hz, 1400 Hz, and so
on. Suppose the piano music has been recorded with a microphone. This
produces a signal f (x) describing the changes over time in air pressure as
shown in Fig. 2.

We might be able to determine some rhythmical patterns or maybe even
the tempo ( ˇ “ = 126) by analyzing f (x) directly but we cannot say anything
about the melody. On the other hand, calculating the (normalized) values of
| f̂ (ξ)| we obtain the plot in Fig. 3.
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Fig. 2: Time-domain plot of the piano signal.
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Fig. 3: Frequency-domain plot of the piano signal.

By studying Fig. 3 we might conclude that the most dominating frequency
is 350 Hz. Since this frequency corresponds the fundamental frequency of F4
we might further deduce that the key of the music piece is F (major or minor)
which is correct. Hence, analyzing f (x) and f̂ (ξ) separately we can deter-
mine some global properties of the music (such as tempo and key) but we
are unable to say anything about its melody. In some sense, this problem
is counterintuitive. Even though f (x) and f̂ (ξ) contain all possible informa-
tion of the signal, neither representation provides the relevant information.
For this reason we want to construct a TF representation which imitates the
musical score and provides a description of the frequencies as a function of
time. The connection between TF analysis and music has been studied by
several authors [2, 4, 29, 92] and has applications within areas such as trans-
position [32], transcription [76], beat tracking [89], and compression [57]. Our
notation is mainly inspired by the book of Gröchenig [55], which provides an
introduction to TF analysis in the framework of Gabor theory.

In order to obtain local TF information we apply a smooth cutoff function
g called a window function. Multiplying the signal and the window function
we obtain a segment of the signal. If we then take the Fourier transform of
this segment we obtain a description of the frequencies of the signal occur-
ring within the segment. This procedure is known as the short-time Fourier
transform (STFT) [1, 8, 55]. Formally, the STFT of f ∈ L2(Rd) with respect to
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4. Time-frequency analysis

g ∈ L2(Rd) \ {0} is defined as

Vg f (x, ξ) =
∫

Rd
f (t)g(t− x)e−2πit·ξ dt, x, ξ ∈ Rd.

For practical purposes we want to consider a discretization of the STFT and
this is where Gabor frames come into play.

4.1 Stationary Gabor analysis

The connection between the STFT and Gabor frames is straightforward. Let
f ∈ L2(Rd) and assume {gm,n}m,n∈Zd is a stationary Gabor frame for L2(Rd).
We can rewrite the frame coefficients of f as

〈 f , gm,n〉 = 〈 f , MmbTnag〉 = Vg f (na, mb), m, n ∈ Zd.

Hence, the frame coefficients are samples of the STFT along the lattice aZd ×
bZd of the TF plane. Likewise we may write the Gabor expansion of f as

f = ∑
m,n∈Zd

Vg f (na, mb)g̃m,n.

The TF resolution provided by the STFT depends crucially on the choice of
window function. To obtain a good time resolution the window function
needs to be well localized in time. As a first attempt, one might therefore
choose g = χ[0,1]d , with χ[0,1]d denoting the indicator function on the cube
[0, 1]d. The Fourier transform of g is then given by

ĝ(ξ) =
∫
[0,1]d

e−2πix·ξ dx =
d

∏
k=1

1− e−2πiξk

2πiξk
.

With d = 1 we get the plots shown in Fig. 4.
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Fig. 4: Plots of g = χ[0,1] and (the real part of) ĝ.

The plot of ĝ in Fig. 4 reveals that the Fourier transform of g = χ[0,1]d

decays slowly. This produces a new problem for our analysis as the STFT
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then provides a poor frequency resolution. One way of realizing this is the
following: Using the facts that T̂x f = M−x f̂ and M̂ξ f = Tξ f̂ , we can apply
Plancherel’s theorem to obtain the identity

Vg f (x, ξ) = 〈 f , Mξ Txg〉 = 〈 f̂ , Tξ M−x ĝ〉
= 〈 f̂ , e2πix·ξ M−xTξ ĝ〉 = e−2πix·ξVĝ f̂ (ξ,−x), f ∈ L2(Rd). (3)

This identity is often referred to as the fundamental identity of TF analysis
[55]. We can think of the expression on the right hand-side of (3) as a rotation
of the TF plane by 90 degrees. It follows that if ĝ decays slowly then the
frequency resolution of the STFT becomes poor. Therefore, g = χ[0,1]d is not
well suited as window function. It turns out that the problem noticed for
g is due to a fundamental property of functions known as the uncertainty
principle.

The uncertainty principle

The uncertainty principle states roughly that g and ĝ cannot both be sup-
ported on arbitrary small sets. The exact formulation of the principle can be
stated in many different forms [51, 59] and we have chosen to present the
formulation of Donoho and Stark [28].

We say that f ∈ L2(Rd) is ε−concentrated on a measurable set T ⊆ Rd

if ‖χTc f ‖2 ≤ ε‖ f ‖2 with Tc denoting the complement of T. In particular, if
ε ∈ [0, 1/2) then T is called the essential support of f . We note that if ε = 0
then supp( f ) ⊆ T. Assume f ∈ L2(Rd) \ {0} is εT−concentrated on T ⊆ Rd

and f̂ is εΩ−concentrated on Ω ⊆ Rd. The uncertainty principle then states

|T| |Ω| ≥ (1− εT − εΩ)2.

As a corollary, if supp( f ) ⊆ T and supp( f̂ ) ⊆ Ω then |T||Ω| ≥ 1. Under these
additional assumptions, another version of the uncertainty principle [3, 10]
further states that ∞ > |T||Ω| implies f = 0.

The uncertainty principle has a particularly interesting consequence for
Gabor frames known as the Balian-Low theorem [7, 84]. This result reveals a
crucial disadvantage of sampling at the critical density, i.e. ab = 1, and thus
explains why frames are more appropriate than orthonormal bases for Gabor
analysis. Let W0(R

d) denote the Wiener space [37, 60, 107] of continuous
functions h ∈ L∞(Rd) with ∑n∈Zd ‖h · Tnχ[0,1]d‖∞ < ∞. The Balian-Low
theorem states that if {Mma−1 Tnag}m,n∈Zd is a Gabor frame (and thus a Riesz
basis) for L2(Rd) then both g /∈ W0(R

d) and ĝ /∈ W0(R
d) [9, 62]. Hence, it is

not possible to construct a Gabor frame, sampled at the critical density, using
a window function that is well localized in both time and frequency.

The uncertainty principle implies that the idea of simultaneous time and
frequency information is unobtainable. It is not possible to construct an

12



4. Time-frequency analysis

ideal TF representation which contains exact information of the frequen-
cies occurring at each time instant. In practice one instead uses a win-
dow function such that both g and ĝ are decaying rapidly, for instance a
Schwartz function g ∈ S(Rd). In particular, one can choose the Gaussian
g(x) = e−‖x‖

2
2/2 ∈ S(Rd) as shown in Fig. 5.
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Fig. 5: Plots of g(x) = e−x2/2 (to the left) and ĝ(x) =
√

2πe−2π2x2
(to the right).

The Fourier transform of a Gaussian ϕa(x) := e−π‖x‖2
2/a, with a > 0, is

simply given by another Gaussian ϕ̂a(ξ) = ad/2 ϕ1/a(ξ), see [55]. The Gaus-
sian also posses the important property that it minimizes the uncertainty in
the Heisenberg-Pauli-Weyl inequality (a classical formulation of the uncer-
tainty principle) [15]. As the resolution of the STFT depends on the choice of
window function, the study of suitable window classes are of great impor-
tance [36, 55, 79]. However, it is outside the scope of this introduction to go
into further details.

The Gabor expansion as a sum of building blocks

In this section we take a more intuitive approach for understanding the (sta-
tionary) Gabor expansions

f = ∑
m,n∈Zd

Vg f (na, mb)g̃m,n, f ∈ L2(Rd). (4)

We will assume that the window function is a Schwartz function g ∈ S(Rd)
such that both g and ĝ decay rapidly. The dual window g̃ = S−1g does not
necessarily have the same shape as g [44, 73, 104] but it can be shown that

lim
(a,b)→(0,0)

1
ab

g̃ = g.

This result was originally proved by Feichtinger and Zimmermann in [49].
Hence, as the sampling density increases the dual window starts to resemble
the original window. This is illustrated in Fig. 6 for the special case when g
is a Gaussian.
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Fig. 6: Dual windows of the Gaussian with increasing density.

Let us now analyze the structure of the dual frame {g̃m,n}m,n by investi-
gating the actions of MmbTna on g̃. In Fig. 7 we have plotted a translated and
(the real part of) a modulated version of the Gaussian.

Gaussian
Translated Gaussian

Gaussian
Modulated Gaussian

Fig. 7: Translation and (the real part of) modulation of the Gaussian.

Since translation Tna corresponds to a horizontal displacement of the func-
tion we often refer to this operator as a time shift. On the other hand, since
M̂ξ f = Tξ f̂ we refer to modulation as a frequency shift. The composition
MmbTna is called a TF shift and corresponds to a displacement by na in the
horizontal direction and mb in the vertical direction of the TF plane. Hence,
we can think of the dual frame {MmbTna g̃}m,n as horizontal and vertical dis-
placements of g̃ in the TF plane [31]. This is illustrated in Fig. 8.

The Gabor expansion in (4) can therefore be interpreted as a weighted
sum of building blocks {g̃m,n}m,n centered at the lattice points aZd × bZd in
the TF plane. The weights are samples of the STFT {Vg f (na, mb)}m,n deter-
mining the contribution of the building blocks to the signal [29]. This point of
view can also be found in the more general theory of atomic decompositions
developed by Feichtinger and Gröchenig [42, 45, 46].
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4. Time-frequency analysis
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Fig. 8: TF shift MbTa of g̃ in the TF plane.

The spectrogram

Based on the TF information contained in the (complex valued) Gabor coeffi-
cients {Vg f (na, mb)}m,n we can visualize the TF contents of f by plotting the
values of {|Vg f (na, mb)|2}m,n in the TF plane. This produces a TF represen-
tation called a spectrogram [86]. In Fig. 9 we have plotted a spectrogram for
the piano music associated with the musical score in Fig. 1.

To produce such a spectrogram one has to go to the finite settings as
the computer can only process vectors of finite lengths. It is outside the
scope of this introduction to provide such details and we refer the reader to
[91, 101, 103]. In paper D of this thesis we also give a brief summary of Gabor
theory in the finite settings. For the associated MATLAB implementation we
refer the reader to the toolboxes by Holighaus [6] and Søndergaard [94].

The spectrogram in Fig. 9 has a redundancy of four meaning there are
four times as many Gabor coefficients as signal samples. The 22 vertical lines
in the spectrogram correspond to the onsets of the music piece and the hor-
izontal lines correspond to the frequencies of the fundamental frequencies
and the overtones. The lengths of the horizontal lines correspond to the du-
rations of the notes. We recall that the first note is F4 with a fundamental
frequency of 350 Hz and overtones of frequencies 700 Hz, 1050 Hz, 1400 Hz,
which is reflected in the spectrogram. By varying the length of the window
function we can change the resolution of the spectrogram. A shorter win-
dow corresponds to an improved time resolution (and worsened frequency
resolution) whereas a longer window corresponds to an improved frequency
resolution (and worsened time resolution), see Fig. 10.

The optimal window size depends on the application. For instance, a
short window might be preferable for determining the tempo whereas a
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Fig. 9: Spectrogram of the piano music from Fig. 1.

longer window might be better suited for estimating the fundamental fre-
quencies [83]. Once the window function and the lattice parameters are cho-
sen, the spectrogram provides a TF resolution which is independent of the
signal under consideration. This stationarity can be seen both as an advan-
tage and a disadvantage of Gabor frames. On the one hand, the stationarity
implies a fast and easy to handle implementation [101]. On the other hand,
it is not possible to assign different TF resolutions to different regions in the
TF plane [31]. In particular, it is not possible for the TF resolution to adapt to
the particular characteristics of the signal. The idea behind NSGFs (and the
more general multi-window Gabor frames) is to allow the usage of several
different window functions to provide a more flexible TF resolution.

4.2 Nonstationary Gabor analysis

As described in Section 3, NSGFs can be implemented in either the time
domain or the frequency domain. In other words, the TF resolution obtained
through NSGFs can vary along either the time or the frequency axis [6]. This
is a limitation compared to general multi-window Gabor frames where a
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4. Time-frequency analysis

Fig. 10: Spectrograms with different window functions.

particular TF resolution can be assigned to any given region of the TF plane
[30]. However, the structure of NSGFs implies a fast implementation based
on the FFT which is not the case for general multi-window Gabor frames
[83]. In the next two sections we present two practical implementations of
NSGFs, one in the time domain and one in the frequency domain. Both
implementations were presented in [6] and included in the associated Matlab
toolbox.

Scale frames

We first consider an implementation of NSGFs in the time domain. We recall
that the atoms are given by

gm,n(x) = Mmbn gn(x) = gn(x)e2πimbn ·x, m, n ∈ Zd,

with {gn}n∈Zd ⊂ L2(Rd) and {bn}n∈Zd ⊂ R+. For a fixed time point n,
the associated frequency sampling parameter bn determines the distance be-
tween the vertical sampling points in the TF plane. It is this regularity that
allows for an implementation based on the FFT [6]. Hence, the sampling grid
associated with a NSGF in the time domain is irregular over time but regular
over frequency at each fixed time point as shown in Fig. 11.

The algorithm presented in [6] is based on the idea of applying short
window functions around the onsets of a music piece and longer window
functions between the onsets. The onsets are estimated using a spectral flux
algorithm which applies a preliminary Gabor transform and calculates the
sum of (positive) change in magnitude for all frequency bins [26]. The space
between two onsets is spanned in such a way that the window length first
increases (as we move away from the first onset) and then decreases (as we
approach the second onset). More precisely, with g ∈ C∞

c ([0, 1]) denoting a
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Fig. 11: Sampling grid associated with a NSGF in the time domain.

fixed prototype function, the window functions are given by the dilations

gn(x) :=
1√
2sn

g
( x

2sn

)
, n ∈ Z.

The parameters {sn}n∈Z constitute an integer-valued scale sequence satisfy-
ing |sn − sn−1| ∈ {0, 1}. In this way, adjacent window functions are either
of the same length or one is twice as long as the other. To obtain a low re-
dundancy and stable reconstruction, the overlap between adjacent window
functions is chosen as 1/3 of the length for equal windows and 2/3 of the
length of the shorter window for different windows. This guarantees a non-
zero overlap between adjacent window function and at most two non-zero
windows for any fixed time point. Finally, the numbers of frequency chan-
nels are chosen such that the resulting system constitutes a painless NSGF
(cf. Section 3.1). Such a NSGF is called a scale frame [6] to emphasize the
dependency on the scale sequence {sn}n∈Z. By construction, scale frames
apply a redundancy of ≈ 5/3. In Fig. 12 we have plotted a spectrogram,
based on a scale frame, for the piano music in Fig. 1.

We note from Fig. 12 how the adaptive behavior of the scale frame pro-
duces a spectrogram which is significantly different from the one in Fig. 9.
Between each pair of onsets, the horizontal lines become very thin as a conse-
quence of the improved frequency resolution. On the other hand, the vertical
lines associated with the onsets are very sharp due to the good time res-
olution. Considering the scale frame applies less than half the number of
coefficients as used in Fig. 9, the result is very impressive. The reason for this
impressive performance is do to the characteristics of the signal. Besides for
the chords at the end of bar 2 and bar 4 (cf. Fig. 1), only one note is played at
a time and the adaptation procedure therefore correctly detects and separates
all 22 onsets. However, for a more complicated music piece (for instance a
piano piece with different melodies played by the left and the right hand), the
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4. Time-frequency analysis

Fig. 12: Spectrogram based on a NSGF in the time domain.

onset detection algorithm will have to choose the most "significant" onsets.
For onsets not detected by the algorithm, the associated time resolution will
be poor which makes it difficult to determine the correct time instants. We
consider this problem in more depth in paper D of this thesis.

The constant Q-transform

In this section we consider an implementation of NSGFs in the frequency
domain known as the constant Q-transform [6, 11]. We recall the atoms of
the frame are given by

hm,n(x) = Tnam hm(x) = hm(x− nam), m, n ∈ Zd,

with {hm}m∈Zd ⊂ L2(Rd) and {am}m∈Zd ⊂ R+. The associated sampling
grid is irregular over frequency but regular over time for each fixed frequency
channel as shown in Fig. 13.

At any given point in the TF plane we can define the Q−factor by

Q-factor :=
center frequency

windows bandwidth
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Fig. 13: Sampling grid associated with a NSGF in the frequency domain.

For a stationary Gabor expansion, the Q−factor is constant along time but in-
creases with frequency. The idea behind the constant Q-transform is to keep
the Q−factor constant over the entire TF plane. To do so one needs to apply
a NSGF in the frequency domain such that the bandwidths of the window
functions increase with frequency. This construction results in a TF repre-
sentation with good frequency resolution at the lower frequencies and good
time resolution at the higher frequencies, similarly to wavelets [17, 58, 87].
Such a resolution might be preferable for music signals since it facilitates
the identification of the fundamental frequencies while keeping a good time
resolution at higher frequencies for determining the locations of the onsets.
The constant Q−transform was originally suggested by Brown [11] (in a less
efficient form) and implemented in the framework of NSGFs in [6]. The ef-
ficient implementation presented in [6] has subsequently been used for var-
ious practical applications such as beat tracking and transposition of music
signals [32, 66, 67]. In Fig. 14 we have plotted a spectrogram (with dB scaled
frequency axis), based on a constant Q−transform, for the piano music in
Fig. 1.

The spectrogram in Fig. 14 has a redundancy of ≈ 4 and thus applies
the same number of coefficients as the spectrogram in Fig. 9. We note the
"Christmas tree"-shape of the vertical lines resulting from the varying fre-
quency resolution. The fundamental frequencies are easily accessible and
the locations of the associated onsets can be found by looking at the higher
frequencies. However, just as for scale frames, the impressive performance is
due to the simplistic structure of the music piece. For a more advanced piano
piece, the task of determining the locations of the onsets is not at all trivial.
Finally, let us note that the constant Q−transform is actually a stationary
transform as the TF resolution is independent of the signal under considera-
tion. Hence, the terminology of a NSGF is slightly misleading in this case as
the TF resolution follows a predetermined rule just as for stationary Gabor
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4. Time-frequency analysis

Fig. 14: Spectrogram based on a NSGF in the frequency domain (dB scaled frequency axis).

frames.
We have presented three different approaches for designing TF represen-

tations of music signals. The stationary Gabor expansion, scale frames and
the constant Q−transform. Each TF representation comes with its own ad-
vantages and disadvantages and the best choice of TF representation usually
depends on the characteristics of the particular signal and the application. As
seen from the spectrograms in Fig. 9, Fig. 12, and Fig. 14, music signals tend
to produce structured TF representations. This is because music signals are
generated from components which are sparse in either time or frequency [93],
thereby allowing for horizontal and vertical structures of the spectrograms.
We call such spectrograms sparse, since many of the coefficients are close
to zero. The sparseness property allows for powerful approximations that
with only few non-zero coefficients (compared to the signal length) can pro-
duce small reconstruction errors with almost no audible artifacts. In the next
section we describe this application in more detail.
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5 Nonlinear approximation with frames

Let D := {gk}k∈N be a frame for H with ‖gk‖H = 1 for all k ∈ N. In
approximation theory, such a frame is often referred to as a dictionary for H.
Given a possible complicated function f ∈ H we want to approximate f using
linear combinations of the simpler functions from D. We call f the target
function and the members of span{gk}k∈N the approximants. We define the
set of all linear combinations of at most m ∈N elements from D by

Σm :=

{
∑
k∈∆

ckgk

∣∣∣ ∆ ⊂N, card(∆) ≤ m

}
.

In general, a sum of two elements from Σm will need 2m terms in its repre-
sentation by {gk}k∈N. Therefore, the set Σm is nonlinear and the associated
approximation theory is known as nonlinear approximation [23, 24, 53]. The
procedure of approximating f with members of Σm is called m−term approx-
imation with m measuring the complexity of the approximation [90, 98]. The
approximation error associated with Σm is measured by

σm( f )H = inf
h∈Σm

‖ f − h‖H , f ∈ H.

We note that the sequence {σm( f )H}m∈N is non-increasing since Σm ⊆ Σm+1
for all m ∈ N. In other words, we can increase the resolution of the target
function by increasing the complexity of the approximants. This trade-off
between resolution and complexity is the main study of approximation the-
ory [22]. For practical purposes, we are especially interested in characterizing
functions f ∈ H with approximation errors decaying as

σm( f )H ≤ Cm−α, ∀m ∈N, (5)

for some C > 0. Therefore, we define the approximation spaces

Aα
τ(H) :=

{
f ∈ H

∣∣∣ ∑
m∈N

(mασm( f )H)
τ 1

m
< ∞

}
, α, τ ∈ (0, ∞),

together with the associated (quasi-)norms

‖ f ‖Aα
τ(H) :=

∥∥∥{mα−1/τσm( f )H}m∈N

∥∥∥
`τ
+ ‖ f ‖H , f ∈ Aα

τ(H).

We note that f ∈ Aα
τ(H) is a slightly stronger condition than (5). We also

note that the approximation spaces Aα
τ(H) are "large" function spaces, in

particular they contain all the spaces {Σm}m∈N. One of the goals of nonlin-
ear approximation theory is to characterize the elements of Aα

τ(H), thereby
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5. Nonlinear approximation with frames

providing a description of the elements f ∈ H which permit good m−term
approximations with respect to D [24].

If D forms an orthonormal basis for H then every f ∈ H has a unique
expansion

f = ∑
k∈N

〈 f , gk〉 gk, with ‖ f ‖2
H = ∑

k∈N

|〈 f , gk〉|2 .

From this one deduces that the best m−term approximation to f is obtained
by choosing an index set ∆m corresponding to m terms in the expansion
for which |〈 f , gk〉| is largest. The associated approximation error is given
by σm( f )H = (∑k/∈∆m | 〈 f , gk〉 |2)1/2. For this special case have a complete
characterization of the approximation space

f ∈ Aα
τ(H)⇔ ‖{〈 f , gk〉}k∈N‖`τ < ∞,

with α ∈ (0, ∞) and 0 < τ := (α + 1/2)−1 < 2. This characterization was
proved by Stechkin [102] for the case α = 1/2 and for general α by DeVore
and Temlyakov [25].

When D is a redundant frame it becomes much more difficult to provide a
complete characterization ofAα

τ(H). It is often possible to construct a simpler
space K with K ↪→ Aα

τ(H), i.e., K ⊂ Aα
τ(H) and ‖ f ‖Aα

τ(H) ≤ C ‖ f ‖K for
some C > 0 and all f ∈ K, see [53]. Unfortunately, the converse embedding
is in general very hard to prove for redundant dictionaries [54]. We call
K ↪→ Aα

τ(H) a Jackson embedding and Aα
τ(H) ↪→ K a Bernstein embedding

[12]. The space K is referred to as a smoothness or sparsity space. We note
that a Jackson embedding provides an upper bound on the approximation
error {σm( f )H}m∈N for all f ∈ K whereas a Bernstein embedding provides a
lower bound.

An important result by Gröchenig and Samarah [57] shows that modula-
tion spaces can be used as smoothness spaces for stationary Gabor frames.
Modulation spaces were introduced by Feichtinger [38] in 1983 and further
studied in [40, 43, 44]. Given 1 ≤ p < ∞ and γ ∈ S(Rd) \ {0}, the modulation
space Mp is defined as those f ∈ S ′(Rd) satisfying

‖ f ‖Mp :=
(∫

Rd

∫
Rd
|Vγ f (x, ξ)|p dxdξ

)1/p
< ∞.

It can be shown that Mp is independent of the particular choice of window
function γ and different choices yield equivalent norms [38, 55]. For a given
Gabor frame {gm,n}m,n∈Zd = {MmbTnag}m,n∈Zd , the result by Gröchenig and
Samarah states that for 1 ≤ τ < p < ∞ then

Mτ ↪→ Aα
τ(Mp), with α = 1/τ − 1/p.
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Hence, the approximation error associated with f ∈ Mτ ⊆ Mp (cf. [55] for a
proof of this embedding) decays as

σm( f )Mp ≤ Cm−α ‖ f ‖Mτ , ∀m ∈N, (6)

for some C > 0 and α = 1/τ − 1/p. To illustrate the applications of the
theory we return to the piano music from Fig. 1. Since music signals are
continuous signals of finite energy, it make sense to consider them in the
framework of modulation spaces. The result in (6) therefore indicates that
we can expect good approximations of such signals when thresholding the
associated Gabor frame expansions. The spectrogram in Fig. 9 is constructed
from a Gabor expansion with 655680 Gabor coefficients. Performing hard
thresholding and keeping only the 65568 largest coefficients (10% of the total
number of coefficients) we obtain the spectrogram in Fig. 15.

Fig. 15: Original and thresholded spectrogram of the piano music from Fig. 1.

The associated reconstruction error is ‖ f − frec‖2/‖ f ‖2 ≈ 0.005 and the
resulting sound is almost indistinguishable from the original sound. Some of
the overtones with high frequencies have been removed, which produces a
less colorful timbre of the instrument (one needs good headphones to notice
this). One the other hand, some of the low background noises have been
suppressed, which results in a more clean sound. In conclusion, with only
10% of the expansion coefficients we obtain an approximation of the signal
without almost any decrease in audio quality. It is important to remember
that it is the sparsity of the signal which implies such convincing results —
for less sparse signals we need more than just 10% of the coefficients for
obtaining a reasonable audio quality.

We conclude this introduction by separately addressing each of the four
scientific papers and explaining the connection with the theory presented in
the introduction.
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6. Connection with papers A-D

6 Connection with papers A-D

In Paper A of this thesis we consider nonlinear approximation with general
redundant dictionaries (not necessarily restricted to frames). The idea is to
generalize the traditional greedy approach [25, 105] for m−term approxima-
tion (cf. Fig. 15) by including weight functions in the thresholding proce-
dure. For many real world signals the expansions coefficients are correlated
and organized in structured sets [77, 78] (see also Fig. 9) and the threshold-
ing procedure should ideally take this dependency into account. The main
result of this article is a Jackson embedding for the proposed algorithm un-
der rather general conditions. As an application we generalize the result by
Gröchenig and Samarah [57] and provide a numerical comparison between
the proposed method and the traditional greedy approach by thresholding
music signals expanded in a Gabor dictionary.

In paper B we prove a Jackson embedding for NSGFs in the frequency
domain. Whereas modulation spaces works as smoothness spaces for Gabor
frames, we need a more general framework for the nonstationary case. Such a
framework is provided by decomposition spaces as introduced by Feichtinger
and Gröbner [39, 41]. Decomposition spaces are based on a flexible partition
of the frequency domain compatible with the structure of NSGFs. The main
result of this article is a characterization of the decomposition spaces in terms
of the frame coefficients from the NSGFs.

In paper C we consider an approach similar to that of paper B. We use de-
composition spaces on the time side to provide a stability result of Hausdorff-
Young type for NSGFs in the time domain and prove an associated Jackson
inequality for specific choices of parameters. It should be noted that decom-
position spaces on the time side are significantly different from decomposi-
tion spaces on the frequency side.

Finally, in paper D we consider a practical application and construct a
new time-stretching algorithm based on NSGFs in the time domain. Time-
stretching is the operation of changing the length of a signal without affect-
ing its frequencies [88]. The paper presents a classical technique known as
the phase vocoder [50] in the framework of Gabor theory and extends this
techniques to the nonstationary case. The theory is described in the finite
settings and the corresponding algorithm is implemented in MATLAB with
associated source code and sound files available on-line.
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1. Introduction

Abstract

We present a new method for performing nonlinear approximation with redundant
dictionaries. The method constructs an m−term approximation of the signal by
thresholding with respect to a weighted version of its canonical expansion coeffi-
cients, thereby accounting for dependency between the coefficients. The main result
is an associated strong Jackson embedding, which provides an upper bound on the
corresponding reconstruction error. To complement the theoretical results, we com-
pare the proposed method to the pure greedy method and the Windowed-Group Lasso
by denoising music signals with elements from a Gabor dictionary.

1 Introduction

Let X be a Banach space equipped with a norm ‖ · ‖X . We consider the prob-
lem of approximating a possibly complicated function f ∈ X using linear
combinations of simpler functions D := {gk}k∈N. We assume D forms a com-
plete dictionary for X such that ‖gk‖X = 1, for all k ∈ N, and span{gk}k∈N

is dense in X. A natural way of performing the approximation is to construct
an m-term approximation fm to f using a linear combination of at most m
elements from D [22, 27, 32]. This leads us to consider the set

Σm(D) :=

{
∑
k∈∆

ckgk

∣∣∣ ∆ ⊂N, #∆ ≤ m

}
, m ∈N.

We note that Σm(D) is nonlinear since a sum of two elements from Σm(D)
will in general need 2m terms in its representation by {gk}k∈N. We measure
the approximation error associated to Σm(D) by

σm( f ,D)X := inf
h∈Σm(D)

‖ f − h‖X , f ∈ X. (A.1)

One of the main challenges of nonlinear approximation theory is to charac-
terize the elements f ∈ X, which have a prescribed rate of approximation
α > 0 [10, 21, 29]. This is usually done by defining an approximation space
A ⊆ X with the property

σm( f ,D)X = O
(
m−α

)
, ∀ f ∈ A. (A.2)

It is often difficult to characterize the elements of A directly and a standard
approach is therefore to construct a simpler space K ⊆ X together with a
continuous embedding K ↪→ A. The space K is referred to as a smoothness
or sparseness space and the continuous embedding as a Jackson embedding
[2, 11].
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In the special case {gk}k∈N forms an orthonormal basis for a Hilbert space
H, it follows from Parseval’s identity that the best m−term approximation to
f is obtained by thresholding the (unique) expansion coefficients and keeping
only the m largest coefficients. For a redundant dictionary D, the problem of
constructing the best m−term approximation is in general computationally
intractable [7]. For this reason, various algorithms have been constructed to
produce fast and good (but not necessarily the best) m−term approximations
[6, 12, 19]. By "good approximations" we mean an algorithm Am : f → fm for
which there exists an approximation space T ⊆ X with

‖ f − fm‖X = O
(
m−α

)
, ∀ f ∈ T .

An associated embedding of the type K ↪→ T is referred to as a strong
Jackson embedding. Whereas a standard Jackson embedding only shows that
the error of best m-term approximation decays as in (A.2), a strong Jackson
embedding also provides an associated constructive algorithm with this rate
of approximation [19].

Traditionally, the expansion coefficients are processed individually with
an implicit assumption of independence between the coefficients [12]. How-
ever, for many signals such an assumption is not valid as the coefficients
are often correlated and organized in structured sets [23, 25]. For instance,
it is known that many music signals are generated by components, which
are sparse in either time or frequency [30], resulting in sparse and struc-
tured time-frequency representations (cf. Fig. A.1 on page 50). In this article
we present a thresholding algorithm, which incorporates a weight function
to account for dependency between expansion coefficients. The main result
is given in Theorem 3.1 and provides a strong Jackson embedding for the
proposed method. The idea of exploiting the structure of the expansion co-
efficients is somewhat similar to the one found in social sparsity [24, 26, 33].
Social sparsity can be seen as a generalization of the classical Lasso [38] (also
known as basis pursuit denoising [4]) where a weighted neighborhood of
each coefficient is considered for deciding whether or not to keep the coeffi-
cient. However, whereas social sparsity searches through the dictionary for
sparse reconstruction coefficients, the purposed method considers weighted
thresholding of the canonical frame coefficients. We compare the proposed
algorithm to the Windowed-Group-Lasso (WGL) [25, 34] from social sparsity
and the greedy thresholding approach [12, 19] from nonlinear approximation
theory by denoising music signals expanded in a Gabor dictionary [5, 20].

The structure of this article is as follows. In Section 2 we introduce the
necessary tools from nonlinear approximation theory and in Section 3 we
present the proposed algorithm and prove Theorem 3.1. In Section 4 we
provide the link to modulation spaces and Gabor frames and in Section 5
we provide the numerical experiments. Finally, in Section 6 we give the
conclusions.
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2 Elements from nonlinear approximation theory

In this section we define the concepts from nonlinear approximation theory
that we will use throughout this article. We refer the reader to [8, 9, 11, 19] for
further details. For {am}m∈N ⊂ C, we let {a∗m}m∈N denote a non-increasing
rearrangement of {am}m∈N such that |a∗m| ≥ |a∗m+1| for all m ∈N.

Definition 2.1 (Lorentz spaces). Given τ ∈ (0, ∞), q ∈ (0, ∞], we define the
Lorentz space `τ

q as the collection of {am}m∈N ⊂ C satisfying that

‖{am}m∈N‖`τ
q

:=


(

∑∞
m=1

[
m1/τ |a∗m|

]q 1
m

)1/q
, 0 < q < ∞

supm≥1 m1/τ |a∗m| , q = ∞

is finite.

We note that ‖ · ‖`τ
τ
= ‖ · ‖`τ for any τ ∈ (0, ∞). The Lorentz spaces are

rearrangement invariant (quasi-)Banach spaces (Banach spaces if 1 ≤ q ≤
τ < ∞) satisfying the continuous embeddings

`τ1
q1 ↪→ `τ2

q2 if τ1 < τ2 or if τ1 = τ2 and q1 ≤ q2, (A.3)

see [3, 8] for details. Let D := {gk}k∈N be a complete dictionary for a Banach
space X and define {σm( f ,D)X}m∈N as in (A.1). We will use the following
approximation spaces [11].

Definition 2.2 (Approximation spaces). Given α ∈ (0, ∞), q ∈ (0, ∞], we de-
fine

Aα
q (D, X) :=

{
f ∈ X

∣∣∣ ‖ f ‖Aα
q (D,X) := ‖{σm( f ,D)X}m∈N‖`1/α

q
+ ‖ f ‖X < ∞

}
.

The quantity ‖ · ‖Aα
q (D,X) forms a (quasi-)norm on Aα

q (D, X), and from
(A.3) we immediately obtain the continuous embeddings

Aα1
q1 (D, X) ↪→ Aα2

q2 (D, X) if α1 > α2 or if α1 = α2 and q1 ≤ q2.

We note the f ∈ Aα
q (D, X) implies the decay in (A.2) as desired. Following

the approach in [12], we define smoothness spaces as follows.

Definition 2.3 (Smoothness spaces). Given τ ∈ (0, ∞), q ∈ (0, ∞], M > 0, let

Kτ
q (D, X, M) := closX

{
∑
k∈∆

ckgk ∈ X
∣∣∣∆ ⊂N, #∆ < ∞, ‖{ck}k∈∆‖`τ

q
≤ M

}
.

We then define Kτ
q (D, X) := ∪M>0Kτ

q (D, X, M) with

| f |Kτ
q (D,X) := inf

{
M > 0

∣∣∣ f ∈ Kτ
q (D, X, M)

}
.
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It can be shown that | · |Kτ
q (D,X) is a (semi-quasi-)norm on Kτ

q (D, X) and a
(quasi-)norm if τ ∈ (0, 1).

Remark 2.1. We note that for general D and X, f ∈ Kτ
q (D, X) does not

imply the existence of {ck}k∈N ∈ `τ
q with f = ∑k∈N ckgk. All realizations of

Kτ
q (D, X) considered in this article will, however, guarantee the existence of

such reconstruction coefficients (cf. Proposition 2.1 below).

Example 2.1. If B = {gk}k∈N is an orthonormal basis for a Hilbert space H,
we have the characterization

Aα
q (B,H) = Kτ

q (B,H) =

{
f = ∑

k∈N

〈 f , gk〉 gk ∈ H
∣∣∣ ‖{〈 f , gk〉}k∈N‖`τ

q
< ∞

}
,

with α ∈ (0, ∞), q ∈ (0, ∞] and 0 < τ = (α + 1/2)−1 < 2 [12, 36]. 4
Denoting the space of finite sequences on N by `0, we define the recon-

struction operator R : `0 → X by

R : {ck}k∈∆ → ∑
k∈∆

ckgk, {ck}k∈∆ ∈ `0. (A.4)

Recalling that ‖gk‖X = 1, for all k ∈ N, we can extend this operator to a
bounded operator from `1 to X since

‖R{ck}k∈∆‖X ≤ ∑
k∈∆
|ck| ‖gk‖X = ‖{ck}k∈∆‖`1 , ∀{ck}k∈∆ ∈ `0. (A.5)

Following the approach in [19] we introduce the following class of dictionar-
ies.

Definition 2.4 (Hilbertian dictionary). Let D = {gk}k∈N be a dictionary in a
Banach space X. Given τ ∈ (0, ∞), q ∈ (0, ∞], we say that D is `τ

q−hilbertian
if the reconstruction operator R given in (A.4) is bounded from `τ

q to X.

It follows from (A.5) and (A.3) that every D is `τ
q−hilbertian if τ < 1.

According to [19, Proposition 3] we have the following characterization.

Proposition 2.1. Assume D is `p
1−hilbertian with p ∈ (1, ∞). Let τ ∈ (0, p) and

q ∈ (0, ∞]. For all f ∈ Kτ
q (D, X), there exists some c := cτ,q( f ) ∈ `τ

q with f = Rc
and ‖c‖`τ

q = | f |Kτ
q (D,X). If 1 < q ≤ τ < ∞, then c is unique. Consequently

| f |Kτ
q (D,X) = min

c∈`τ
q , f=Rc

‖c‖`τ
q

,

and

Kτ
q (D, X) =

{
∑

k∈N

ckgk ∈ X

∣∣∣∣∣ ‖{ck}k∈N‖`τ
q
< ∞

}
is a (quasi-)Banach space with Kτ

q (D, X) ↪→ X.

In the next section we describe the proposed algorithm using the frame-
work presented in this section.
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3 Weighted thresholding

Let D := {gk}k∈N be a complete dictionary for a Banach space X and let
R be the reconstruction operator defined in (A.4). Given {ck}k∈N ⊂ C, we
let π : N → N denote a bijective mapping such that {|cπ(k)|}k∈N is non-
increasing, i.e, {cπ(k)}k∈N = {c∗k}k∈N. For f ∈ X, {ck}k∈N ⊂ C, and m ∈ N,
a standard way of constructing an m-term approximant to f from D is by
thresholding

fm := fm(π, {ck}k∈N,D) := R{cπ(k)}m
k=1 =

m

∑
k=1

cπ(k)gπ(k). (A.6)

For all practical purpose we choose {ck}k∈N ⊂ C as reconstruction coeffi-
cients for f such that f = R{ck}k∈N (cf. Remark 2.1). With this choice, the ap-
proximants { fm}m∈N converge to f as m→ ∞. The thresholding approach in
(A.6) chooses the m elements from D corresponding to the m largest of the co-
efficients {ck}k∈N. As mentioned in the introduction, many real world signals
have an inherent structure between the expansion coefficients, which should
be accounted for in the approximation procedure. Therefore, we would like
to construct an algorithm which preserves local coherence, such that a small
coefficient c1 might be preserved, in exchange for a larger (isolated) coeffi-
cient c2, if c1 belongs to a neighborhood with many large coefficients. This
leads us to consider banded Toeplitz matrices.

Let Λ denote a banded non-negative Toeplitz matrix with bandwidth Ω ∈
N, i.e., the non-zero entries Λ(i,j) satisfy |i − j| ≤ Ω. We assume the scalar
on the diagonal of Λ is positive. Given {ck}k∈N ⊂ C we define {cΛ

k }k∈N :=
Λ({|ck|}k∈N).

Example 3.1. With Ω = 2 we obtain

{cΛ
k }k∈N =


λ0 λ1 λ2 0 0 0 · · ·

λ−1 λ0 λ1 λ2 0 0 · · ·
λ−2 λ−1 λ0 λ1 λ2 0 · · ·

0 λ−2 λ−1 λ0 λ1 λ2 · · ·
...

...
...

...
...

...
. . .




|c1|
|c2|
|c3|
|c4|

...

 ,

with λ0 > 0 and λl ≥ 0 for all l ∈ {−2,−1, 1, 2}. We note that

cΛ
k = λ−2 |ck−2|+ · · ·+ λ0 |ck|+ · · ·+ λ2 |ck+2| =

k+Ω

∑
j=k−Ω

λj−k
∣∣cj
∣∣ ,

for all k ∈N. 4
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Given {ck}k∈N ⊂ C, we let πΛ : N→N denote a bijective mapping such
that the sequence {cΛ

πΛ(k)}k∈N is non-increasing. If Λ is the identity map, we
write π instead of πΛ to be consistent with the notation of (A.6). We shall
use the following technical result in the proof of Theorem 3.1.

Lemma 3.1. Let Λ be a banded non-negative Toeplitz matrix with bandwidth Ω ∈
N and let p ∈ (0, ∞), q ∈ (0, ∞]. There exists a constant C > 0, such that for any
non-increasing sequence {ck}k∈N ∈ `

p
q we have the estimate∥∥∥{cπΛ(k)}∞

k=m+1

∥∥∥
`

p
q
≤ C

∥∥{ck}∞
k=m+1−Ω

∥∥
`

p
q

, ∀m ≥ Ω.

Proof. Fix m ∈ N and let a := {|cπΛ(k)|}∞
k=m+1 and b := {|ck|}∞

k=m+1. If a

contains the same coefficients as b, then there is nothing to prove. If this is
not the case, then there exists k′ ≤ m, with |ck′ | ∈ a, and k′′ ≥ m + 1, with
|ck′′ | /∈ a, satisfying

k′+Ω

∑
j=k′−Ω

λj−k′
∣∣cj
∣∣ ≤ k′′+Ω

∑
j=k′′−Ω

λj−k′′
∣∣cj
∣∣⇒ |ck′ | ≤

1
λ0

k′′+Ω

∑
j=k′′−Ω

λj−k′′
∣∣cj
∣∣ .

Denoting the maximum value of the λl’s by λmax and the maximum value of
the

∣∣cj
∣∣’s, for j ∈ [k′′ −Ω, k′′ + Ω], by

∣∣ck̃

∣∣, we thus get

|ck′ | ≤
λmax

λ0
(2Ω + 1)

∣∣ck̃

∣∣ .

Since k̃ ∈ [k′′ −Ω, k′′ + Ω], and k′′ ≥ m + 1, then k̃ ∈ [m + 1−Ω, ∞). We
conclude that ck̃ ∈ {ck}∞

k=m+1−Ω. The lemma follows directly from this ob-
servation.

Given f ∈ X, a set of reconstruction coefficients {ck}k∈N ⊂ C, and m ∈N,
we generalize the notation of (A.6) and construct an m-term approximant to
f by

f Λ
m := f Λ

m (πΛ, {ck}k∈N,D) := R{cπΛ(k)}m
k=1 =

m

∑
k=1

cπΛ(k)gπΛ(k). (A.7)

If Λ is the identity map, we just obtain the approximant fm given in (A.6). If
not, we obtain an approximant which chooses the elements of {gk}k∈N corre-
sponding to the indices of the m largest of the weighted coefficients {cΛ

k }k∈N.
We generalize the notation of [19] and define weighted thresholding approx-
imation spaces as follows.
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Definition 3.1. Let Λ be a banded non-negative Toeplitz matrix with band-
width Ω ∈N. Given α ∈ (0, ∞), q ∈ (0, ∞], we define

T α
q (D, X, Λ) :=

{
f ∈ X

∣∣∣ ‖ f ‖T α
q (D,X,Λ) := | f |T α

q (D,X,Λ) + ‖ f ‖X < ∞
}

,

with

| f |T α
q (D,X,Λ) :=

 infπΛ ,{ck}k∈N

(
∑∞

m=1
[
mα
∥∥ f − f Λ

m
∥∥

X

]q 1
m

)1/q
, 0 < q < ∞

infπΛ ,{ck}k∈N

(
supm≥1 mα

∥∥ f − f Λ
m
∥∥

X

)
, q = ∞

When Λ is the identity mapping, we write T α
q (D, X) instead of T α

q (D, X, Λ).

Remark 3.1. We note that the expression for | f |T α
q (D,X,Λ) cannot be written

using the Lorentz norm, since the sequence {‖ f − f Λ
m ‖X}m∈N might not be

non-increasing.

In order to prove Theorem 3.1 we need to impose further assumptions
on the dictionary D. Given τ ∈ (0, ∞), q ∈ (0, ∞], we call D an atomic de-
composition (AD) [16, 17] for X, with respect to `τ

q , if there exists a sequence
{g̃k}k∈N, in the dual space X′, such that

1. There exist 0 < C′ ≤ C′′ < ∞ with

C′ ‖{〈 f , g̃k〉}k∈N‖`τ
q
≤ ‖ f ‖X ≤ C′′ ‖{〈 f , g̃k〉}k∈N‖`τ

q
, ∀ f ∈ X.

2. The reconstruction operator R given in (A.4) is bounded from `τ
q onto

X and we have the expansions

R({〈 f , g̃k〉}k∈N) = ∑
k∈N

〈 f , g̃k〉 gk = f , ∀ f ∈ X.

Example 3.2. Standard examples of ADs are Gabor frames for modulation
spaces [20] and wavelets for Besov spaces [10]. However, many other ex-
amples have been constructed in the general framework of decomposition
spaces [1, 14, 15]. For instance curvelets, shearlets and nonstationary Gabor
frames (or generalized shift-invariant systems) [1, 28, 40]. 4

We can now present the main result of this article.

Theorem 3.1. Let Λ be a banded non-negative Toeplitz matrix with bandwidth Ω ∈
N and let p ∈ (1, ∞), τ ∈ (0, p), q ∈ (0, ∞]. If D = {gk}k∈N is `

p
1−hilbertian

and forms an AD for X, with respect to `τ
q , then

Kτ
q (D, X) ↪→ T α

q (D, X, Λ) ↪→ Aα
q (D, X) ,

with α = 1/τ − 1/p > 0.
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Proof. The embedding T α
q (D, X, Λ) ↪→ Aα

q (D, X) follows directly from the
definitions of these spaces. Let us now show that Kτ

q (D, X) ↪→ T α
q (D, X, Λ).

Since the Lorentz spaces are rearrangement invariant, we may assume the
canonical coefficients d := {dk}k∈N := {〈 f , g̃k〉}k∈N form a non-increasing
sequence. Given f ∈ Kτ

q (D, X), the `
p
1−hilbertian property of D implies

‖ f ‖X = ‖Rd‖X ≤ C1 ‖d‖`p
1

.

Defining f Λ
m (πΛ,d,D) = R{dπΛ(k)}m

k=1 as in (A.7), we thus get

‖ f ‖T α
q (D,X,Λ) = inf

πΛ ,{ck}k∈N

(
∞

∑
m=1

[
mα
∥∥∥ f − f Λ

m

∥∥∥
X

]q 1
m

)1/q

+ ‖ f ‖X

≤
(

∞

∑
m=1

[
mα
∥∥∥ f − f Λ

m (πΛ,d,D)
∥∥∥

X

]q 1
m

)1/q

+ C1 ‖d‖`p
1

. (A.8)

Now, since∥∥∥ f − f Λ
m (πΛ,d,D)

∥∥∥
X
=
∥∥∥R{dπΛ(k)}∞

k=m+1

∥∥∥
X

≤ C1

∥∥∥{dπΛ(k)}∞
k=m+1

∥∥∥
`

p
1

≤ C1 ‖d‖`p
1

,

we get the following estimate for the first Ω terms in (A.8)

Ω

∑
m=1

[
mα
∥∥∥ f − f Λ

m (πΛ,d,D)
∥∥∥

X

]q 1
m
≤ C2 ‖d‖

q
`

p
1

. (A.9)

For m ≥ Ω + 1, Lemma 3.1 implies∥∥∥ f − f Λ
m (πΛ,d,D)

∥∥∥
X
≤ C1

∥∥∥{dπΛ(k)}∞
k=m+1

∥∥∥
`

p
1

≤ C3
∥∥{dk}∞

k=m+1−Ω
∥∥
`

p
1

= C3

∥∥∥d− {dk}m−Ω
k=1

∥∥∥
`

p
1

= C3σm−Ω(d,B)`p
1
,

with B denoting the canonical basis of `p
1 . Hence,

∞

∑
m=Ω+1

[
mα
∥∥∥ f − f Λ

m (πΛ,d,D)
∥∥∥

X

]q 1
m
≤ C3

∞

∑
m=Ω+1

[
mασm−Ω(d,B)`p

1

]q 1
m

= C3

∞

∑
m=1

[
(m + Ω)ασm(d,B)`p

1

]q

m + Ω

≤ C4

∥∥∥{σm(d,B)`p
1
}m∈N

∥∥∥q

`1/α
q

. (A.10)
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Combining (A.9) and (A.10), then (A.8) yields

‖ f ‖T α
q (D,X,Λ) ≤ C5

(∥∥∥{σm(d,B)`p
1
}m∈N

∥∥∥
`1/α

q
+ ‖d‖`p

1

)
= C5 ‖d‖Aα

q(B,`p
1)

.

Applying [18, Theorem 3.1] thus yields

‖ f ‖T α
q (D,X,Λ) ≤ C6 |d|Kτ

q (B,`p
1 )

= C6 ‖d‖`τ
q
≤ C7 ‖ f ‖X . (A.11)

Finally, since D is `p
1−hilbertian, Proposition 2.1 states that we can find c ∈ `τ

q
with f = Rc and ‖c‖`τ

q = | f |Kτ
q (D,X). Combining this with (A.11) we arrive at

‖ f ‖T α
q (D,X,Λ) ≤ C7 ‖Rc‖X ≤ C8 ‖c‖`τ

q
= C8 | f |Kτ

q (D,X) .

This completes the proof.

Remark 3.2. The assumption in Theorem 3.1 of D being `
p
1−hilbertian di-

rectly implies the boundedness of R : `τ
q → X in the definition of an AD

since τ ∈ (0, p). It should also be noted that if Λ is the identity operator,
then Theorem 3.1 holds without the assumption of an AD — this was proven
in [19, Theorem 6]. However, in contrast to the proof presented here, there
is no constructive way of obtaining the sparse expansion coefficients in the
proof of [19, Theorem 6].

The Jackson embedding in Theorem 3.1 is strong in the sense that there is
an associated algorithm, which obtains the approximation rate. Given f ∈ X,
the algorithm goes as follows:

1. Calculate the canonical coefficients {dk}k∈N = {〈 f , g̃k〉}k∈N.

2. Construct the weighted coefficients {dΛ
k }k∈N according to Λ by

dΛ
k =

k+Ω

∑
j=k−Ω

λj−k
∣∣dj
∣∣ , k ∈N.

3. Choose πΛ : N→N such that {dΛ
πΛ(k)}k∈N is non-increasing.

4. Construct an m-term approximation to f by

f Λ
m (πΛ, {dk}k∈N,D) =

m

∑
k=1

dπΛ(k)gπΛ(k).

With this construction, Theorem 3.1 states that∥∥∥ f − f Λ
m (πΛ, {dk}k∈N,D)

∥∥∥
X
= O(m−α), ∀ f ∈ Kτ

q (D, X),

with α = 1/τ − 1/p > 0. In the next section we consider the particular
case where the dictionary is a Gabor frame and the smoothness space is a
modulation space.
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4 Modulation spaces and Gabor frames

In this section we choose X as the modulation space Mp [13], with 1 ≤ p < ∞,
consisting of all f ∈ S ′(Rd) satisfying

‖ f ‖Mp :=
(∫

Rd

∫
Rd
|Vγ f (x, y)|p dxdy

)1/p
< ∞.

Here, Vγ f (x, y) denotes the short-time Fourier transform of f with respect to
a window function γ ∈ S(Rd) \ {0} (it can be shown that Mp is independent
of the particular choice of window function [20]). Given g ∈ S(Rd) \ {0} and
lattice parameters a, b ∈ (0, ∞), we consider the Gabor system {gm,n}m,n∈Zd

defined by
gm,n(t) := g(t− na)e2πimb·t, t ∈ Rd.

If {gm,n}m,n is a frame for L2(Rd) (see [5] for details) then there exists a dual
frame {g̃m,n}m,n such that {gm,n}m,n forms an AD for Mp with respect to `p

for all 1 ≤ p < ∞ [20]. We have the following version of [21, Proposition 3].

Proposition 4.1. Let Λ be a banded non-negative Toeplitz matrix with bandwidth
Ω ∈ N. Let 1 ≤ τ < p < ∞ and g ∈ S(Rd) \ {0}. If D = {gm,n}m,n∈Zd is a
Gabor frame for L2(Rd), with ‖gm,n‖Mp = 1 for all m, n ∈ Zd, then

Mτ(Rd) = Kτ
τ(D, Mp) ↪→ T α

τ (Λ,D, Mp) ↪→ Aα
τ (D, Mp) , α = 1/τ − 1/p,

where the first equality is with equivalent norms.

Proof. We first note that D simultaneously forms an AD for both Mp(Rd) and
Mτ(Rd). Since D constitutes an AD for Mp(Rd), and p > 1, we get

‖Rc‖Mp ≤ C1 ‖c‖`p ≤ C2 ‖c‖`p
1

, ∀c ∈ `
p
1 ,

which shows that D is a `
p
1−hilbertian dictionary for Mp. Hence, the embed-

dings in Proposition 4.1 follows from Theorem 3.1. Let us now prove that
Mτ(Rd) = Kτ

τ(D, Mp) with equivalent norms. According to Proposition 2.1
then

Kτ
τ(D, Mp) =

{
∑

m∈Zd
∑

n∈Zd

cm,ngm,n ∈ Mp
∣∣∣ ∥∥∥{cm,n}m,n∈Zd

∥∥∥
`τ

< ∞

}
with

| f |Kτ
τ (D,Mp) = min

c∈`τ , f=Rc
‖c‖`τ , f ∈ Kτ

τ(D, Mp).

Since D constitutes an AD for Mτ(Rd), then for f ∈ Mτ(Rd) we have

f = ∑
m∈Zd

∑
n∈Zd

〈 f , g̃m,n〉 gm,n, with
∥∥∥{〈 f , g̃m,n〉}m,n∈Zd

∥∥∥
`τ
≤ C ‖ f ‖Mτ .
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As τ < p then Mτ ⊆ Mp (cf. [20]), which shows that f ∈ Kτ
τ(D, Mp) and

| f |Kτ
τ (D,Mp) ≤ C‖ f ‖Mτ . The converse embedding follows from

‖ f ‖Mτ = ‖Rc‖Mτ ≤ C′ ‖c‖`τ = C′| f |Kτ
τ (D,Mp), f ∈ Kτ

τ(D, Mp).

This completes the proof.

In the next section we apply the proposed method for denoising music
signals with elements from a Gabor dictionary. For an introduction to Gabor
theory in the finite settings, we refer the reader to [35, 37].

5 Numerical experiments

For the implementation we use MATLAB 2017B and apply the routines from
the following two toolboxes: The "Large time-frequency analysis toolbox"
(LTFAT) version 2.2.0 [31] avaliable from http://ltfat.sourceforge.net/
and the StrucAudioToolbox [33] available from http://homepage.univie.
ac.at/monika.doerfler/StrucAudio.html. All Gabor transforms are con-
structed using 1024 frequency channels, a hop size of 256, and a Hanning
window of length 1024 (this is the default settings in the StrucAudioTool-
box). These settings lead to transforms of redundancy of four, meaning there
are four times as many time-frequency coefficients as signal samples. The
music signals we consider are part of the EBU-SQAM database [39], which
consists of 70 test sounds sampled at 44 kHz. The database contains a large
variety of different music sounds including single instruments, vocal, and or-
chestra. We measure the reconstruction error of an algorithm by the relative
root mean square (RMS) error

RMS( f , frec) :=
‖ f − frec‖2
‖ f ‖2

.

We begin by analyzing the first 524288 samples of signal 8 in the EBU-SQAM
database, which consists of an increasing melody of 10 tones played by a
violin. A noisy version of the signal is constructed by adding white Gaussian
noise and the resulting spectrograms can be found in Fig. A.1.

For the task of denoising we first compare the greedy thresholding ap-
proach from nonlinear approximation theory (cf. (A.6)) with the Windowed-
Group-Lasso (WGL) from social sparsity. For the WGL we use the default
settings of the StrucAudioToolbox, which applies a horizontal asymmetric
neighborhood for the shrinkage operator, see [33] for further details. The
WGL constructs a denoised version of the spectrogram using only 74739 non-
zero coefficients (out of a total of 1050624 coefficients). Using the same num-
ber of non-zero coefficients for the greedy thresholding approach we obtain
the spectrograms shown in Fig. A.2.
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Fig. A.1: Clean and noisy spectrograms of violin music.
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Fig. A.2: Greedy thresholding and the WGL with 74739 non-zero coefficients.

We note from Fig. A.2 that the greedy thresholding approach includes
more coefficients at higher frequencies than the WGL. On the other hand, the
WGL includes more coefficients at lower frequencies, resulting in a smoother
resolution for the fundamental frequencies and the first harmonics. This illus-
trates the way the WGL is designed, namely that a large isolated coefficient
may be discarded in exchange for a smaller coefficient with large neighbors.
The RMS error is ≈ 0.084 for the WGL and ≈ 0.034 for the greedy threshold-
ing algorithm. To visualize the performance of the proposed algorithm we
choose a rather extreme (horizontal) weight with

cΛ
m,n = |cm,n−2|+ |cm,n−1|+ |cm,n|+ |cm,n+1|+ |cm,n+2| . (A.12)

We then choose the 74739 coefficients with largest weighted magnitudes ac-
cording to (A.12). In Fig. A.3 we have compared the resulting spectrogram
against the spectrogram obtained using the greedy thresholding approach.
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Fig. A.3: Greedy thresholding and weighted thresholding with 74739 non-zero coefficients.

We can see from Fig. A.3 that the horizontal weight in (A.12) enforces the
structures at higher frequencies even further than the greedy thresholding
approach. This might be desirable for some applications as the timbre of
the instrument is determined by the harmonics. The RMS error associated
with the weighted thresholding approach is ≈ 0.074, which is higher than
for greedy thresholding but lower than the WGL. Applying a more moderate
weight (for instance Weight 2 defined in (A.13) below) we obtain an RMS
error of ≈ 0.031, which is lower than for greedy thresholding.

We now extend the experiment described above to the entire EBU-SQAM
database. For the weighted thresholding we consider the following three
weights

Weight 1: cΛ
m,n = |cm,n|+ (|cm−1,n|+ |cm+1,n|)/2,

Weight 2: cΛ
m,n = |cm,n|+ (|cm,n−1|+ |cm,n+1|)/2, (A.13)

Weight 3: cΛ
m,n = |cm,n|+ (|cm,n−1|+ |cm−1,n|+ |cm,n+1|+ |cm+1,n|)/4.

For each of the 70 test sounds in the EBU-SQAM database, we apply
the WGL and calculate the associated RMS reconstruction error and number
of non-zero coefficients. Using the same number of non-zero coefficients,
we then apply the greedy thresholding approach and the three weighted
thresholding approaches defined in (A.13). The resulting averaged values
can be found in in Table A.1.

Table A.1: Average RMS errors over the EBU-SQAM database for the WGL, the greedy thresh-
olding approach, and the three weighted thresholding approaches defined in (A.13).

Algorithm: WGL Greedy Weight 1 Weight 2 Weight 3
Average RMS error.: 0.1031 0.0462 0.0511 0.0453 0.0472
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The average number of coefficients was 68983, which corresponds to 6.5%
of the total number of coefficients. We note that the RMS error associated
with the WGL is roughly twice as large as for the various thresholding algo-
rithms. We also note that the smallest RMS error is obtained by the weighted
thresholding approach, which applies a horizontal weight (Weight 2). This is
likely due to the horizontal structure of the harmonics as seen in Fig. A.1.

Let us mention that it might be possible to reduce the error for the WGL
by tuning the parameters instead of using the default settings (cf. [34] for a
detailed analysis of the parameter settings for the WGL). On the other hand,
the same holds true for the thresholding algorithms. In the experiment de-
scribed above we have used the same number of non-zero coefficients as was
chosen by the WGL. This is not likely to be optimal for the thresholding algo-
rithms since the optimal number of non-zero coefficients usually depends on
the sparsity of the signal (few coefficients for sparse signals and vice versa).
Finally, we have not addressed the resulting audio quality of the denoised
sounds. In general, it is very hard to decide which algorithm sounds "the
best" as this depends on the application and the subjective opinion of the lis-
tener. However, there are indeed audible differences between the algorithms.
For the violin music in Fig. A.1, the WGL does the best job of removing
the noise, but at the price of a poor timbre of the resulting sound. As we
include more coefficients at the higher frequencies, the original timbre of the
instrument improves together with an increase in noise.

6 Conclusion

We have presented a new thresholding algorithm and proven an associated
strong Jackson embedding under rather general conditions. The algorithm
extends the classical greedy approach by incorporating a weight function,
which exploits the structure of the expansion coefficients. In particular, the al-
gorithm applies to approximation in modulation spaces using Gabor frames.
As an application we have considered the task of denoising music signals
and compared the proposed method with the greedy thresholding approach
and the WGL from social sparsity. The numerical experiments show that the
proposed method can be used both for improving the time-frequency resolu-
tion and for reducing the RMS error compared to the other two algorithms.
The experiments also show that the performance of the algorithm depends
crucially on the choice of weight function, which should be adapted to the
particular signal class under consideration.

52



References

References

[1] L. Borup and M. Nielsen. Frame decomposition of decomposition
spaces. J. Fourier Anal. Appl., 13(1):39–70, 2007.

[2] P. L. Butzer and K. Scherer. Jackson and Bernstein-type inequalities for
families of commutative operators in Banach spaces. J. Approximation
Theory, 5:308–342, 1972.

[3] M. a. J. Carro, J. A. Raposo, and J. Soria. Recent developments in the
theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math.
Soc., 187(877):xii+128, 2007.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition
by basis pursuit. SIAM Rev., 43(1):129–159, Jan. 2001.

[5] O. Christensen. An introduction to frames and Riesz bases. Applied and Nu-
merical Harmonic Analysis. Birkhäuser/Springer, [Cham], second edi-
tion, 2016.

[6] C. Darken, M. Donahue, L. Gurvits, and E. Sontag. Rate of approxima-
tion results motivated by robust neural network learning. In Proceedings
of the Sixth Annual Conference on Computational Learning Theory, COLT ’93,
pages 303–309, New York, NY, USA, 1993. ACM.

[7] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approxima-
tions. Constructive Approximation, 13(1):57–98, Mar 1997.

[8] R. A. DeVore. Nonlinear approximation. In Acta numerica, 1998, volume 7
of Acta Numer., pages 51–150. Cambridge Univ. Press, Cambridge, 1998.

[9] R. A. DeVore. Nonlinear approximation and its applications. In Mul-
tiscale, nonlinear and adaptive approximation, pages 169–201. Springer,
Berlin, 2009.

[10] R. A. DeVore, B. Jawerth, and V. Popov. Compression of wavelet decom-
positions. Amer. J. Math., 114(4):737–785, 1992.

[11] R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1993.

[12] R. A. DeVore and V. N. Temlyakov. Some remarks on greedy algorithms.
Advances in Computational Mathematics, 5(1):173–187, Dec 1996.

[13] H. G. Feichtinger. Modulation spaces on locally compact abelian groups.
Technical report, University of Vienna, 1983.

53



References

[14] H. G. Feichtinger. Banach spaces of distributions defined by decompo-
sition methods. II. Math. Nachr., 132:207–237, 1987.

[15] H. G. Feichtinger and P. Gröbner. Banach spaces of distributions defined
by decomposition methods. I. Math. Nachr., 123:97–120, 1985.

[16] H. G. Feichtinger and K. H. Gröchenig. Banach spaces related to in-
tegrable group representations and their atomic decompositions. I. J.
Funct. Anal., 86(2):307–340, 1989.

[17] H. G. Feichtinger and K. H. Gröchenig. Banach spaces related to
integrable group representations and their atomic decompositions. II.
Monatsh. Math., 108(2-3):129–148, 1989.

[18] R. Gribonval and M. Nielsen. Some remarks on non-linear approxima-
tion with Schauder bases. East J. Approx., 7(3):267–285, 2001.

[19] R. Gribonval and M. Nielsen. Nonlinear approximation with dictionar-
ies. I. Direct estimates. J. Fourier Anal. Appl., 10(1):51–71, 2004.

[20] K. Gröchenig. Foundations of time-frequency analysis. Applied and Nu-
merical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.

[21] K. Gröchenig and S. Samarah. Nonlinear approximation with local
Fourier bases. Constr. Approx., 16(3):317–331, 2000.

[22] R. S. Ismagilov. Diameters of sets in normed linear spaces, and the
approximation of functions by trigonometric polynomials. Uspehi Mat.
Nauk, 29(3(177)):161–178, 1974.

[23] M. Kowalski. Sparse regression using mixed norms. Appl. Comput. Har-
mon. Anal., 27(3):303–324, 2009.

[24] M. Kowalski, K. Siedenburg, and M. Dörfler. Social sparsity! neighbor-
hood systems enrich structured shrinkage operators. IEEE Transactions
on Signal Processing, 61(10):2498–2511, May 2013.

[25] M. Kowalski and B. Torrésani. Sparsity and persistence: mixed norms
provide simple signal models with dependent coefficients. Signal, Image
and Video Processing, 3(3):251–264, Sep 2009.

[26] M. Kowalski and B. Torrésani. Structured sparsity: from mixed norms
to structured shrinkage. In R. Gribonval, editor, SPARS’09 - Signal Pro-
cessing with Adaptive Sparse Structured Representations, Saint Malo, France,
Apr. 2009. Inria Rennes - Bretagne Atlantique.

[27] K. I. Oskolkov. Polygonal approximation of functions of two variables.
Mat. Sb. (N.S.), 107(149)(4):601–612, 639, 1978.

54



References

[28] E. S. Ottosen and M. Nielsen. A characterization of sparse nonstationary
Gabor expansions. Journal of Fourier Analysis and Applications, May 2017.

[29] P. P. Petrushev. Direct and converse theorems for spline and rational ap-
proximation and Besov spaces. In Function spaces and applications (Lund,
1986), volume 1302 of Lecture Notes in Math., pages 363–377. Springer,
Berlin, 1988.

[30] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E.
Davies. Sparse representations in audio and music: From coding to
source separation. Proceedings of the IEEE, 98(6):995–1005, June 2010.
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1. Introduction

Abstract

We investigate the problem of constructing sparse time-frequency representations
with flexible frequency resolution, studying the theory of nonstationary Gabor frames
in the framework of decomposition spaces. Given a painless nonstationary Gabor
frame, we construct a compatible decomposition space and prove that the nonstation-
ary Gabor frame forms a Banach frame for the decomposition space. Furthermore,
we show that the decomposition space norm can be completely characterized by a
sparseness condition on the frame coefficients and we prove an upper bound on the
approximation error occurring when thresholding the frame coefficients for signals
belonging to the decomposition space.

1 Introduction

Redundant Gabor frames play an essential role in time-frequency (TF) analy-
sis as these frames provide expansions with good TF resolution [6, 27]. Gabor
frames are based on translation and modulation of a single window function
according to lattice parameters which largely determine the redundancy of
the frame. By varying the support of the window function one can change
the overall resolution of the frame, but it is in general not possible to change
the resolution in specific regions of the TF plane. For signals with varying TF
characteristics, a fixed resolution is often undesirable. To overcome this prob-
lem, the usage of multi-window Gabor frames has been proposed [10, 34, 42, 43].
As opposed to standard Gabor frames, multi-window Gabor frames use a
whole catalogue of window functions of different shapes and sizes to create
adaptive representations. A recent example is the nonstationary Gabor frames
(NSGFs) which have shown great potential in capturing the essential TF in-
formation of music signals [1, 11, 32, 33]. These frames use different window
functions along either the time- or the frequency axes and guarantee perfect
reconstruction and an FFT-based implementation in the painless case. Orig-
inally, NSGFs were studied by Hernández, Labate & Weiss [30] and later
by Ron & Shen [40] who named them generalized shift-invariant systems. We
choose to work with the terminology introduced in [1] as we will only con-
sider frames in the painless case for which several practical implementations
have been constructed under the name of NSGFs [1, 11, 32]. We consider
painless NSGFs with flexible frequency resolution, corresponding to a sam-
pling grid in the TF plane which is irregular over frequency but regular over
time at each fixed frequency position. This construction is particularly use-
ful in connection with music signals since the NSGF can be set to coincide
with the semitones used in Western music. Based on the nature of musical
tones [9, 38], we expect music signals to permit sparse expansions relative to
the redundant NSGF dictionaries.
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The main contribution of this paper is a theoretical characterization of the
signals with sparse expansions relative to the NSGF dictionaries. By a sparse
expansion we mean an expansion for which the original signal can be approx-
imated at a certain rate by thresholding the expansion coefficients. To prove
such a characterization, we follow the approach in [22, 23, 28] and search
for a smoothness space compatible with the structure of the frame. Classi-
cal smoothness spaces such as modulation spaces [15] or Besov spaces [41]
cannot be expected to be linked with sparse expansions relative to the NSGF
dictionaries since these smoothness spaces are not compatible with the flex-
ible frequency resolution of the NSGFs. Modulation spaces correspond to a
uniform partition of the frequency domain while Besov spaces correspond
to a dyadic partition. Therefore, we study NSGFs in the framework of de-
composition spaces. Decomposition spaces were introduced by Feichtinger
& Gröbner in [17], and further studied by Feichtinger in [16], and form a large
class of function spaces on Rd including smoothness spaces such as modu-
lation spaces, Besov spaces, and the intermediate α−modulation spaces as
special cases [2, 3, 25]. We construct the decomposition spaces using struc-
tured coverings, as introduced by Borup & Nielsen in [3], which leads to
a partition of the frequency domain obtained by applying invertible affine
transformations {Ak(·) + ck}k∈N on a fixed set Q ⊂ Rd.

Given a painless NSGF, we provide a method for constructing a compat-
ible structured covering and the associated decomposition space. We then
show that the NSGF forms a Banach frame for the decomposition space and
prove that signals belong to the decomposition space if and only if they per-
mit sparse frame expansions. Based on the sparse expansions, we prove an
upper bound on the approximation error occurring when thresholding the
frame coefficients for signals belonging to the decomposition space. All these
results are based on the characterization given in Theorem 5.1 which is the
main contribution of this article. This theorem yields the existence of con-
stants 0 < C1, C2 < ∞ such that all signals f , belonging to the decomposition
space D(Q, Lp, `q

ωs), satisfy

C1 ‖ f ‖D(Q,Lp ,`q
ωs )
≤
∥∥∥∥{〈 f , hp

T,n

〉}
T,n

∥∥∥∥
d(Q,`p ,`q

ωs )
≤ C2 ‖ f ‖D(Q,Lp ,`q

ωs )
,

with {hp
T,n}T,n denoting Lp−normalized elements from the NSGF and

d(Q, `p, `q
ωs) an associated sequence space. In this way we completely char-

acterize the decomposition space using the frame coefficients from the NSGF.
The outline of the article is as follows. In Section 2 we define decomposi-

tion spaces based on structured coverings and in Section 3 we define NSGFs
in the notation of [1]. We construct the compatible decomposition space in
Section 4 and in Section 5 we prove Theorem 5.1. In Section 6 we show that
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the NSGF forms a Banach frame for the compatible decomposition space and
in Section 7 we provide the link to nonlinear approximation theory.

Let us now introduce some of the notation used throughout this arti-
cle. We let f̂ (ξ) :=

∫
Rd f (x)e−2πix·ξ dx denote the Fourier transform with the

usual extension to L2(Rd). By F � G we mean that there exist two constants
0 < C1, C2 < ∞ such that C1F ≤ G ≤ C2F. For two (quasi-)normed vector
spaces X and Y, X ↪→ Y means that X ⊂ Y and ‖ f ‖Y ≤ C ‖ f ‖X for some
constant C and all f ∈ X. We say that a non-empty open set Ω′ ⊂ Rd is
compactly contained in an open set Ω ⊂ Rd if Ω′ ⊂ Ω and Ω′ is compact. We
denote the matrix norm max{

∣∣aij
∣∣} by ‖A‖`∞(Rd×d) and we call {ξi}i∈I ⊂ Rd

a δ−separated set if infj,k∈I ,j 6=k ‖ξ j − ξk‖2 = δ > 0. Finally, by Id we denote
the identity operator on Rd and by χQ we denote the indicator function for a
set Q ⊂ Rd.

2 Decomposition spaces

In order to construct decomposition spaces, we first need the notion of a
structured covering with an associated bounded admissible partitions of
unity (BAPU) as defined in Section 2.1. A BAPU defines a (flexible) parti-
tion of the frequency domain corresponding to the structured covering. We
use the notation of [3] but with slightly modified definitions for both the
structured coverings and the BAPUs.

2.1 Structured covering and BAPU

For an invertible matrix A ∈ GL(Rd), and a constant c ∈ Rd, we define the
affine transformation

Tξ := Aξ + c, ξ ∈ Rd.

For a subset Q ⊂ Rd we let QT := T(Q), and for notational convenience we
define |T| := |det(A)|. Given a family T = {Ak(·) + ck}k∈N of invertible
affine transformations on Rd, and a subset Q ⊂ Rd, we set Q := {QT}T∈T
and

T̃ :=
{

T′ ∈ T
∣∣ QT′ ∩QT 6= ∅

}
, T ∈ T . (B.1)

We say thatQ is an admissible covering of Rd if
⋃

T∈T QT = Rd and there exists
n0 ∈ N such that |T̃| ≤ n0 for all T ∈ T . We note that the (minimal) number
n0 is the degree of overlap between the sets constituting the covering.

Definition 2.1 (Q−moderate weight). Let Q := {QT}T∈T be an admissible
covering. A function u : Rd → (0, ∞) is called Q−moderate if there exists
C > 0 such that u(x) ≤ Cu(y) for all x, y ∈ QT and all T ∈ T . AQ−moderate
weight (derived from u) is a sequence {ωT}T∈T := {u(ξT)}T∈T with ξT ∈ QT
for all T ∈ T .
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For the rest of this article we shall use the explicit choice u(ξ) := 1+ ‖ξ‖2
for the function u in Definition 2.1. We now define the concept of a structured
covering, first considered in [3]. To ensure that the resulting decomposition
spaces are complete, we consider an extended version of the definition given
in [3].

Definition 2.2 (Structured covering). Given a family T = {Ak(·) + ck}k∈N

of invertible affine transformations on Rd, suppose there exist two bounded
open sets P ⊂ Q ⊂ Rd, with P compactly contained in Q, such that

1. {PT}T∈T and {QT}T∈T are admissible coverings.

2. There exists K > 0, such that
∥∥∥A−1

k′ Ak

∥∥∥
`∞(Rd×d)

≤ K holds whenever

(Ak′Q + ck′) ∩ (AkQ + ck) 6= ∅.

3. There exists K∗ > 0, such that
∥∥∥A−1

k

∥∥∥
`∞(Rd×d)

≤ K∗ holds for all k ∈N.

4. There exists a δ−separated set {ξT}T∈T ⊂ Rd, with ξT ∈ QT for all
T ∈ T , such that {ωT}T∈T := {u(ξT)}T∈T is a Q−moderate weight.

5. There exists γ > 0, such that |QT | ≤ ω
γ
T for all T ∈ T .

Then we call Q = {QT}T∈T a structured covering.

Remark 2.1. Definition 2.2(3)-(5) are new additions compared to the defini-
tion given in [3] and are necessary for proving Theorem 2.1 page 65. We note
that Definition 2.2(2) implies |QT′ | � |QT | uniformly for all T ∈ T and all
T′ ∈ T̃, and Definition 2.2(3) implies a uniform lower bound on |QT |.

For a structured covering we have the associated concept of a BAPU, first
considered in [3, 17]. With a small modification of the proof of [3, Proposition
1] we have the following result.

Proposition 2.1. Given a structured covering Q = {QT}T∈T , there exists a family
of non-negative functions {ψT}T∈T ⊂ C∞

c (Rd) satisfying

1. supp(ψT) ⊂ QT for all T ∈ T .

2. ∑
T∈T

ψT(ξ) = 1 for all ξ ∈ Rd.

3. sup
T∈T
|QT |1/p−1

∥∥∥F−1ψT

∥∥∥
Lp

< ∞ for all 0 < p ≤ 1.

4. For all α ∈Nd
0, there exists Cα > 0 such that |∂αψT(ξ)| ≤ CαχQT (ξ), for all

ξ ∈ Rd and all T ∈ T .

We say that {ψT}T∈T is a BAPU subordinate to Q.
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Remark 2.2. Proposition 2.1(3) is necessary to ensure that the decomposition
spaces under consideration will be well-defined for 0 < p < 1. This case is of
specific interest since it plays an essential role in connection with nonlinear
approximation theory (cf. Section 7).

Remark 2.3. Proposition 2.1(4) is a new addition compared to [3, Proposition
1] and is necessary for proving Theorem 2.1 page 65. The proof of Proposition
2.1(4) follows easily from the arguments in the proof of [3, Proposition 1]
and Definition 2.2(3). Finally, it should be noted that the assumptions in
Definition 2.2(4)-(5) are not necessary for proving Proposition 2.1, however,
these assumptions are needed for the proof of Theorem 2.1.

The proof of [3, Proposition 1] is constructive and provides a method
for constructing the associated BAPU. Given a structured covering {QT}T∈T
(with P being compactly contained in Q), the method goes as follows:

1. Pick a non-negative function Φ ∈ C∞
c (Rd) with Φ(ξ) = 1 for all ξ ∈ P

and supp(Φ) ⊂ Q.

2. For all T ∈ T , define

ψT(ξ) =
Φ(T−1ξ)

∑T′∈T Φ(T′−1ξ)
.

3. Then {ψT}T∈T is a BAPU subordinate to Q = {QT}T∈T .

In the next section we define decomposition spaces based on structured cov-
erings.

2.2 Definition of decomposition spaces

Given a structured covering Q = {QT}T∈T with corresponding Q−moderate
weight {ωT}T∈T and BAPU {ψT}T∈T . For s ∈ R and 0 < q ≤ ∞, we define
the associated weighted sequence space `

q
ωs(T ) as the sequences of complex

numbers {aT}T∈T satisfying

‖{aT}T∈T ‖`q
ωs

:= ‖{ωs
TaT}T∈T ‖`q < ∞.

Given {aT}T∈T ∈ `
q
ωs(T ), we define {a+T }T∈T by a+T := ∑T′∈T̃ aT′ . Since

{ωT}T∈T is Q−moderate, {aT}T∈T → {a+T }T∈T defines a bounded operator
on `

q
ωs(T ) [17, Remark 2.13 and Lemma 3.2]. Denoting its operator norm by

C+, we have∥∥∥{a+T
}

T∈T

∥∥∥
`

q
ωs
≤ C+

∥∥{aT}T∈T
∥∥
`

q
ωs

, ∀ {aT}T∈T ∈ `
q
ωs(T ). (B.2)
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We will use (B.2) several times throughout this article. Using the notation
of [3] we define the Fourier multiplier ψT(D) by

ψT(D) f := F−1(ψTF f ), f ∈ L2(Rd).

Combining Proposition 2.1(3) with Lemma A.2 page 81 and [3, Lemma 1] we
can show the existence of a uniform constant C > 0 such that all band-limited
functions f ∈ Lp(Rd) satisfy

‖ψT(D) f ‖Lp ≤ C ‖ f ‖Lp ,

for all T ∈ T and all 0 < p ≤ ∞. That is, ψT(D) extends to a bounded
operator on the band-limited functions in Lp(Rd), uniformly in T ∈ T . Let
us now give the definition of decomposition spaces on the Fourier side.

Definition 2.3 (Decomposition space). Let Q = {QT}T∈T be a structured
covering of Rd with corresponding Q−moderate weight {ωT}T∈T and sub-
ordinate BAPU {ψT}T∈T . For s ∈ R and 0 < p, q < ∞, we define the decom-
position space D(Q, Lp, `q

ωs) as the set of distributions f ∈ S ′(Rd) satisfying

‖ f ‖D(Q,Lp ,`q
ωs )

:=
∥∥{‖ψT(D) f ‖Lp}T∈T

∥∥
`

q
ωs

< ∞.

Remark 2.4. According to [17, Theorem 3.7], two different BAPUs yield the
same decomposition space with equivalent norms so D(Q, Lp, `q

ωs) is in fact
well defined and independent of the choice of BAPU. Actually, the results
in [17] show that decomposition spaces are invariant under certain geometric
modifications of the covering Q, but we will not go into detail here.

Remark 2.5. In their most general form, decomposition spaces D(Q, B, Y) are
constructed using a local component B and a global component Y [17]. This con-
struction is similar to the construction of Wiener amalgam spaces W(B, C)
with local component B and global component C [14, 29, 39]. However,
Wiener amalgam spaces are based on bounded uniform partitions of unity,
which corresponds to a uniform upper bound on the size of the members
of the covering. We do not find such an assumption natural in relation to
NSGFs (cf. Section 3) and have therefore chosen the more general framework
of decomposition spaces.

In Theorem 2.1 below we prove that D(Q, Lp, `q
ωs) is in fact a (quasi-

)Banach space. Before presenting this result, let us first consider some ex-
amples of familiar decomposition spaces. By standard arguments, one can
easily show that D(Q, L2, `2) = L2(Rd) with equivalent norms for any struc-
tured covering Q. The next two examples are not as straightforward and
demand some structure on the covering. Recall that {ξT}T∈T denotes the
δ−separated set from Definition 2.2(4).
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3. Nonstationary Gabor frames

Example 2.1 (Modulation spaces). Let Q ⊂ Rd be an open cube with center
0 and side length r > 1. Define T := {Tk}k∈Zd , with Tkξ := ξ − k, and set
ξTk := k for all k ∈ Zd. With Q := {QT}T∈T then D(Q, Lp, `q

ωs) = Ms
p,q(R

d)
for s ∈ R and 0 < p, q < ∞, see [15, Section 4] for further details. 4

Example 2.2 (Besov spaces). Let E2 := {±1,±2}, E1 := {±1} and E :=
Ed

2 \ Ed
1 . For j ∈N and k ∈ E define cj,k := 2j(v(k1), . . . , v(kd)), where

v(x) := sgn(x) ·
{

1/2 for x = ±1
3/2 for x = ±2

Let Q ⊂ Rd be an open cube with center 0 and side length r > 2. Define
T := {I, Tj,k}j∈N,k∈E, with Tj,kξ := 2jξ + cj,k, and set ξTj,k := cj,k for all j ∈ N

and k ∈ E. With Q := {QT}T∈T then D(Q, Lp, `q
ωs) = Bs

p,q(R
d) for s ∈ R and

0 < p, q < ∞, see [41, Section 2.5.4] for further details. 4

Let us now study some important properties of decomposition spaces, in
particular completeness.

Theorem 2.1. Given a structured covering Q = {QT}T∈T with Q−moderate
weight {ωT}T∈T and subordinate BAPU {ψT}T∈T . For s ∈ R and 0 < p, q < ∞,

1. S(Rd) ↪→ D(Q, Lp, `q
ωs) ↪→ S ′(Rd).

2. D(Q, Lp, `q
ωs) is a (quasi-)Banach space (Banach space if 1 ≤ p, q < ∞).

3. S(Rd) is dense in D(Q, Lp, `q
ωs).

Remark 2.6. As was pointed out in [21], the definition of decomposition
spaces given in [3] cannot guarantee completeness in the general case. How-
ever in [4], this problem was fixed by imposing certain weight conditions on
the structured covering. Our proof of Theorem 2.1 is based on the approach
taken in [4].

In Appendix A we have provided a sketch of the proof for Theorem 2.1.
The underlying ideas for the proof are similar to those of [4, Proposition 5.2]
and several references are made to results in [4]. However, in [4] the authors
considered only coverings made up from open balls and not all arguments
carry over to the general case of an arbitrary structured covering.

3 Nonstationary Gabor frames

In this section we define nonstationary Gabor frames with flexible frequency
resolution using the notation of [1]. Given a set of window functions
{hm}m∈Zd in L2(Rd), with corresponding time sampling steps am > 0, for
m, n ∈ Zd we define atoms of the form
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hm,n(x) := hm(x− nam), x ∈ Rd.

The choice of Zd as index set for m is only a matter of notational convenience;
any countable index set would do. If ∑m,n |〈 f , hm,n〉|2 � ‖ f ‖2

2 for all f ∈
L2(Rd), we refer to {hm,n}m,n as a nonstationary Gabor frame (NSGF). For an
NSGF {hm,n}m,n, the frame operator

S f = ∑
m,n∈Zd

〈 f , hm,n〉 hm,n, f ∈ L2(Rd),

is invertible and we have the expansions

f = ∑
m,n∈Zd

〈 f , hm,n〉 h̃m,n, f ∈ L2(Rd),

with {h̃m,n}m,n := {S−1hm,n}m,n being the canonical dual frame of {hm,n}m,n.
An NSGF with flexible frequency resolution corresponds to a grid in the
time-frequency plane which is irregular over frequency but regular over time
at each frequency position. This property allows for adaptive time-frequency
representations as opposed to standard Gabor frames. According to [1, Corol-
lary 2], we have the following important result for NSGFs with band-limited
window functions.

Theorem 3.1. Let {hm}m∈Zd ⊂ L2(Rd) with time sampling steps {am}m∈Zd ,
am > 0 for all m ∈ Zd. Assuming supp(ĥm) ⊆ [0, 1

am
]d + bm, with bm ∈ Rd for

all m ∈ Zd, the frame operator for the system

hm,n(x) = hm(x− nam), ∀m, n ∈ Zd, x ∈ Rd,

is given by

S f (x) =

(
F−1

(
∑

m∈Zd

1
ad

m

∣∣∣ĥm

∣∣∣2) ∗ f

)
(x), f ∈ L2(Rd).

The system {hm,n}m,n∈Zd constitutes a frame for L2(Rd), with frame-bounds
0 < A ≤ B < ∞, if and only if

A ≤ ∑
m∈Zd

1
ad

m

∣∣∣ĥm(ξ)
∣∣∣2 ≤ B, for a.e. ξ ∈ Rd, (B.3)

and the canonical dual frame is then given by

h̃m,n(x) = F−1

 ĥm

∑l∈Zd
1
ad

l

∣∣∣ĥl

∣∣∣2
 (x− nam), x ∈ Rd. (B.4)
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Remark 3.1. We note that the canonical dual frame in (B.4) posses the same
structure as the original frame, which is a property not shared by general
NSGFs. We also note that the canonical tight frame can be obtained by taking
the square root of the denominator in (B.4).

Traditionally, an NSGF satisfying the assumptions of Theorem 3.1 is called
a painless NSGF, referring to the fact that the frame operator is simply a mul-
tiplication operator (in the frequency domain) and therefore easily invertible.
This terminology is adopted from the classical painless nonorthogonal expan-
sions [7], which corresponds to the painless case for standard Gabor frames.

By slight abuse of notation we use the term "painless" to denote the NSGFs
satisfying Definition 3.1 below. In order to properly formulate this definition,
we first need some preliminary notation. Let {hm}m∈Zd ⊂ L2(Rd) satisfy the
assumptions in Theorem 3.1. Given C∗ > 0 we denote by {Im}m∈Zd the open
cubes

Im :=
(
−εm,

1
am

+ εm

)d
+ bm, m ∈ Zd, (B.5)

with εm := C∗/am for all m ∈ Zd. We note that supp(ĥm,n) ⊂ Im for all
m, n ∈ Zd. For m ∈ Zd we define

m̃ :=
{

m′ ∈ Zd ∣∣ Im′ ∩ Im 6= ∅
}

,

using the notation of (B.1). With this definition, |m̃| denotes the number of
cubes overlapping with Im. Finally, we recall the choice u(ξ) := 1 + ‖ξ‖2 for
the function u in Definition 2.1.

Definition 3.1 (Painless NSGF). Let {hm}m∈Zd ⊂ S(Rd) satisfy the assump-
tions in Theorem 3.1 and assume that

1. {ĥm}m∈Zd ⊂ C∞
c (Rd) and for β ∈Nd

0 there exists Cβ > 0, such that

sup
ξ∈Rd

∣∣∣∂β
ξ ĥm(ξ)

∣∣∣ ≤ Cβad/2+|β|
m , for all m ∈ Zd.

2. supm∈Zd am := a < ∞.

3. There exists C∗ > 0 and n0 ∈ N, such that the open cubes {Im}m∈Zd

satisfy |m̃| ≤ n0 and am′ � am uniformly for all m ∈ Zd and all m′ ∈ m̃.

4. The centerpoints {bm}m∈Zd forms a δ−separated set and the sequence
{ωm}m∈Zd := {u(bm)}m∈Zd constitutes a {Im}m∈Zd−moderate weight.

5. There exists γ > 0 such that |Im| ≤ ω
γ
m for all m ∈ Zd.

Then we refer to {hm,n}m,n∈Zd as a painless NSGF.
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Remark 3.2. Definition 3.1(2) implies a uniform lower bound on |Im| and
Definition 3.1(4) guarantees a minimum distance between the center of the
cubes. Furthermore, Definition 3.1(3) implies that each cube Im has at most
n0 overlap with other cubes and that the side-length of Im is equivalent to the
side-length of any overlapping cube.

Remark 3.3. The assumptions in Definition 3.1 are natural in relation to de-
composition spaces and are easily satisfied. However, the support conditions
for {ĥm}m∈Zd given in Theorem 3.1 are rather restrictive and deserves a dis-
cussion. In fact, compact support of the window functions is not a necessary
assumption for characterizing modulation spaces [27], Besov spaces [20], or
even general decomposition spaces [37]. However, a certain structure of the
dual frame is needed and general NSGFs does not provide such structure.
We choose to work with the painless case and base our argument on the fact
that the dual frame posses the same structure as the original frame. We ex-
pect that it is possible to extend the theory developed in this paper to a more
general setting by applying existence results for general NSGFs [12, 13, 31]
or generalized shift invariant systems [30, 35, 36, 40]. In particular, the pa-
per [31] by Holighaus seems to provide interesting results in this regard. In
this paper, it is shown that for compactly supported window functions, the
sampling density in Theorem 3.1 can (under mild assumptions) be relaxed
such that the dual frame posses a structure similar to that of the original
frame. However, it is outside the scope of this paper to include such results
and we will not go into further details.

We now provide a simple example of a set of window functions satisfying
Definition 3.1(1).

Example 3.1. Let ϕ ∈ C∞
c (Rd) \ {0} with supp(ϕ) ⊆ [0, 1]d and for m ∈ Zd

define
ĥm(ξ) := ad/2

m ϕ (am(ξ − bm)) , ∀ξ ∈ Rd,

with bm ∈ Rd and am > 0. Then supp(ĥm) ⊆ [0, 1
am
]d + bm. Furthermore,

with w := am(ξ − bm) the chain rule yields∣∣∣∂β
ξ ĥm(ξ)

∣∣∣ = ∣∣∣[∂β
ξ ϕ
]
(w)

∣∣∣ ad/2+|β|
m ≤ Cβad/2+|β|

m χ[0, 1
am ]d+bm

(ξ), ∀ξ ∈ Rd.

This shows Definition 3.1(1). 4

In the next section we consider painless NSGFs in the framework of de-
composition spaces in order to characterize signals with sparse expansions
relative to the NSGF dictionaries.
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4. Decomposition spaces based on nonstationary Gabor frames

4 Decomposition spaces based on nonstationary
Gabor frames

We first provide a method for constructing a structured covering which is
compatibly with a given painless NSGF {hm,n}m,n∈Zd ⊂ S(Rd). We recall
the definition of εm = C∗/am used in the construction of {Im}m∈Zd in (B.5).
Define Q := (0, 1)d together with the set of affine transformations T :=
{Am(·) + cm}m∈Zd with

Am :=
(

2εm +
1

am

)
· Id and (cm)j := −εm + (bm)j, 1 ≤ j ≤ d.

Then Q := {QT}T∈T = {Im}m∈Zd and, furthermore, we have the following
result.

Lemma 4.1. Q is a structured covering of Rd.

Proof. Define the set

P :=
(

C∗
2C∗ + 1

,
C∗ + 1

2C∗ + 1

)d
.

By straightforward calculations, it is easy to show that P is compactly con-
tained in Q and P := {PT}T∈T = {(0, 1

am
)d + bm}m∈Zd . Let us now show that

P and Q satisfy the five conditions of Definition 2.2 page 62.

1. First we show that P covers Rd. We note that this immediately implies
that Q also covers Rd. Assume P does not cover Rd, i.e., that there
exists some ξ ′ ∈ Rd such that ξ ′ /∈ (0, 1

am
)d + bm for all m ∈ Zd. Since

supp(ĥm) ⊆ [0, 1
am
]d + bm, and ĥm is continuous, we get ĥm(ξ ′) = 0 for

all m ∈ Zd. This contradicts the inequality in (B.3) concerning the lower
frame bound and thus shows that P covers Rd. Now, Definition 3.1(3)
is precisely the admissibility condition for Q and thus guarantees that
both P and Q are admissible coverings. This shows Definition 2.2(1).

2. If (Am′Q + cm′) ∩ (AmQ + cm) 6= ∅, then am′ � am according to Def-
inition 3.1(3). Furthermore, since A−1

m′ Am is a diagonal matrix and
εm = C∗/am we get∥∥∥A−1

m′ Am

∥∥∥
`∞(Rd×d)

=
am′

am
≤ Kam

am
= K,

for some K > 0, so Definition 2.2(2) is satisfied.

3. To show Definition 2.2(3) we note that∥∥∥A−1
m

∥∥∥
`∞(Rd×Rd)

=
am

2C∗ + 1
≤ a

2C∗ + 1
, ∀m ∈ Zd,

according to Definition 3.1(2).
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4. Finally, Definition 2.2(4)-(5) follow directly from Definition 3.1(4)-(5).

Since Q is a structured covering, Proposition 2.1 applies and we ob-
tain a BAPU {ψT}T∈T subordinate to Q. Given parameters s ∈ R and
0 < p, q < ∞ we may, therefore, construct the associated decomposition
space D(Q, Lp, `q

ωs). For notational convenience, we change notation and
write {hT,n}T∈T ,n∈Zd , such that supp(ĥT,n) ⊂ QT for all T ∈ T and all
n ∈ Zd. Since AT = (2εT + a−1

T ) · Id, the chain rule and Definition 3.1(1)
yield

∣∣∣∂β
ξ

[
ĥT(Tξ)

]∣∣∣ = ∣∣∣[∂β
ξ ĥT

]
(Tξ)

∣∣∣ ·(2εT +
1
aT

)|β|
≤ Cβad/2

T · (2C∗ + 1)|β| χQT (Tξ) = C′βad/2
T χQ(ξ), ∀ξ ∈ Rd.

(B.6)

Using (B.6) we can prove the following decay property of {hT,n}T,n.

Proposition 4.1. For every N ∈ N there exists a constant CN > 0 such that for
T = AT(·) + cT ∈ T and n ∈ Zd,

|hT,n(x)| ≤ CN |T|1/2 (1 + ‖AT(x− naT)‖2)
−N , ∀x ∈ Rd.

Proof. We will use the fact that

u(ξ)N = (1 + ‖ξ‖2)
N � ∑

|β|≤N

∣∣∣ξβ
∣∣∣ , ξ ∈ Rd, (B.7)

for any N ∈ N with β ∈ Nd
0. Let ĝT(ξ) := ĥT(Tξ) such that supp(ĝT) ⊂ Q

for all T ∈ T . Using (B.7) we get

|gT(x)| ≤ C1(1 + ‖x‖2)
−N ∑
|β|≤N

∣∣∣xβgT(x)
∣∣∣

= C1(1 + ‖x‖2)
−N ∑
|β|≤N

∣∣∣F−1
[
∂

β
ξ ĝT

]
(x)
∣∣∣

≤ C1(1 + ‖x‖2)
−N ∑
|β|≤N

∫
Rd

∣∣∣∂β
ξ ĝT(ξ)

∣∣∣ dξ, x ∈ Rd.

Applying (B.6) we may continue and write

|gT(x)| ≤ C2ad/2
T (1 + ‖x‖2)

−N ∑
|β|≤N

∫
Rd

χQ(ξ)dξ = C3ad/2
T (1 + ‖x‖2)

−N .

(B.8)
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Now, since εT = C∗/aT then

|T| |Q| = |QT | =
(

2εT +
1
aT

)d
= (2C∗ + 1)d(aT)

−d. (B.9)

Hence, ad/2
T = C|T|−1/2 so (B.8) yields

|gT(x)| ≤ C4 |T|−1/2 (1 + ‖x‖2)
−N , x ∈ Rd. (B.10)

Using the fact that AT is a diagonal matrix, we obtain the relationship

hT(x) =
∫

Rd
ĥT(ξ)e2πiξ·xdξ = |T|

∫
Rd

ĝT(u)e2πi(ATu+cT)·xdu

= e2πicT ·x |T|
∫

Rd
ĝT(u)e2πiu·AT xdu = e2πicT ·x |T| gT(ATx), x ∈ Rd.

(B.11)

Combining (B.11) and (B.10) we arrive at

|hT,n(x)| = |hT(x− naT)| = |T| |gT(AT(x− naT))|

≤ C4 |T|1/2 (1 + ‖AT(x− naT)‖2)
−N , x ∈ Rd.

This proves the proposition.

As a direct consequence of Proposition 4.1 we can prove the following
lemma.

Lemma 4.2. For 0 < p < ∞, we have

sup
x∈Rd

{∥∥{hT,n(x)}n∈Zd

∥∥
`p

}
≤ C |T|1/2 , and (B.12)

sup
n∈Zd

‖hT,n‖Lp ≤ C′ |T|1/2−1/p , (B.13)

with constants C, C′ > 0 independent of T ∈ T .

Proof. We will use the fact that∫
Rd

u(ξ)−mdξ =
∫

Rd
(1 + ‖ξ‖2)

−m dξ < ∞, (B.14)

for any m > d. Choosing N > d/p in Proposition 4.1, then (B.14) yields

∥∥{hT,n(x)}n∈Zd

∥∥
`p ≤ C1 |T|1/2

(
∑

n∈Zd

(1 + ‖AT(x− naT)‖2)
−Np

)1/p

≤ C2 |T|1/2 (ad
T |T|)−1/p. (B.15)
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According to (B.9), ad
T = C|T|−1, which inserted into (B.15) yields (B.12). To

show (B.13), we again let N > d/p in Proposition 4.1, so (B.14) yields

‖hT,n‖Lp ≤ C1 |T|1/2
(∫

Rd
(1 + ‖AT(x− naT)‖2)

−Npdx
)1/p

≤ C2 |T|1/2−1/p .

This proves (B.6).

In the next section we use the painless NSGF {hT,n}T,n to prove a complete
characterization of the corresponding decomposition space D(Q, Lp, `q

ωs).

5 Characterization of decomposition spaces

The main result of this section is the characterization given in Theorem 5.1.
To prove this result, we follow the approach taken in [3] where the authors
proved a similar result for a certain type of tight frames for Rd (see [3, Propo-
sition 3]). Since the frames we consider are not assumed to be tight we need
to modify the arguments given in [3]. We start with the following observa-
tions.

Lemma 5.1. For 0 < p < ∞, the Fourier multiplier

ψh
T(D) f := F−1

(
ψh

TF f
)

:= F−1

(
ψT

∑l∈T̃
1
ad

l

∣∣∣ĥl

∣∣∣2F f

)
(B.16)

is bounded on the band-limited functions in Lp(Rd) uniformly in T ∈ T . Further,

sup
x∈Rd

{∥∥∥{ψh
T(D)hT′ ,n

}
n∈Zd

∥∥∥
`p

}
≤ C |T|1/2 , T ∈ T , T′ ∈ T̃, (B.17)

with a constant C > 0 independent of T ∈ T .

Proof. Let ψh′
T (ξ) := ψh

T(T(ξ)). For N > d/p, (B.14) and (B.7) imply∥∥∥F−1ψh′
T

∥∥∥
Lp
≤ C1

∥∥∥u(·)NF−1ψh′
T

∥∥∥
L∞
≤ C2 ∑

|β|≤N

∥∥∥(·)βF−1ψh′
T

∥∥∥
L∞

= C2 ∑
|β|≤N

∥∥∥F−1
(

∂βψh′
T

)∥∥∥
L∞
≤ C2 ∑

|β|≤N

∥∥∥∂βψh′
T

∥∥∥
L1

. (B.18)

Since εT = C∗/aT , the chain rule yields

∂βψh′
T (ξ) =

(
∂βψh

T

)
(Tξ)

(
2εT +

1
aT

)|β|
= Ca−|β|T

(
∂βψh

T

)
(Tξ). (B.19)
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For estimating ∂βψh
T we use the quotient rule. Because all derivatives of ψT

are bounded according to Proposition 2.1(4), we need only to consider the
derivatives of the denominator of ψh

T . The sum in the denominator consists of
at most n0 terms and for each term in the sum, the chain rule and Definition
3.1(1)-(2) imply an upper bound of Ca|β|T . Therefore, (B.19) yields |∂βψh′

T (ξ)| ≤
C′χQ(ξ), since supp(ψh′

T ) ⊂ Q for all T ∈ T . Combing this with (B.18)
we get ‖F−1ψh′

T ‖Lp ≤ C3. It now follows from Lemma A.2 page 81 that
f → F−1(ψh′

T F f ) defines a bounded operator on the band-limited functions
in Lp(Rd) uniformly in T ∈ T . Finally, applying [3, Lemma 1] we obtain the
same statement for ψh

T(D).
We now prove (B.17). Repeating the arguments from the proof of Propo-

sition 4.1 (using (B.3) and Definition 3.1(1)) we can prove the same decay
property for ψh

T(D)hT′ ,n. The result therefore follows from the arguments in
the proof of (B.12).

The statement in Theorem 5.1 follows directly once we have proven the
following technical lemma. We use the notation ψ̃T := ∑T′∈T̃ ψT′ .

Lemma 5.2. Given f ∈ S(Rd) and 0 < p < ∞. For all T ∈ T ,∥∥{〈 f , hT,n〉}n∈Zd

∥∥
`p ≤ C |T|1/p−1/2 ∥∥ψ̃T(D) f

∥∥
Lp , and (B.20)

‖ψT(D) f ‖Lp ≤ C′ |T|1/2−1/p ∑
T′∈T̃

∥∥∥{〈 f , hT′ ,n
〉}

n∈Zd

∥∥∥
`p

, (B.21)

with constants C, C′ > 0 independent of T ∈ T .

Proof. The proof of (B.20) follows directly from (B.12) and the arguments for
the first part of the proof for [3, Lemma 2]. To prove (B.21) we first assume
p ≤ 1 and note

‖ψT(D) f ‖Lp ≤ C1 ∑
T′∈T̃

∑
n∈Zd

∣∣〈 f , hT′ ,n
〉∣∣ ∥∥ψT(D)h̃T′ ,n

∥∥
Lp (B.22)

≤ C2 ∑
T′∈T̃

(
∑

n∈Zd

∣∣〈 f , hT′ ,n
〉∣∣p ∥∥ψT(D)h̃T′ ,n

∥∥p
Lp

)1/p

,

with {h̃T,n}T,n being the dual frame given in (B.4) page 66. Applying (B.16)
and (B.13) this proves (B.21) for the case p ≤ 1. For p > 1, we note that
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Hölders inequality (with p′ being the conjugate index of p) yields∥∥∥∥∥ ∑
n∈Zd

〈
f , hT′ ,n

〉
ψT(D)h̃T′ ,n

∥∥∥∥∥
p

Lp

≤
∫

Rd ∑
n∈Zd

∣∣〈 f , hT′ ,n
〉∣∣p ∣∣ψT(D)h̃T′ ,n(x)

∣∣ ( ∑
n′∈Zd

∣∣ψT(D)h̃T′ ,n′(x)
∣∣)p/p′

dx

≤ C1 |T|p/2p′−1/2 ∑
n∈Zd

∣∣〈 f , hT′ ,n
〉∣∣p ,

according to Lemma 5.1 and (B.13). Taking the p’th root on both sides and
applying (B.22) finishes the proof of (B.21) for p > 1.

Using the notation of [3] we define Lp−normalized atoms hp
T,n :=

|T|1/2−1/p hT,n, for all T ∈ T , n ∈ Zd and 0 < p < ∞. We also define the
coefficient space d(Q, `p, `q

ωs) as the set of coefficients {cT,n}T∈T ,n∈Zd ⊂ C

satisfying

∥∥∥{cT,n}T∈T ,n∈Zd

∥∥∥
d(Q,`p ,`q

ωs )
:=
∥∥∥{∥∥{cT,n}n∈Zd

∥∥
`p

}
T∈T

∥∥∥
`

q
ωs

< ∞.

Combining Lemma 5.2 with the fact that S(Rd) is dense in D(Q, Lp, `q
ωs) we

obtain a characterization similar to that of [3, Proposition 3].

Theorem 5.1. For s ∈ R and 0 < p, q < ∞ we have the equivalence

‖ f ‖D(Q,Lp ,`q
ωs )
�
∥∥∥∥{〈 f , hp

T,n

〉}
T∈T ,n∈Zd

∥∥∥∥
d(Q,`p ,`q

ωs )
,

for all f ∈ D(Q, Lp, `q
ωs).

Remark 5.1. The characterization in Theorem 5.1 differs from the one given
in [3, Proposition 3] in two ways. In [3] the frame elements are obtained
directly from the structured covering such that the resulting system forms a
tight frame. In our framework we take the "reverse" approach and explicitly
state sufficient conditions which guarantee the existence of a compatible de-
composition space for a given NSGF (cf. Definition 3.1). More importantly,
we show that the assumption on tightness of the frame can be replaced with
the structured expression for the dual frame given in (B.4) page 66.

In the next section we use the characterization given in Theorem 5.1 to
prove that {hp

T,n}T,n forms a Banach frame for D(Q, Lp, `q
ωs) with respect to

d(Q, `p, `q
ωs) for s ∈ R and 0 < p, q < ∞.
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6. Banach frames for decomposition spaces

6 Banach frames for decomposition spaces

Let us start by giving the general definition of a Banach frame [26, 27]. Tradi-
tionally, Banach frames are only defined for Banach spaces but we will also
use the concept for (quasi-)Banach spaces.

Definition 6.1 (Banach Frame). Let X be a (quasi-)Banach space and let Xd
be an associated (quasi-)Banach sequence space on N. A Banach frame for
X, with respect to Xd, is a sequence {yn}n∈N in the dual space X′, such that

1. The coefficient operator CX : f → {〈 f , yn〉}n∈N is bounded from X into
Xd.

2. Norm equivalence:

‖ f ‖X � ‖{〈 f , yn〉}n∈N‖Xd
, ∀ f ∈ X.

3. There exists a bounded operator RXd from Xd onto X, called a recon-
struction operator, such that

RXd CX f = RXd ({〈 f , yn〉}n∈N) = f , ∀ f ∈ X.

Remark 6.1. We will actually prove that {hp
T,n}T,n forms an atomic decom-

position [5, 18, 19] for D(Q, Lp, `q
ωs) as the reconstruction operator takes the

form f = ∑T,n〈 f , hp
T,n〉xT,n with {xT,n} ⊂ D(Q, Lp, `q

ωs) (see Theorem 6.1
below).

In order to show that that {hp
T,n}T,n forms a Banach frame for

D(Q, Lp, `q
ωs), we first note that

{hp
T,n}T∈T ,n∈Zd ⊂ S(Rd) ⊂ D′(Q, Lp, `q

ωs)

as required by Definition 6.1. Furthermore, the equivalence in Theorem 5.1
implies that Definition 6.1(2) is satisfied and the corresponding proof reveals
that Definition 6.1(1) is satisfied. What remains to be shown is the existence
of a bounded reconstruction operator such that Definition 6.1(3) holds. For
{cT,n}T,n ∈ d(Q, `p, `q

ωs), we define the reconstruction operator as

Rd(Q,`p ,`q
ωs )

(
{cT,n}T,n

)
= ∑

T∈T ,n∈Zd

cT,n |T|1/p−1/2 h̃T,n, (B.23)

with {h̃T,n}T∈T ,n∈Zd being the dual frame given in (B.4) page 66. We now
provide the main result of this section.
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Theorem 6.1. Given s ∈ R and 0 < p, q < ∞, {hp
T,n}T∈T ,n∈Zd forms a Banach

frame for D(Q, Lp, `q
ωs). Furthermore, we have the expansions

f = ∑
T∈T ,n∈Zd

〈 f , hT,n〉 h̃T,n, ∀ f ∈ D(Q, Lp, `q
ωs), (B.24)

with unconditional convergence.

Proof. Let R and C denote the reconstruction- and coefficient operator, respec-
tively. We first prove that R is bounded from d(Q, `p, `q

ωs) onto D(Q, Lp, `q
ωs).

For {cT,n}T,n ∈ d(Q, `p, `q
ωs) we let g := R({cT,n}T,n). For T ∈ T , Lemma 5.1

implies

‖ψT(D)g‖Lp =

∥∥∥∥∥∥∥∥F
−1

 ψT · ψ̃T

∑l∈T̃
1
ad

l

∣∣∣ĥl

∣∣∣2 · ∑
T′∈T ,n∈Zd

cT′ ,n
∣∣T′∣∣1/p−1/2 ĥT′ ,n


∥∥∥∥∥∥∥∥

Lp

≤ C1

∥∥∥∥∥∥ψ̃T(D)

 ∑
T′∈T ,n∈Zd

cT′ ,n
∣∣T′∣∣1/p−1/2 hT′ ,n

∥∥∥∥∥∥
Lp

. (B.25)

Repeating the arguments from the proof of [3, Lemma 4] we can show that∥∥∥∥∥∥ ∑
T∈T ,n∈Zd

cT,n |T|1/p−1/2 hT,n

∥∥∥∥∥∥
D(Q,Lp ,`q

ωs )

≤ C ‖{cT,n}T,n‖d(Q,`p ,`q
ωs )

. (B.26)

Applying (B.2) page 63 to (B.25) and then using (B.26) we get

‖g‖D(Q,Lp ,`q
ωs )
≤ C2

∥∥∥∥∥∥ ∑
T∈T ,n∈Zd

cT,n |T|1/p−1/2 hT,n

∥∥∥∥∥∥
D(Q,Lp ,`q

ωs )

≤ C3

∥∥∥{cT,n}T∈T ,n∈Zd

∥∥∥
d(Q,`p ,`q

ωs )
. (B.27)

This proves that R is bounded from d(Q, `p, `q
ωs) onto D(Q, Lp, `q

ωs). Let us
now show the unconditional convergence of (B.24). Given f ∈ D(Q, Lp, `q

ωs),
we can find a sequence { fk}k≥1, with fk ∈ S(Rd) for all k ≥ 1, such that
fk → f in D(Q, Lp, `q

ωs) as k → ∞. Furthermore, since {hT,n}T,n forms a
frame for L2(Rd), for each k ≥ 1 we have the expansion

fk = ∑
T∈T ,n∈Zd

〈 fk, hT,n〉 h̃T,n = RC( fk),

with unconditional convergence. Since RC : D(Q, Lp, `q
ωs)→ D(Q, Lp, `q

ωs) is
continuous, letting k→ ∞ yields

f = RC( f ) = ∑
T∈T ,n∈Zd

〈 f , hT,n〉 h̃T,n. (B.28)
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7. Application to nonlinear approximation theory

Given ε > 0, (B.27) implies that we can find a finite subset F0 ⊂ T ×Zd, such
that∥∥∥∥∥∥ f − ∑

(T,n)∈F
〈 f , hT,n〉 h̃T,n

∥∥∥∥∥∥
D(Q,Lp ,`q

ωs )

≤ C
∥∥∥{〈 f , hT,n〉}(T,n)/∈F

∥∥∥
d(Q,Lp ,`q

ωs )
< ε,

for all finite sets F ⊇ F0. According to [27, Proposition 5.3.1], this property is
equivalent to unconditional convergence.

We close this section by discussing the implications of the achieved re-
sults. According to Theorem 5.1 and Theorem 6.1, every f ∈ D(Q, Lp, `q

ωs)
has an expansion of the form

f = ∑
T∈T ,n∈Zd

〈
f , hp

T,n

〉
|T|1/p−1/2 h̃T,n, with

‖ f ‖D(Q,Lp ,`q
ωs )
�
∥∥∥∥{〈 f , hp

T,n

〉}
T,n

∥∥∥∥
d(Q,`p ,`q

ωs )
.

Now, assume there exists another set of reconstruction coefficients {cT,n}T,n ∈
d(Q, `p, `q

ωs) which is sparser than {〈 f , hp
T,n〉}T,n when sparseness is mea-

sured by the d(Q, `p, `q
ωs)-norm. Since the reconstruction operator R is

bounded we get

‖{cT,n}T,n‖d(Q,`p ,`q
ωs )
≤
∥∥∥∥{〈 f , hp

T,n

〉}
T,n

∥∥∥∥
d(Q,`p ,`q

ωs )
≤ C1 ‖ f ‖D(Q,Lp ,`q

ωs )

= C1 ‖R({cT,n}T,n)‖D(Q,Lp ,`q
ωs )

≤ C2 ‖{cT,n}T,n‖d(Q,`p ,`q
ωs )

.

We conclude that the canonical coefficients {〈 f , hp
T,n〉}T,n are (up to a con-

stant) the sparsest possible choice for expanding f as

f = ∑
T∈T ,n∈Zd

cT,n |T|1/p−1/2 h̃T,n,

when sparseness of the coefficients is measured by the d(Q, `p, `q
ωs)-norm.

Furthermore, f ∈ D(Q, Lp, `q
ωs) if and only if f permits a sparse expansion

relative to the dictionary {|T|1/p−1/2h̃T,n}T,n .

7 Application to nonlinear approximation theory

In this section we provide the link to nonlinear approximation theory. An im-
portant property of the sparse expansions obtained in Theorem 6.1 is that we
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can obtain a good compression by simply thresholding the coefficients from
the expansion. As mentioned in the introduction, NSGFs can create adap-
tive time-frequency representations as opposed to standard Gabor frames.
Such adaptive representations can be constructed to fit the particular nature
of a given signal, thereby producing a more precise (and hopefully sparser)
time-frequency representation. In particular, NSGFs have proven to be use-
ful in connection with music signals. For instance, in [1, 11] the authors use
NSGFs to construct an invertible constant-Q transform with good frequency
resolution at the lower frequencies and good time resolution at the higher fre-
quencies. Such a time-frequency resolution is often more natural for music
signals than the uniform resolution provided by Gabor frames.

The main result of this section is given in (B.30) below. The corresponding
proof follows directly from the results obtained in Sections 5 and 6 together
with standard arguments from nonlinear approximation theory [23]. Let f ∈
D(Q, Lτ , `τ

ωs), with 0 < τ < ∞, and let 0 < p < ∞ satisfy α := 1/τ −
1/p > 0. Write the frame expansion of f with respect to the Lp−normalized
coefficients

f = ∑
T∈T ,n∈Zd

〈
f , hp

T,n

〉
|T|1/p−1/2 h̃T,n. (B.29)

Let {θm}m∈N be a decreasing rearrangement of the frame coefficients and let
fN be the N-term approximation to f obtained by extracting the coefficients
in (B.29) corresponding to the N largest coefficients {θm}N

m=1. Then, we can
prove the existence of C > 0 such that for f ∈ D(Q, Lτ , `τ

ωs) and N ∈N,

‖ f − fN‖D(Q,Lp ,`p
ωs )
≤ CN−α ‖ f ‖D(Q,Lτ ,`τ

ωs )
. (B.30)

In other words, for f ∈ D(Q, Lτ , `τ
ωs) we obtain good approximations in

D(Q, Lp, `p
ωs) by thresholding the Lp−normalized frame coefficients. We note

that for 0 < τ < 2 we obtain good approximations in L2(Rd) with respect to
the original coefficients {〈 f , hT,n〉}T,n.

We now explain the obtained results in the general framework of
Jackson- and Bernstein inequalities [8]. Let D denote the dictionary
{|T|1/p−1/2h̃T,n}T,n and define the nonlinear set of all linear combinations
of at most N elements from D as

ΣN(D) :=

{
∑

T,n∈∆
cT,n |T|1/p−1/2 h̃T,n

∣∣∣∣∣ #∆ ≤ N

}
.

For any f ∈ D(Q, Lp, `p
ωs), the error of best N-term approximation to f is

σN ( f ,D) := inf
h∈ΣN(D)

‖ f − h‖D(Q,Lp ,`p
ωs )

.

Since fN ∈ ΣN(D), (B.30) yields

σN ( f ,D) ≤ CN−α ‖ f ‖D(Q,Lτ ,`τ
ωs )

.
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A. Proof of Theorem 2.1

This is a so-called Jackson inequality for nonlinear N-term approximation
with D. It provides us with an upper bound for the error obtained by ap-
proximating f with the best possible choice of linear combinations of at most
N elements from the dictionary. The converse inequality is called a Bernstein
inequality and is in general much more difficult to obtain for redundant sys-
tems [24]. The existence of a Bernstein inequality would provide us with a
lower bound and hence a full characterization of the error of best N-term
approximation to f with respect to the dictionary D. However, for this par-
ticular system (and for many other redundant systems), the existence of a
Bernstein inequality is still an open question.
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A Proof of Theorem 2.1

Proof. To simplify notation we let Ds
p,q := D(Q, Lp, `q

ωs). Let us first prove
Theorem 2.1(1). Allowing the extension q = ∞, and repeating the arguments
from the proof of [4, Proposition 5.7], we can show that

Ds+ε
p,∞ ↪→ Ds

p,q ↪→ Ds
p,∞, ε > d/q,

for any s ∈ R and 0 < p < ∞ using Definition 2.2(4). It therefore suffice to
show that S(Rd) ↪→ Ds

p,∞ ↪→ S ′(Rd) for any s ∈ R and 0 < p < ∞. For
N ∈N, we define semi-norms on S(Rd) by

pN(g) := sup
ξ∈Rd

u(ξ)N ∑
|β|≤N

∣∣∣∂β ĝ(ξ)
∣∣∣
 , g ∈ S(Rd),

with u(ξ) = 1 + ‖ξ‖2 as usual. Following the approach in [4, Page 149], and
applying Proposition 2.1(4), we get

‖ f ‖Ds
p,∞
≤ CpN( f ) and ‖ f ‖Ds

1,1
≤ C′pN′( f ),

for sufficiently large N and N′. This proves that S(Rd) ↪→ Ds
p,∞ and

S(Rd) ↪→ Ds
1,1. To show that Ds

p,∞ ↪→ S ′(Rd) we need to take a different
approach than in [4]. Setting ψ̃T := ∑T′∈T̃ ψT′ , we first note that for f ∈ Ds

p,∞

and ϕ ∈ S(Rd),
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|〈 f , ϕ〉| ≤ ∑
T∈T

∥∥ψT(D) f ψ̃T(D)ϕ
∥∥

L1 ≤ ∑
T∈T
‖ψT(D) f ‖L∞

∥∥ψ̃T(D)ϕ
∥∥

L1 .

Using Lemma A.1 below (with g = F−1{ψT f̂ (Tξ)}) we thus get

|〈 f , ϕ〉| ≤ C1 ∑
T∈T
|T|1/p ‖ψT(D) f ‖Lp

∥∥ψ̃T(D)ϕ
∥∥

L1

≤ C1 ‖ f ‖Ds
p,∞ ∑

T∈T
|T|1/p ω−s

T

∥∥ψ̃T(D)ϕ
∥∥

L1

≤ C2 ‖ f ‖Ds
p,∞

∥∥∥{∥∥ψ̃T(D)ϕ
∥∥

L1

}
T∈T

∥∥∥
`1

ωγ/p−s

, (B.31)

since |T| = |Q|−1|QT | ≤ |Q|−1ω
γ
T according to Definition 2.2(5). Applying

(B.2) page 63 we may continue on (B.31) and write

|〈 f , ϕ〉| ≤ C3 ‖ f ‖Ds
p,∞
‖ϕ‖

Dγ/p−s
1,1

≤ C4 ‖ f ‖Ds
p,∞

pN(ϕ),

for sufficiently large N since S(Rd) ↪→ Ds
1,1. We conclude that Ds

p,∞ ↪→
S ′(Rd) which proves Theorem 2.1(1).

The proof of Theorem 2.1(2) follows directly from Theorem 2.1(1) and the
arguments in [4, Page 150].

To prove Theorem 2.1(3) we let f ∈ Ds
p,q and choose I ∈ C∞

c (Rd) with
0 ≤ I(ξ) ≤ 1 and I(ξ) ≡ 1 in a neighborhood of ξ = 0. Also, we define
( f̃ )̂ := I f̂ and

f̃ε := F−1
{

ϕε ∗
(

f̃
)̂ }
∈ S(Rd),

with ϕε(ξ) := ε−d ϕ(ξ/ε) and ϕ being a compactly supported mollifier. Since
supp(I) is compact, we may choose a finite subset T∗ ⊂ T with supp(I) ⊂
∪T∈T∗QT and ∑T∈T∗ ψT(ξ) ≡ 1 on supp(I). Using Lemma A.2 below we
obtain

‖ f̃ ‖Lp =

∥∥∥∥∥F−1 IF
(
F−1

(
∑

T∈T∗
ψT · f̂

))∥∥∥∥∥
Lp

≤ C ∑
T∈T∗

∥∥∥F−1 I
∥∥∥

L p̃
‖ψT(D) f ‖Lp < ∞,

with p̃ = min{1, p}. The dominated convergence theorem thus yields∥∥∥ f̃ − f̃ε

∥∥∥
Ds

p,q
≤ C

∥∥∥∥{∥∥∥ f̃ − f̃ε

∥∥∥
Lp

}
T∈T

∥∥∥∥
`

q
ωs

→ 0, as ε→ 0,

so the proof is done if we can show that ‖ f − f̃ ‖Ds
p,q can be made arbitrary

small by choosing f̃ appropriately. To show this, we define the set
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T◦ := {T ∈ T | I(ξ) ≡ 1 on supp(ψT)}. Denoting the complement Tc
◦,

Lemma A.2 below yields∥∥∥ f − f̃
∥∥∥q

Ds
p,q

= ∑
T∈Tc◦

ω
sq
T

∥∥∥F−1
(

ψT

(
f̂ − I f̂

))∥∥∥q

Lp

≤ C1 ∑
T∈Tc◦

ω
sq
T

(
‖ψT(D) f ‖Lp +

∥∥∥F−1 IF (ψT(D) f )
∥∥∥

Lp

)q

≤ C2 ∑
T∈Tc◦

ω
sq
T ‖ψT(D) f ‖q

Lp .

Finally, since f ∈ Ds
p,q we can choose supp(I) large enough, such that

‖ f − f̃ ‖Ds
p,q < ε, for any given ε > 0. This proves Theorem 2.1(3).

In the proof of Theorem 2.1 we used the following two lemmas. A proof
of Lemma A.1 can be found in [3, Lemma 3] and a proof of Lemma A.2 can
be found in [41, Proposition 1.5.1].

Lemma A.1. Let g ∈ Lp(Rd) and supp(ĝ) ⊂ Γ, with Γ ⊂ Rd compact. Given an
invertible affine transformation T, let ĝT(ξ) := ĝ(T−1ξ). Then for 0 < p ≤ q ≤ ∞,

‖gT‖Lq
≤ C |T|1/p−1/q ‖gT‖Lp

,

for a constant C independent of T.

Lemma A.2. Let Ω and Γ be compact subsets of Rd. Let 0 < p ≤ ∞ and p̃ =
min{1, p}. Then there exists a constant C such that∥∥∥F−1MF f

∥∥∥
Lp
≤ C

∥∥∥F−1M
∥∥∥

L p̃
‖ f ‖Lp

for all f ∈ Lp(Rd) with supp( f̂ ) ⊂ Ω and all F−1M ∈ L p̃(Rd) with supp(M) ⊂
Γ.
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1. Introduction

Abstract

We consider sparseness properties of adaptive time-frequency representations ob-
tained using nonstationary Gabor frames (NSGFs). NSGFs generalize classical Ga-
bor frames by allowing for adaptivity in either time or frequency. It is known that the
concept of painless nonorthogonal expansions generalizes to the nonstationary case,
providing perfect reconstruction and an FFT based implementation for compactly
supported window functions sampled at a certain density. It is also known that for
some signal classes, NSGFs with flexible time resolution tend to provide sparser ex-
pansions than can be obtained with classical Gabor frames. In this article we show,
for the continuous case, that sparseness of a nonstationary Gabor expansion is equiv-
alent to smoothness in an associated decomposition space. In this way we characterize
signals with sparse expansions relative to NSGFs with flexible time resolution. Based
on this characterization we prove an upper bound on the approximation error occur-
ring when thresholding the coefficients of the corresponding frame expansions. We
complement the theoretical results with numerical experiments, estimating the rate
of approximation obtained from thresholding the coefficients of both stationary and
nonstationary Gabor expansions.

1 Introduction

The field of Gabor theory [6, 19, 41] is concerned with representing signals
as atomic decompositions using time-frequency localized atoms. The atoms
are constructed as time-frequency shifts of a fixed window function, accord-
ing to some lattice parameters, such that the resulting system constitutes a
frame and, therefore, guarantees stable expansions [5, 31, 35]. Such frames
are known under the name of Weyl-Heisenberg frames or Gabor frames and
have been proven useful in a variety of applications [10, 22, 33]. The structure
of Gabor frames implies a time-frequency resolution which depends only on
the lattice parameters and the window function. In particular, the resolution
is independent of the signal under consideration, which makes the corre-
sponding implementation fast and easy to handle. The usage of a prede-
termined time-frequency resolution naturally raises the question of whether
an improvement can be obtained by taking the signal class into considera-
tion? This question has lead to many interesting approaches for construct-
ing adaptive time-frequency representations [11, 27, 40, 42]. Unfortunately,
for representations with resolution varying in both time and frequency there
seems to be a trade-off between perfect reconstruction and fast implemen-
tation [30]. In this article, we therefore consider time-frequency represen-
tations with resolution varying in either time or frequency. The idea is to
generalise the theory of painless nonorthogonal expansions [6] to the situ-
ation where multiple window functions are used along either the time- or
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the frequency axis. The resulting systems, which allow for perfect recon-
struction and an FFT based implementation, are called painless generalised
shift-invariant systems [25, 36] or painless nonstationary Gabor frames (pain-
less NSGFs) [1, 26]. As already noted in [1], painless NSGFs tend to produce
sparser representations than classical Gabor frames for certain classes of mu-
sic signals. Sparseness of a time-frequency representation is desirable for
several reasons, mainly because it may reduce the computational cost for
manipulating and storing the coefficients [8, 18]. Additionally, many signal
classes are characterized by some kind of sparseness in time or frequency
and the corresponding signals are, therefore, best described by a sparse time-
frequency representation. For such signals, the task of feature identification
also benefits from a sparse representation as the particular characteristics of
the signal becomes easier to identify.

In this article we consider sparseness properties of painless NSGFs with
resolution varying in time. Whereas modulation spaces [14, 16, 22] have
turned out to be the proper function spaces for analyzing sparseness prop-
erties of classical Gabor frames [23], we need a more general framework for
the nonstationary case. A painless NSGF with flexible time resolution cor-
responds to a sampling grid which is irregular over time but regular over
frequency for each fixed time point. We therefore search for a smoothness
space which is compatible with a (more or less) arbitrary partition of the time
domain. Such a flexibility can be provided by decomposition spaces, as in-
troduced by Feichtinger and Gröbner in [15, 17]. Decomposition spaces may
be viewed as a generalization of the classical Wiener amalgam spaces [13, 24]
but with no assumption of an upper bound on the measure of the members
of the partition. Another way of stating this is that decomposition spaces
are constructed using bounded admissible partitions of unity [17] instead of
bounded uniform partitions of unity [13]. The partitions we consider are ob-
tained by applying a set of invertible affine transformations {Ak(·) + ck}k∈N

on a fixed set Q ⊂ Rd [2].
We use decomposition spaces to characterize signals with sparse expan-

sions relative to painless NSGFs with flexible time resolution. We measure
sparseness of an expansion by a mixed norm on the coefficients and show
that the sparseness property implies an upper bound on the approximation
error obtained by thresholding the expansion. Using the terminology from
nonlinear approximation, such an upper bound is also known as a Jackson
inequality [4, 8]. A similar characterization for classical Gabor frames using
modulation spaces was proven by Gröchenig and Samarah in [23]. For the
nonstationary case, we provided a characterization in [32] for painless NSGFs
with flexible frequency resolution using decomposition spaces. A different
approach to this problem is considered by Voigtlaender in [39], where the
painless assumption is replaced with a more general analysis of the sam-
pling parameter. The decomposition spaces considered in both [32] and [39]
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are based on partitions of the frequency domain, which is not a natural choice
for NSGFs with flexible time resolution. In this article we consider decom-
positions of the time domain, which allow for compactly supported window
functions sampled at a low density (compared to the general theory formu-
lated in [39]). It is worth noting that there is a significant mathematical dif-
ference between decomposition spaces in time and in frequency.

The structure of this this article is as follows. In Section 2 we formally in-
troduce decomposition spaces in time and prove several important properties
of these spaces. Then, based on the ideas in [32], we show in Section 3 how
to construct a suitable decomposition space for a given painless NSGF with
flexible time resolution. In Section 4 we prove that the suitable decomposi-
tion space characterizes signals with sparse frame expansions and we provide
an upper bound on the approximation rate occurring when thresholding the
frame coefficients. Finally, in Section 5 we present the numerical results and
in Section 6 we give the conclusions.

Let us now briefly go through our notation. By f̂ (ξ) :=
∫

Rd f (x)e−2πix·ξdx
we denote the Fourier transform with the usual extension to L2(Rd). With
F � G we mean that there exist two constants 0 < C1, C2 < ∞ such that
C1F ≤ G ≤ C2F. For two normed vector spaces X and Y, X ↪→ Y means that
X ⊂ Y and ‖ f ‖Y ≤ C ‖ f ‖X for some constant C and all f ∈ X. We say that
a non-empty open set Ω′ ⊂ Rd is compactly contained in an open set Ω ⊂ Rd

if Ω′ ⊂ Ω and Ω′ is compact. We call {xi}i∈I ⊂ Rd a δ−separated set if
infj,k∈I ,j 6=k ‖xj − xk‖2 = δ > 0. Finally, by Id we denote the identity operator
on Rd and by χQ we denote the indicator function for a set Q ⊂ Rd.

2 Decomposition spaces

In this section we define decomposition spaces [17] based on structured cov-
erings [2]. For an invertible matrix A ∈ GL(Rd), and a constant c ∈ Rd, we
define the affine transformation Tx = Ax + c with x ∈ Rd. Given a family
T = {Ak(·) + ck}k∈N of invertible affine transformations on Rd, and a subset
Q ⊂ Rd, we let {QT}T∈T := {T(Q)}T∈T and

T̃ :=
{

T′ ∈ T
∣∣ QT′ ∩QT 6= ∅

}
, T ∈ T . (C.1)

We say that Q := {QT}T∈T is an admissible covering of Rd if
⋃

T∈T QT = Rd

and there exists n0 ∈N such that |T̃| ≤ n0 for all T ∈ T .

Definition 2.1 (Q−moderate weight). Let Q := {QT}T∈T be an admissible
covering. A function u : Rd → (0, ∞) is called Q−moderate if there exists
C > 0 such that u(x) ≤ Cu(y) for all x, y ∈ QT and all T ∈ T . AQ−moderate
weight (derived from u) is a sequence {ωT}T∈T := {u(xT)}T∈T with xT ∈ QT
for all T ∈ T .
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For the rest of this article, we shall use the explicit choice u(x) := 1+ ‖x‖2
for the function u in Definition 2.1. Let us now define structured coverings [2]
of the time domain.

Definition 2.2 (Structured covering). Given a family T = {Ak(·) + ck}k∈N

of invertible affine transformations on Rd, suppose there exist two bounded
open sets P ⊂ Q ⊂ Rd, with P compactly contained in Q, such that

1. {PT}T∈T and {QT}T∈T are admissible coverings.

2. There exists a δ−separated set {xT}T∈T ⊂ Rd, with xT ∈ QT for all T ∈
T , such that {ωT}T∈T := {1 + ‖xT‖2}T∈T is a Q−moderate weight.

Then we call Q = {QT}T∈T a structured covering.

For a structured covering we have the associated concept of a bounded
admissible partition of unity (BAPU) [17].

Definition 2.3 (BAPU). Let Q = {QT}T∈T be a structured covering of Rd.
A BAPU subordinate to Q is a family of non-negative functions {ψT}T∈T ⊂
C∞

c (Rd) satisfying

1. supp(ψT) ⊂ QT , ∀T ∈ T .

2. ∑
T∈T

ψT(x) = 1, ∀x ∈ Rd.

We note that the assumptions in Definition 2.3 imply that the members
of the BAPU are uniformly bounded, i.e., supT∈T ‖ψT‖L∞ ≤ 1. Given a
structured covering Q = {QT}T∈T , we can always construct a subordinate
BAPU. Choose a non-negative function Φ ∈ C∞

c (Rd), with Φ(x) = 1 for all
x ∈ P and supp(Φ) ⊂ Q, and define

ψT(x) :=
Φ(T−1x)

∑T′∈T Φ(T′−1x)
, x ∈ Rd,

for all T ∈ T . With this construction, it is clear that Definition 2.3(1) is
satisfied. Furthermore, since {PT}T∈T is an admissible covering, then 1 ≤
∑T′∈T Φ(T′−1x) ≤ n0 for all x ∈ Rd which shows that Definition 2.3(2) holds.

Remark 2.1. We note that the assumption in Definition 2.2(2) is not necessary
for constructing a subordinate BAPU, however, the assumption is needed for
proving Theorem 2.1.
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Let Q = {QT}T∈T be a structured covering with Q−moderate weight
{ωT}T∈T = {1 + ‖xT‖2}T∈T and BAPU {ψT}T∈T . For s ∈ R and 1 ≤ q ≤ ∞,
we define the associated weighted sequence space

`
q
ωs(T ) :=

{
{aT}T∈T ⊂ C

∣∣∣ ‖{aT}T∈T ‖`q
ωs

:= ‖{ωs
TaT}T∈T ‖`q < ∞

}
.

Given {aT}T∈T ∈ `
q
ωs(T ), we define {a+T }T∈T by a+T := ∑T′∈T̃ aT′ . Since

{ωT}T∈T is Q−moderate, {aT}T∈T → {a+T }T∈T defines a bounded opera-
tor on `

q
ωs(T ) according to [17, Remark 2.13 and Lemma 3.2]. Denoting its

operator norm by C+, we have∥∥∥{a+T
}

T∈T

∥∥∥
`

q
ωs
≤ C+

∥∥{aT}T∈T
∥∥
`

q
ωs

, ∀ {aT}T∈T ∈ `
q
ωs(T ). (C.2)

We now define decomposition spaces as first introduced in [17].

Definition 2.4 (Decomposition space). Let Q = {QT}T∈T be a structured
covering with Q−moderate weight {ωT}T∈T = {1 + ‖xT‖2}T∈T and BAPU
{ψT}T∈T . For s ∈ R and 1 ≤ p, q ≤ ∞, we define the decomposition space
D(Q, Lp, `q

ωs) as the set of distributions f ∈ S ′(Rd) satisfying

‖ f ‖D(Q,Lp ,`q
ωs )

:=
∥∥{‖ψT f ‖Lp}T∈T

∥∥
`

q
ωs

< ∞.

Remark 2.2. According to [17, Theorem 3.7], D(Q, Lp, `q
ωs) is independent of

the particular choice of BAPU and different choices yield equivalent norms.
Actually the results in [17] show that D(Q, Lp, `q

ωs) is invariant under certain
geometric modifications of Q, but we will not go into detail here.

Remark 2.3. In contrast to the approach taken in [32] (where the decomposi-
tion is performed on the frequency side), we do not allow p, q < 1 in Defini-
tion 2.4 since a simple consideration shows that the resulting decomposition
spaces would not be complete in this case.

We now consider some familiar examples of decomposition spaces. By
standard arguments it is easy to verify that D(Q, L2, `2) = L2(Rd) with equiv-
alent norms for any structured covering Q. The next example shows how to
construct Wiener amalgam spaces.

Example 2.1. Let Q ⊂ Rd be an open cube with center 0 and side-length
r > 1. Define T := {Tk}k∈Zd , with Tkx := x − k for all k ∈ Zd, and let
{ωTk}Tk∈T = {1 + ‖k‖2}Tk∈T . With Q := {QTk}Tk∈T , then D(Q, Lp, `q

ωs)

corresponds to the Wiener amalgam space W(Lp, `q
ωs) for s ∈ R and 1 ≤

p, q ≤ ∞, see [13] for further details. 4

Let us now prove the following important properties of decomposition
spaces.
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Theorem 2.1. Let Q = {QT}T∈T be a structured covering with Q−moderate
weight {ωT}T∈T = {1+ ‖xT‖2}T∈T and subordinate BAPU {ψT}T∈T . For s ∈ R

and 1 ≤ p, q ≤ ∞,

1. S(Rd) ↪→ D(Q, Lp, `q
ωs) ↪→ S ′(Rd).

2. D(Q, Lp, `q
ωs) is a Banach space.

3. If p, q < ∞, then S(Rd) is dense in D(Q, Lp, `q
ωs).

4. If p, q < ∞, then the dual space of D(Q, Lp, `q
ωs) can be identified with

D(Q, Lp′ , `q′

ω−s) with 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1.

The proof of Theorem 2.1 can be found in Appendix A. In the next section
we construct decomposition spaces, which are compatible with the structure
of painless NSGFs with flexible time resolution.

3 Nonstationary Gabor frames

In this section, we construct NSGFs with flexible time resolution using the
notation of [1]. Given a set of window functions {gn}n∈Zd ⊂ L2(Rd), with
corresponding frequency sampling steps bn > 0, then for m, n ∈ Zd we define
atoms of the form

gm,n(x) := gn(x)e2πimbn ·x, x ∈ Rd.

The choice of Zd as index set for n is only a matter of notational convenience;
any countable index set would do.

Example 3.1. With gn(x) := g(x− na) and bn := b for all n ∈ Zd we get

gm,n(x) := g(x− na)e2πimb·x, x ∈ Rd,

which just corresponds to a standard Gabor system. 4

If ∑m,n |〈 f , gm,n〉|2 � ‖ f ‖2
2 for all f ∈ L2(Rd), we refer to {gm,n}m,n as an

NSGF. For an NSGF {gm,n}m,n, the frame operator

S f = ∑
m,n∈Zd

〈 f , gm,n〉 gm,n, f ∈ L2(Rd),

is invertible and we have the expansions

f = ∑
m,n∈Zd

〈 f , gm,n〉 g̃m,n, f ∈ L2(Rd),

with {g̃m,n}m,n := {S−1gm,n}m,n being the canonical dual frame of {gm,n}m,n

[5]. For notational convenience we define G(x) := ∑n∈Zd 1/bd
n |gn(x)|2. With

this notation we have the following result [1, Theorem 1].
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Theorem 3.1. Let {gn}n∈Zd ⊂ L2(Rd) with frequency sampling steps {bn}n∈Zd ,
bn > 0 for all n ∈ Zd. Assuming supp(gn) ⊆ [0, 1

bn
]d + an, with an ∈ Rd for all

n ∈ Zd, the frame operator for the system

gm,n(x) = gn(x)e2πimbn ·x, ∀m, n ∈ Zd, x ∈ Rd,

is given by
S f (x) = G(x) f (x), f ∈ L2(Rd).

The system {gm,n}m,n∈Zd constitutes a frame for L2(Rd), with frame-bounds
0 < A ≤ B < ∞, if and only if

A ≤ G(x) ≤ B, for a.e. x ∈ Rd, (C.3)

and the canonical dual frame is then given by

g̃m,n(x) =
gn(x)
G(x)

e2πimbn ·x, x ∈ Rd. (C.4)

Remark 3.1. We note that the canonical dual frame in (C.4) posses the same
structure as the original frame, which is a property not shared by general
NSGFs. We also note that the canonical tight frame can be obtained by taking
the square root of the denominator in (C.4).

Traditionally, an NSGF satisfying the assumptions of Theorem 3.1 is called
a painless NSGF, referring to the fact that the frame operator is a simple mul-
tiplication operator. This terminology is adopted from the classical painless
nonorthogonal expansions [6], which corresponds to the painless case for clas-
sical Gabor frames. By slight abuse of notation we use the term "painless"
to denote the NSGFs satisfying Definition 3.1 below. In order to properly
formulate this definition, we first need some preliminary notation which we
adopt from [32].

Let {gn}n∈Zd ⊂ L2(Rd) satisfy the assumptions in Theorem 3.1. Given
C∗ > 0 we denote by {In}n∈Zd the open cubes

In :=
(
−εn,

1
bn

+ εn

)d
+ an, ∀n ∈ Zd, (C.5)

with εn := C∗/bn for all n ∈ Zd. We note that supp(gm,n) ⊂ In for all
m, n ∈ Zd. For n ∈ Zd we define

ñ :=
{

n′ ∈ Zd ∣∣ In′ ∩ In 6= ∅
}

,

using the notation of (C.1).
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Definition 3.1 (Painless NSGF). Let {gn}n∈Zd ⊂ L2(Rd) satisfy the assump-
tions in Theorem 3.1, and assume further that,

1. There exists C∗ > 0 and n0 ∈ N, such that the open cubes {In}n∈Zd ,
given in (C.5), satisfy |ñ| ≤ n0 uniformly for all n ∈ Zd.

2. {an}n∈Zd is a δ−separated set and {1 + ‖an‖2}n∈Zd constitutes a
{In}n∈Zd−moderate weight.

3. The gn’s are continuous, real valued and satisfy

gn(x) ≤ Cbd/2
n χIn(x), for all n ∈ Zd,

for some uniform constant C > 0.

Then we refer to {gm,n}m,n∈Zd as a painless NSGF.

The assumptions in Definition 3.1 are easily satisfied, but the support con-
dition in Theorem 3.1 is rather restrictive and implies a certain redundancy of
the system. Nevertheless, we must assume some structure on the dual frame,
which is not provided by general NSGFs. We choose the framework of pain-
less NSGFs and base our arguments on the fact that the dual frame possess
the same structure as the original frame. We expect it is possible to extend
the theory developed in this article to a more general settings by imposing
general existence results for NSGFs [12, 26, 39]. We now provide a simple
example of a set of window functions satisfying Definition 3.1(3).

Example 3.2. Choose a continuous real valued function ϕ ∈ L2(Rd) \ {0}
with supp(ϕ) ⊆ [0, 1]d. For n ∈ Zd define

gn(x) := bd/2
n ϕ(bn(x− an)), x ∈ Rd,

with an ∈ Rd and bn > 0. Then supp(gn) ⊆ [0, 1
bn
] + an and Definition 3.1(3)

is satisfied. 4

Following the approach taken in [32], we define Q := (0, 1)d together with
the set of affine transformations T := {An(·) + cn}n∈Zd with

An :=
(

2εn +
1
bn

)
· Id, and (cn)j := −εn + (an)j, 1 ≤ j ≤ d.

It is then easily shown that Q := {QT}T∈T = {In}n∈Zd forms a structured
covering of Rd [32, Lemma 4.1]. Given s ∈ R and 1 ≤ p, q ≤ ∞, we may
therefore construct the associated decomposition space D(Q, Lp, `q

ωs) with
{ωT}T∈T := {1 + ‖an‖2}n∈Zd .
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Example 3.3. Let {gm,n}m∈Zd ,n∈Zd be a painless NSGF according to Definition
3.1. Assume additionally that K := inf{bn}n∈Zd > 0 and that Definition 3.1(1)
and Definition 3.1(2) hold for the larger cubes Kn := (−ε, 1/K + ε)d + an for
some ε > 0. Defining Q := (0, 1)d and T := {An(·) + cn}n∈Zd , with

An :=
(

2ε +
1
K

)
· Id, and (cn)j := −ε + (an)j, 1 ≤ j ≤ d,

we obtain the structured covering Q := {Kn}n∈Zd . In this special case the
associated decomposition space is the Wiener amalgam space W(Lp, `q

ωs) for
s ∈ R and 1 ≤ p, q ≤ ∞ (cf. Example 2.1). 4

For the rest of this article, we write {gm,T}m∈Zd ,T∈T for a painless NSGF
with associated structured covering Q := {QT}T∈T . With this notation,
then supp(gm,T) ⊂ QT for all m ∈ Zd and all T ∈ T . Similarly we write
{ωT}T∈T = {1 + ‖aT‖2}T∈T for the associated weight function.

4 Characterization of decomposition spaces

Using the notation of [2] we define the sequence space d(Q, `p, `q
ωs) as the set

of coefficients {cm,T}m∈Zd ,T∈T ⊂ C satisfying∥∥∥{cm,T}m∈Zd ,T∈T

∥∥∥
d(Q,`p ,`q

ωs )
:=
∥∥∥{∥∥{cm,T}m∈Zd

∥∥
`p

}
T∈T

∥∥∥
`

q
ωs

< ∞,

for s ∈ R and 1 ≤ p, q ≤ ∞. We can now prove the following important
stability result.

Theorem 4.1. Let {gm,T}m∈Zd ,T∈T be a painless NSGF with associated structured
covering Q = {QT}T∈T and weight function {ωT}T∈T = {1 + ‖aT‖2}T∈T . Fix
s ∈ R, 1 ≤ p ≤ 2 and let p′ := p/(p− 1). For f ∈ D(Q, Lp, `q

ωs) and 1 ≤ q ≤ ∞,∥∥∥{〈 f , gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p′ ,`q

ωs )
≤ C ‖ f ‖D(Q,Lp ,`q

ωs )
, (C.6)

and for h ∈ D(Q, Lp′ , `q
ωs) and 1 ≤ q < ∞,

‖h‖D(Q,Lp′ ,`q
ωs )
≤ C′

∥∥∥{〈h, gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p ,`q

ωs )
. (C.7)

Proof. We first prove (C.6). Given f ∈ D(Q, Lp, `q
ωs), since ψ̃T := ∑T′∈T̃ ψT ≡

1 on QT , then

∥∥{〈 f , gm,T〉}m∈Zd

∥∥
`p′ =

(
∑

m∈Zd

∣∣∣〈ψ̃T f , gm,T

〉∣∣∣p′)1/p′

= b−d/2
T

(
∑

m∈Zd

∣∣∣∣bd/2
T

∫
Rd

ψ̃T(x) f (x)gT(x)e−2πimbT ·xdx
∣∣∣∣p′
)1/p′

,
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with bT > 0 being the frequency sampling step. Since 1 ≤ p ≤ 2 we can use
the Hausdorff-Young inequality [28, Theorem 2.1 on page 98], which together
with Definition 3.1(3) imply∥∥{〈 f , gm,T〉}m∈Zd

∥∥
`p′ ≤ b−d/2

T

∥∥∥ψ̃T f gT

∥∥∥
Lp
≤ C1

∥∥∥ψ̃T f
∥∥∥

Lp
.

Hence, using (C.2) we get∥∥∥{〈 f , gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p′ ,`q

ωs )
≤ C1

∥∥∥∥{∥∥∥ψ̃T f
∥∥∥

Lp

}
T∈T

∥∥∥∥
`

q
ωs

≤ C2 ‖ f ‖D(Q,Lp ,`q
ωs )

.

Let us now prove (C.7). Given h ∈ D(Q, Lp′ , `q
ωs) we may write the norm as

‖h‖D(Q,Lp′ ,`q
ωs )

= sup
σ∈S(Rd),‖σ‖

D(Q,Lp ,`
q′
ω−s )

=1
|〈h, σ〉| , q′ := q/(q− 1), (C.8)

since the dual space of D(Q, Lp′ , `q
ωs) can be identified with D(Q, Lp, `q′

ω−s)

and since S(Rd) is dense in D(Q, Lp, `q′

ω−s). Given σ ∈ S(Rd), with
‖σ‖

D(Q,Lp ,`q′
ω−s )

= 1, we write the frame expansion of σ with respect to

{gm,T}m,T and apply Hölder’s inequality twice to obtain

|〈h, σ〉| ≤ ∑
T∈T

∑
m∈Zd

|〈σ, gm,T〉 〈h, g̃m,T〉|

≤ ∑
T∈T

∥∥{〈σ, gm,T〉}m∈Zd

∥∥
`p′
∥∥{〈h, g̃m,T〉}m∈Zd

∥∥
`p

≤
∥∥∥{〈σ, gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p′ ,`q′

ω−s )

∥∥∥{〈h, g̃m,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p ,`q

ωs )
.

(C.9)

According to (C.6) then

‖{〈σ, gm,T〉}m,T‖d(Q,`p′ ,`q′
ω−s )
≤ C1 ‖σ‖D(Q,Lp ,`q′

ω−s )
= C1,

which combined with (C.9) and (C.3) yield

|〈h, σ〉| ≤ C1

∥∥∥{〈h, g̃m,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p ,`q

ωs )

≤ C2

∥∥∥{〈h, gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p ,`q

ωs )
, (C.10)
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with C2 := C1/A. Finally, combining (C.8) and (C.10) we arrive at

‖h‖D(Q,Lp′ ,`q
ωs )
≤ C2

∥∥∥{〈h, gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`p ,`q

ωs )
,

which proves (C.7).

We note that for s ∈ R, 1 ≤ q < ∞ and p = 2, Theorem 4.1 yields the
equivalence

‖ f ‖D(Q,L2,`q
ωs )
�
∥∥∥{〈 f , gm,T〉}m∈Zd ,T∈T

∥∥∥
d(Q,`2,`q

ωs )
, f ∈ D(Q, L2, `q

ωs).

It follows that the coefficient operator C : f → {〈 f , gm,T〉}m,T is bounded from
D(Q, L2, `q

ωs) into d(Q, `2, `q
ωs). We define the corresponding reconstruction

operator as

R
(
{cm,T}m∈Zd ,T∈T

)
= ∑

T∈T
∑

m∈Zd

cm,T g̃m,T , ∀{cm,T}m,T ∈ d(Q, `2, `q
ωs).

With this notation we have the following result.

Proposition 4.1. Let {gm,T}m∈Zd ,T∈T be a painless NSGF with associated struc-
tured covering Q = {QT}T∈T and weight function {ωT}T∈T = {1+ ‖aT‖2}T∈T .
Given s ∈ R and 1 ≤ q < ∞, the reconstruction operator R is bounded from
d(Q, `2, `q

ωs) onto D(Q, L2, `q
ωs) and we have the expansions

f = RC( f ) = ∑
m∈Zd ,T∈T

〈 f , gm,T〉 g̃m,T , f ∈ D(Q, L2, `q
ωs), (C.11)

with unconditional convergence.

Proof. We first prove that R is bounded. Given {cm,T}m,T ∈ d(Q, `2, `q
ωs), (C.2)

and (C.3) yield

‖R({cm,T}m,T)‖D(Q,L2,`q
ωs )

=

∥∥∥∥∥∥

∥∥∥∥∥ψT

(
∑

T′∈T̃
∑

m∈Zd

cm,T′ g̃m,T′

)∥∥∥∥∥
L2


T∈T

∥∥∥∥∥∥
`

q
ωs

≤ C1

∥∥∥∥∥∥
{∥∥∥∥∥ ∑

m∈Zd

cm,T gm,T

∥∥∥∥∥
L2

}
T∈T

∥∥∥∥∥∥
`

q
ωs

. (C.12)

Applying Definition 3.1(3) and the Hausdorff-Young inequality [28, Theorem
2.2 on page 99] we get∥∥∥∥∥ ∑

m∈Zd

cm,T gm,T

∥∥∥∥∥
2

L2

≤ C
∫

Rd

∣∣∣∣∣bd/2
T ∑

m∈Zd

cm,Te2πimbT ·x
∣∣∣∣∣
2

dx ≤ C
∥∥{cm,T}m∈Zd

∥∥2
`2 .

(C.13)
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Combining (C.12) and (C.13) we arrive at

‖R({cm,T}m,T)‖D(Q,L2,`q
ωs )
≤ C2

∥∥∥{∥∥{cm,T}m∈Zd

∥∥
`2

}
T∈T

∥∥∥
`

q
ωs

= C2 ‖{cm,T}m,T‖d(Q,`2,`q
ωs )

, (C.14)

which shows the boundedness of R. Let us now prove the unconditional
convergence of (C.11). Given f ∈ D(Q, L2, `q

ωs) we can find a sequence
{ fk}k∈N ⊂ S(Rd) such that fk → f in D(Q, L2, `q

ωs). For each k we have
the expansion fk = RC( fk) and by continuity of RC we get f = RC( f ). Given
ε > 0, (C.14) implies that we can find a finite subset F0 ⊆ Zd × T , such that
for all finite sets F ⊇ F0,∥∥∥∥∥∥ f − ∑

(m,T)∈F
〈 f , gm,T〉 g̃m,T

∥∥∥∥∥∥
D(Q,L2,`q

ωs )

≤ C2

∥∥∥{〈 f , gm,T〉}(m,T)/∈F

∥∥∥
d(Q,`2,`q

ωs )
< ε.

According to [22, Proposition 5.3.1 on page 98], this property is equivalent to
unconditional convergence.

Based on Proposition 4.1, we can show some important properties of
{gm,T}m∈Zd ,T∈T in connection with nonlinear approximation theory [7, 8].
Assume f ∈ D(Q, L2, `2

ωs), for s ∈ R, and write the frame expansion

f = ∑
m∈Zd ,T∈T

〈 f , gm,T〉 g̃m,T . (C.15)

Let {θk}k∈N be a rearrangement of the frame coefficients {〈 f , gm,T〉}m,T such
that {|θk|}k∈N constitutes a non-increasing sequence. Also, let fN be the
N-term approximation to f obtained by extracting the terms in (C.15) corre-
sponding to the N largest coefficients {θk}N

k=1. Since R is bounded, [20, The-
orem 6] implies that for each 1 ≤ τ < 2,

‖ f − fN‖D(Q,L2,`2
ωs )
≤ C1

∥∥{θk}k>N
∥∥

d(Q,`2,`2
ωs )
≤ C2N−α

∥∥{θk}k∈N

∥∥
d(Q,`τ ,`τ

ωs )

= C2N−α
∥∥{〈 f , gm,T〉}k∈N

∥∥
d(Q,`τ ,`τ

ωs )
, α := 1/τ − 1/2.

(C.16)

We conclude that for f ∈ D(Q, L2, `2
ωs), with frame coefficients in

d(Q, `τ , `τ
ωs), we obtain good approximations in D(Q, L2, `2

ωs) by threshold-
ing the frame coefficients in (C.15). The rate of the approximation is given by
α ∈ (0, 1/2].
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5 Numerical experiments

In this section we provide the numerical experiments, thresholding coef-
ficients of both stationary and nonstationary Gabor expansions. We note
that analysis with a stationary Gabor frame corresponds to analysis with
the short-time Fourier transform (STFT) as the Gabor coefficients can be re-
written as

〈 f , gm,n〉 =
∫

Rd
f (t)g(t− na)e−2πimb·tdt = Vg f (na, mb), f ∈ L2(Rd),

with Vg f (na, mb) denoting the STFT of f , with respect to g, at time na and
frequency mb.

For the implementation we use MATLAB 2017B and in particular we use
the following two toolboxes: The LTFAT [34] (version 2.2.0 or above) avail-
able from http://ltfat.github.io/ and the NSGToolbox [1] (version 0.1.0
or above) available from http://nsg.sourceforge.net/. The sound files we
consider are part of the EBU-SQAM database [38], which consists of 70 test
sounds sampled at 44.1 kHz. The test sounds form a large variety of speech
and music including single instruments, classical orchestra, and pop music.
Since music signals are continuous signals of finite energy, it make sense to
consider them in the framework of decomposition spaces. Moreover, the de-
composition space norm constitutes a natural measure for such nonstationary
signals, capable of detecting local signal changes as opposed to the standard
Lp−norm.

We divide the numerical analysis into two sections. In Section 5.1 we
compare the performance of an adaptive nonstationary Gabor expansion to
that of a classical Gabor expansion by analyzing spectrograms, reconstruc-
tion errors, and approximation rates associated to a particular music signal
(signal 39 of the EBU-SQAM database). Then, in Section 5.2 we extend the
experiment to cover the entire EBU-SQAM database and compare the average
reconstruction errors and approximation rates, taken over the 70 test signals,
for the two methods. To analyse the performance of an expansion we use the
relative root mean square (RMS) reconstruction error

RMS( f , frec) :=
‖ f − frec‖2
‖ f ‖2

.

As a general rule of thumb, an RMS error below 1% is hardly noticeable to
the average listener. We measure the redundancy of a transform by

number of coefficients
length of signal

.

The redundancy of the adaptive NSGF is approximately 5/3 and we have
chosen parameters for the stationary Gabor frame, which mathes this redun-
dancy.

99

http://ltfat.github.io/
http://nsg.sourceforge.net/


Paper C.

5.1 Single experiment

In this experiment we consider sample 22000-284143 of signal 39 in the EBU-
SQAM database. This signal is a piece of piano music consisting of an in-
creasing melody of 10 individual tones (taken from an F major chord) starting
at F2 (87 Hz fundamental frequency) and ending at F5 (698 Hz fundamental
frequency). We construct the Gabor expansion using 1536 frequency chan-
nels and a hop size of 1024. The window function is chosen as a Hanning
window of length 1536 such that the resulting system constitutes a painless
Gabor frame. The Gabor transform has a redundancy of ≈ 1.51 and the to-
tal number of Gabor coefficients is 198402 (of which 195326 are non-zero).
We only work with the coefficients of the positive frequencies since the sig-
nal is real valued. Performing hard thresholding, and keeping only the 15800
largest coefficients, we obtain a reconstructed signal with an RMS reconstruc-
tion error just below 1%.

For the adaptive NSGF, we choose to follow the adaptation procedure
from [1], resulting in the construction of so-called scale frames. The idea is
to calculate the onsets of the music piece, using a separate algorithm [9],
and then to use short window functions around the onsets and long window
functions between the onsets. The space between two onsets is spanned in
such a way that the window length first increases (as we move away from
the first onset) and then decreases (as we approach the second onset). To
obtain a smooth resolution, the construction is such that adjacent windows
are either of the same length or one is twice as long as the other. We re-
fer the reader to [1] for further details. For the actual implementation, we
use 8 different Hanning windows with lengths varying from 192 (around the
onsets) to 192 · 27 = 24576. For the particular signal, the nonstationary Ga-
bor transform has a redundancy of ≈ 1.66, which is comparable to that of
the Gabor transform. The total number of coefficients is 217993 (of which
216067 are non-zero). Again, we only consider the coefficients of the positive
frequencies. Keeping the 13100 largest coefficients we obtain an expansion
with an RMS reconstruction error just below 1%. This is considerably fewer
coefficients than needed for the stationary Gabor expansion, which shows a
natural sparseness of scale frames for this particular signal class. This prop-
erty was already noted by the authors in [1]. Spectrograms based on the
original expansions and the thresholded expansions can be found in Fig. C.1.

The 10 "vertical stripes" in the spectrograms correspond to the onsets of
the 10 tones in the melody and the "horizontal stripes" correspond to the
frequencies of the harmonics. We note that the adaptive behaviour of the
NSGF is clearly visible in the spectrograms, resulting in a good time resolu-
tion around the onsets and a good frequency resolution between the onsets.
In contrast to this behaviour, the stationary Gabor frame uses a uniform res-
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Fig. C.1: Spectrograms based on the original and thresholded Gabor- and nonstationary Gabor
(NSG) expansions with RMS errors just below 1%.

olution over the whole time-frequency plane.
Based on the results from Section 4 (in particular (C.16)), we expect the

RMS error E(N) to decrease as N−α, for some α > 0, with N being the
number of non-zero coefficients. Calculating E(N) for different values of N
and performing power regression, we obtain the plots shown in Fig. C.2.

The results in Fig. C.2 show that both the RMS error E(N) and the ap-
proximation rate α are lower for the nonstationary Gabor expansion than for
the stationary Gabor expansion. Clearly, a small RMS error is more important
than a fast approximation rate. Also, the fast approximation rate for the sta-
tionary Gabor frame is caused mainly by the high RMS error associated with
small values of N. We note that both approximation rates are considerably
faster than the rate given in (C.16) (which belongs to (0, 1/2]). This illustrates
that (C.16) only provides us with an upper bound on the approximation error
— the actual error might be much smaller. It also illustrates that both meth-
ods work extremely well for this kind of sparse signal. In the next section we
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Fig. C.2: RMS error E(N) as a function of N, the number of non-zero coefficients, for both
stationary and nonstationary Gabor expansions. Also, an estimated power function is plotted
for each expansion together with the associated value of the exponent α.

extend the analyzis presented here to cover the entire EBU-SQAM database.

5.2 Large scale experiment

For this experiment we consider the first 524288 samples of each of the 70
test sounds avaliable in the EBU-SQAM database. For each test sound we
construct a nonstationary Gabor expansion, with parameters as described in
Section 5.1, and three stationary Gabor expansions with different parame-
ter settings. Using the notation (hopsize,number of frequency channels), we
use the parameter settings (1024, 2048), (1536, 2048), and (1024, 1536) for the
three Gabor expansions. The window function associated to a Gabor expan-
sion is chosen as a Hanning window with length equal to the corresponding
number of frequency channels (resulting in a painless Gabor frame). For each
of the four expansions we calculate for each test sound

1. The redundancy of the (non-thresholded) expansion.

2. Thresholded expansions with respect to N, the number of non-zero
coefficient, where N takes on the values

N ∈ {10000, 11000, · · · , 29000, 30000, 35000, · · · , 195000, 200000} .

3. The sum of RMS errors ∑N E(N) taken over all the 55 possible values
of N.

4. The value α of the estimated power function.

Repeating the experiment for all 70 test sounds we get the averaged values
shown in Table C.1.
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Table C.1: Average redundancies, sum of RMS errors, and approximation rates taken over the 70
test signals in the EBU-SQAM database. The experiment includes three stationary Gabor frames,
with different parameters settings, and one NSGF.

Transform: G(1024, 2048) G(1536, 2048) G(1024, 1536) NSGF
Average redun.: 2.0020 1.3451 1.5049 1.6206
Average error: 2.1448 1.9128 1.9492 1.7367
Average α: 1.3088 1.4455 1.4278 1.2606

The results in Table C.1 show the same behaviour as the experiment in
Section 5.1 — The NSGF provides the smallest RMS error and the slowest
approximation rate. We note that the approximation rates all belong to the
interval [1.25; 1.45], which is much lower than the rates obtained in Section
5.1. This is due to the fact that the piano signal in Section 5.1 has a very
sparse expansion, which is not true for all 70 test signals in the database.
At first glance, the Gabor frame which seems to provide the best results is
the one with parameter settings (1536, 2048) — it produces the smallest RMS
error and the largest approximation rate. However, this is mainly due to the
low redundancy of the frame, which is only around 1.35. A low redundancy
implies fewer Gabor coefficients (with more time-frequency information con-
tained in each coefficient), which implies good results in terms of RMS error
and approximation rate. However, a low redundancy also implies a worsened
time-frequency resolution, which is not desirable for practical purposes. Fi-
nally, it is worth noting that the NSGF produces a significantly lower RMS
error than the Gabor frame with parameters (1536, 2048) even with a higher
redundancy.

6 Conclusion

We have provided a self-contained description of decomposition spaces on
the time side and proven several important properties of such spaces. Given
a painless NSGF with flexible time resolution, we have shown how to con-
struct an associated decomposition space, which characterizes signals with
sparse expansions relative to the NSGF. Based on this characterization we
have proven an upper bound on the approximation error occurring when
thresholding the coefficients of the frame expansions. The theoretical re-
sults have been complemented with numerical experiments, illustrating that
the approximation error is indeed smaller than the theoretical upper bound.
Using terminology from nonlinear approximation theory, we have proven a
Jackson inequality for nonlinear approximation with certain NSGFs. It could
be interesting to consider the inverse estimate, a so-called Bernstein inequal-
ity, providing us with a lower bound on the approximation error. The numer-
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ical experiments indeed suggest that the approximation error acts as a power
function of the number of non-zero coefficients. Unfortunately, obtaining a
Bernstein inequality for such a redundant dictionary is in general beyond the
reach of current methods [21].

A Proof of Theorem 2.1

Proof. We will use the well known fact that∫
Rd

(1 + ‖x‖2)
−mdx < ∞, m > d. (C.17)

We prove each of the four statements separately and we write Ds
p,q :=

D(Q, Lp, `q
ωs) to simplify notation.

1. Repeating the arguments from [3, Proposition 5.7], using Definition
2.2(2), we can show that

Ds+ε
p,∞ ↪→ Ds

p,q ↪→ Ds
p,∞, ε > d/q, (C.18)

for any s ∈ R and 1 ≤ p, q ≤ ∞. Hence, to prove Theorem 2.1(1) it
suffices to show that S(Rd) ↪→ Ds

p,∞ ↪→ S ′(Rd) for any s ∈ R and
1 ≤ p ≤ ∞. We first show that S(Rd) ↪→ Ds

p,∞. Since {ωT}T∈T =
{1 + ‖xT‖2}T∈T is Q−moderate, and ψT is uniformly bounded, this
result follows from (C.17) since

ωs
T ‖ψT f ‖Lp ≤ C1 ‖(1 + ‖·‖2)

sψT f ‖Lp ≤ C1 ‖(1 + ‖·‖2)
s f ‖Lp

≤ C2
∥∥(1 + ‖·‖2)

s+r f
∥∥

L∞

≤ C2 max
|β|≤N

sup
x∈Rd

∣∣∣(1 + ‖x‖2)
N∂

β
x f (x)

∣∣∣ , f ∈ S(Rd),

for r > d/p and N ≥ s + r. To show that Ds
p,∞ ↪→ S ′(Rd), we define

ψ̃T := ∑T′∈T̃ ψT′ . Given f ∈ Ds
p,∞ and ϕ ∈ S(Rd), Hölder’s inequality

yields

|〈 f , ϕ〉| =
∣∣∣∣∣ ∑
T∈T

〈
ψT f , ψ̃T ϕ

〉∣∣∣∣∣ ≤ ∑
T∈T

∥∥∥ψT f ψ̃T ϕ
∥∥∥

L1

≤ ∑
T∈T
‖ψT f ‖Lp

∥∥∥ψ̃T ϕ
∥∥∥

Lp′
≤ ‖ f ‖Ds

p,∞ ∑
T∈T

ω−s
T

∥∥∥ψ̃T ϕ
∥∥∥

Lp′
, (C.19)
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with 1/p + 1/p′ = 1. Applying (C.2) we get

∑
T∈T

ω−s
T

∥∥∥ψ̃T ϕ
∥∥∥

Lp′
≤

∥∥∥∥∥∥
{

∑
T′∈T̃

‖ψT′ϕ‖Lp′

}
T∈T

∥∥∥∥∥∥
`1

ω−s

=

∥∥∥∥{(‖ψT ϕ‖Lp′

)+}
T∈T

∥∥∥∥
`1

ω−s

≤ C+

∥∥∥{‖ψT ϕ‖Lp′

}
T∈T

∥∥∥
`1

ω−s

= C+ ‖ϕ‖D−s
p′ ,1

. (C.20)

Now, (C.18) implies ‖ϕ‖D−s
p′ ,1
≤ C ‖ϕ‖Dε−s

p′ ,∞
for ε > d. Hence, since we

have already shown that S(Rd) ↪→ Ds
p,∞, we conclude from (C.19) and

(C.20) that Ds
p,∞ ↪→ S ′(Rd). This proves Theorem 2.1(1).

2. Theorem 2.1(2) follows from Theorem 2.1(1) and the arguments in [3,
Page 150].

3. To prove Theorem 2.1(3) we let f ∈ Ds
p,q and choose a function I ∈

C∞
c (Rd) satisfying 0 ≤ I(x) ≤ 1 and I(x) ≡ 1 on some neighbourhood

of x = 0. Since supp(I) is compact we can choose a finite subset T∗ ⊂ T
such that supp(I) ⊂ ∪T∈T∗QT and ∑T∈T∗ ψT(x) ≡ 1 on supp(I). Hence,
with f̃ := I f we get∥∥∥ f̃

∥∥∥
Lp

=

∥∥∥∥∥ ∑
T∈T∗

ψT I f

∥∥∥∥∥
Lp

≤ ∑
T∈T∗

‖ψT f ‖Lp < ∞, (C.21)

since f ∈ Ds
p,q. Let ϕ ∈ C∞

c (Rd) with 0 ≤ ϕ(x) ≤ 1 and
∫

Rd ϕ(x)dx = 1.

Also, for ε > 0 define ϕε(x) := ε−d ϕ(x/ε) and let f̃ε := ϕε ∗ f̃ ∈ S(Rd).
It follows from (C.21) and a standard result on Lp-spaces [29, Theorem
2.16 on page 64] that∥∥∥ f̃ − f̃ε

∥∥∥
Ds

p,q
≤
∥∥∥∥{∥∥∥ f̃ − f̃ε

∥∥∥
Lp

}
T∈T

∥∥∥∥
`

q
ωs

→ 0

as ε → 0. Hence, the proof is done, if we can show that ‖ f − f̃ ‖Ds
p,q

can be made arbitrary small by choosing f̃ appropriately. To show
this, we define T◦ := {T ∈ T

∣∣ I(x) ≡ 1 on supp(ψT)}. Denoting its
complement by Tc

◦ we get∥∥∥ f − f̃
∥∥∥

Ds
p,q
≤ 2

∥∥∥{‖ψT f ‖Lp}T∈Tc◦

∥∥∥
`

q
ωs

.

Finally, since f ∈ Ds
p,q, we can choose supp(I) large enough, such that

‖ f − f̃ ‖Ds
p,q < ε for any given ε > 0. This proves Theorem 2.1(3).
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4. To prove Theorem 2.1(4) we first note that (Ds
p,q)
′ ⊂ S ′(Rd) since

S(Rd) ⊂ Ds
p,q. Furthermore, by Remark 2.2 we may assume the same

BAPU {ψT}T∈T is used for both Ds
p,q and D−s

p′ ,q′ . Let us first show that

D−s
p′ ,q′ ⊆ (Ds

p,q)
′. Given σ ∈ D−s

p′ ,q′ and f ∈ Ds
p,q, applying (C.2) and

Hölder’s inequality twice yield

|〈 f , σ〉| =
∣∣∣∣∣ ∑
T∈T

〈
ψ̃T f , ψTσ

〉∣∣∣∣∣ ≤ ∑
T∈T

∥∥∥ψ̃T f
∥∥∥

Lp
‖ψTσ‖Lp′

≤ ∑
T∈T

(
ωs

T ∑
T′∈T̃

‖ψT′ f ‖Lp

)(
ω−s

T ‖ψTσ‖Lp′

)
≤
∥∥∥∥{∥∥∥(ψT f )+

∥∥∥
Lp

}
T∈T

∥∥∥∥
`

q
ωs

∥∥∥{‖ψTσ‖Lp′

}
T∈T

∥∥∥
`

q′
ω−s

≤ C+ ‖ f ‖Ds
p,q
‖σ‖D−s

p′ ,q′
.

To prove that (Ds
p,q)
′ ⊆ D−s

p′ ,q′ we define the space `q (Lp) as those

{ fT}T∈T ⊂ S ′(Rd) satisfying

‖{ fT}T∈T ‖`q(Lp) :=
∥∥{‖ fT‖Lp}T∈T

∥∥
`q < ∞.

With this notation we get

‖ f ‖Ds
p,q

=
∥∥{ωs

T ‖ψT f ‖Lp}T∈T
∥∥
`q = ‖{ωs

TψT f }T∈T ‖`q(Lp) ,

for all f ∈ Ds
p,q. Since f → {ωs

TψT f }T∈T defines an injective mapping
from Ds

p,q onto a subspace of `q (Lp), every σ ∈ (Ds
p,q)
′ can be inter-

preted as a functional on that subspace. By the Hahn-Banach theorem,
σ can be extended to a continuous linear functional on `q (Lp) where
the norm of σ is preserved. It thus follows from [37, Proposition 2.11.1
on page 177] that for f ∈ Ds

p,q we may write

σ( f ) =
∫

Rd ∑
T∈T

σT(x)ωs
TψT(x) f (x)dx, where (C.22)

{σT(x)}T∈T ∈ `q′
(

Lp′
)

, and ‖σ‖∗ = ‖{σT}T∈T ‖`q′(Lp′) , (C.23)

with ‖σ‖∗ := sup‖{hT}‖`q(Lp)=1 |σ({hT})| denoting the standard norm

on (`q (Lp))′. From (C.22) we conclude that the proof is done if we can
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show that ∑T∈T σT(x)ωs
TψT(x) ∈ D−s

p′ ,q′ . This follows from (C.2) since

∥∥∥∥∥ ∑
T∈T

σTωs
TψT

∥∥∥∥∥
D−s

p′ ,q′

=
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
∥∥∥∥∥ψT

(
∑

T′∈T̃

σT′ω
s
T′ψT′

)∥∥∥∥∥
Lp′


T∈T

∥∥∥∥∥∥
`

q′
ω−s

≤ C
∥∥∥{‖σTωs

TψT‖Lp′

}
T∈T

∥∥∥
`

q′
ω−s

≤ C
∥∥∥{‖σT‖Lp′

}
T∈T

∥∥∥
`q′

= C
∥∥{σT}T∈T

∥∥
`q′ (Lp′ ) = C ‖σ‖∗ ,

where we use (C.23) in the last equation. This proves Theorem 2.1(4).
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1. Introduction

Abstract

We propose a new algorithm for time stretching music signals based on the theory of
nonstationary Gabor frames (NSGFs). The algorithm extends the techniques of the
classical phase vocoder (PV) by incorporating adaptive time-frequency (TF) represen-
tations and adaptive phase locking. The adaptive TF representations imply good time
resolution for the onsets of attack transients and good frequency resolution for the
sinusoidal components. We estimate the phase values only at peak channels and the
remaining phases are then locked to the values of the peaks in an adaptive manner.
During attack transients we keep the stretch factor equal to one and we propose a
new strategy for determining which channels are relevant for reinitializing the cor-
responding phase values. In contrast to previously published algorithms we use a
non-uniform NSGF to obtain a low redundancy of the corresponding TF representa-
tion. We show that with just three times as many TF coefficients as signal samples,
artifacts such as phasiness and transient smearing can be greatly reduced compared
to the classical PV. The proposed algorithm is tested on both synthetic and real world
signals and compared with state of the art algorithms in a reproducible manner.

1 Introduction

The task of time stretching or pitch shifting music signals is fundamental in
computer music and has many applications within areas such as transcrip-
tion, mixing, transposition and auto-tuning [15, 25]. Time stretching is the
operation of changing the length of a signal, without affecting its spectral
content, while pitch shifting is the operation of raising or lowering the orig-
inal pitch of a sound without affecting its length. As pitch shifting can be
performed by combining time stretching and sampling rate conversion, we
shall only focus on time stretching in this paper.

Introduced by Flanagan and Golden in [12], the phase vocoder (PV)
stretches a signal by modifying its short time Fourier transform (STFT) in
such a way that a stretched version can be obtain by reconstructing with re-
spect to a different hop size. Through the years many improvements have
been made and the PV is today a well-established technique [13, 17, 21, 22].
Unfortunately, it is known that the PV induces artifacts known as "phasi-
ness" and "transient smearing" [17]. Phasiness is perceived as a characteristic
colouration of the sound while transient smearing is heard as a lack of sharp-
ness at the transients. Many modern techniques exist for dealing with these
issues [10, 17, 26], but with only few exceptions [3, 7, 19], they are all based
on the traditional idea of modifying a time-frequency (TF) representation ob-
tained through the STFT. The STFT applies a sampling grid corresponding to
a uniform TF resolution over the whole TF plane. For music signals it is often
more appropriate to use good time resolution for the onset of attack tran-
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sients and good frequency resolution for the sinusoidal components. We will
consider the task of time stretching in the framework of Gabor theory [5, 14].
Applying nonstationary Gabor frames (NSGFs) [1, 9] we extend the theory of
the PV to incorporate TF representations with the above-mentioned adaptive
TF resolution.

In Section 1.1 of this article we describe some related work and explain
the contributions of the proposed algorithm in relation to state of the art. In
Section 2 we introduce the necessary tools from Gabor theory, including the
painless condition for NSGFs. We use this framework to present the classical
PV in Section 3 and the proposed algorithm in Section 4. We include the
derivation of the classical PV for two reasons: Firstly, because it makes the
transition to the nonstationary case easier and secondly, because we have not
found any other thorough derivation in the literature that uses the framework
of Gabor theory. Finally, in Section 5 we provide the numerical experiments
and in Section 6 we give the conclusions.

1.1 State of the art

Traditionally, time-stretching algorithms are categorized into time-domain
and frequency-domain techniques [21]. While time-domain techniques such
as synchronous overlap-add (SOLA) [27] (and its extension PSOLA [4]) are ca-
pable of producing good results for monophonic signals, at a low computa-
tional cost, they tend to perform poorly when applied to polyphonic signals
such as music. In contrast, frequency-domain methods, such as the PV [12],
also work for polyphonic signals but with induced artifacts of their own,
namely phasiness and transient smearing. As a first improvement to reduce
phasiness, Puckette [24] suggested to use phase-locking to keep phase coher-
ence intact over neighbouring frequency channels. This method was further
studied by Laroche and Dolson [17] who proposed to separate the frequency
axis into regions of influences, located around peak channels, and to lock the
phase values of channels in a given region according to the phase value of
the corresponding peak.

To deal with the issue of transient smearing, Bonada [3] proposed to keep
the stretch factor equal to one during attack transients and then reinitialize
all phase values for channels above a certain frequency cut, i.e. the phase
values of these channels are set equal to the original phase values. In this
way, the original timbre is kept intact without ruining the phase coherence
for stationary partials at the lower frequencies. A more advanced approach
for reducing transient smearing was presented by Röbel in [26]. Here, the
transient detection algorithm works on the level of frequency channels and
the reinitialization of a detected channel is performed for all time instants
influenced by the transient. In this way, there is no need to set the stretch
factor equal to one, which is a great advantage in regions with a dense set of
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transients.
More recent techniques have successfully reduced the PV artifacts by ap-

plying more sophisticated TF representations than the STFT. Bonada pro-
posed the application of different FFTs for each time instant, which results in
a TF representation with good frequency resolution at the lower frequencies
and good time resolution at the higher frequencies. Derrien [7] suggested
to construct an adaptive TF representation by choosing TF coefficients from
a multi-scale Gabor dictionary under a matching constraint. A more recent
algorithm, based on the theory of NSGFs, was proposed by Liuni et al. [19].
The idea behind their algorithm is to choose a fixed number of frequency
bands and to apply, in each band, a NSGF with resolution varying in time.
The window functions corresponding to the NSGFs are adapted to the signal
by minimizing the Rényi entropy, which ensures a sparse TF representation.
The techniques described in [26] and [19] are both implemented in the (com-
mercialized) super phase vocoder (SuperVP) from IRCAM1.

Contributions to state of the art

In order to generalize the techniques from the classical PV to the case where
the TF representation is obtained through a NSGF, it is necessary to use the
same number of frequency channels for each time instant. This construction
corresponds to a uniform NSGF and, since the number of frequency channels
must be at least equal to the length of the largest window function, necessar-
ily leads to a high redundancy of the resulting transform.

In this paper we propose an algorithm, which fully exploits the potential
of NSGFs to provide adaptivity while keeping a redundancy similar to the
classical PV. This is achieved by letting the number of frequency channels
for a given time instant equal the length of the window function selected
for that particular time instant. This approach allows for using very long
window functions, which is an advantage in regions with stationary partials.
We summarize the contributions of this article as follows:

1. We explain the classical PV and the proposed algorithm in a unified
framework using discrete Gabor theory.

2. We present a new time stretching algorithm, which uses an adaptive
TF representation of lower redundancy than any other previously pub-
lished algorithm.

3. While the proposed algorithm combines various familiar techniques
from the literature, several new techniques are introduced in order to
tackle the challenges arising from the application of non-uniform NS-
GFs. Hence, the proposed algorithm relies on techniques such as phase

1http://anasynth.ircam.fr/home/english/software/supervp
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locking [17], transient detection [8], and quadratic interpolation [2] and
integrates new methods for dealing with attack transients (cf. Sec-
tion 4.2), for determining the phase values from frequencies estimated
by quadratic interpolation (cf. Section 4.2), and for constructing the
stretched signal from the modified (non-uniform) NSGF (cf. Section
4.3).

4. We provide a collection of sound files on-line (cf. Section 5) and include
all source code necessary for reproducing the results.

2 Discrete Gabor theory

We write f = ( f [0], . . . , f [L− 1])T for a vector f ∈ CL and ZL = {0, . . . , L− 1}
for the cyclic group. Given a, b ∈ ZL, we define the translation operator
Ta : CL → CL and the modulation operator Mb : CL → CL as

Ta f [l] := f [l − a] and Mb f [l] := f [l]e
2πibl

L ,

for l = 0, . . . , L− 1 and with translation performed modulo L. For g ∈ CL

and a, b ∈ ZL, we define the Gabor system {gm,n}m∈ZM ,n∈ZN as

gm,n[l] := TnaMmbg[l] = g[l − na]e
2πimb(l−na)

L ,

with Na = Mb = L for some N, M ∈ N [28, 29]. If {gm,n}m,n spans CL, then
it is called a Gabor frame. The associated frame operator S : CL → CL, defined
by

S f :=
M−1

∑
m=0

N−1

∑
n=0
〈 f , gm,n〉 gm,n, ∀ f ∈ CL,

is invertible if and only if {gm,n}m,n is a Gabor frame [5]. If S is invertible,
then we have the expansions

f =
M−1

∑
m=0

N−1

∑
n=0
〈 f , gm,n〉 g̃m,n, ∀ f ∈ CL, (D.1)

with g̃m,n := TnaMmbS−1g. We say that {g̃m,n}m,n is the canonical dual frame of
{gm,n}m,n and that S−1g is the canonical dual window of g. The discrete Gabor
transform (DGT) of f ∈ CL is the matrix c ∈ CM×N given by the coefficients
{〈 f , gm,n〉}m,n in the expansion (D.1). Finally, the ratio MN/L is called the
redundancy of {gm,n}m,n.
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Nonstationary Gabor frames

In this section we extend the classical Gabor theory to the nonstationary
case [1]. Just as for the stationary case, we denote the total number of sam-
pling points in time by N ∈N, however, we do not assume these points to be
uniformly distributed. Further, instead of using just one window function,
we apply Nw ≤ N different window functions {gn}n∈ZNw

to obtain a flex-
ible resolution. The window function corresponding to time point n ∈ ZN
is denoted by gj(n) with j : ZN → ZNw being a surjective mapping. The
number of frequency channels corresponding to time point n ∈ ZN is de-
noted by Mn ∈ ZL and the resulting frequency hop size by bn := L/Mn. Fi-
nally, the window functions {gn}n∈ZNw

are assumed to be symmetric around
zero and we use translation parameters {an}n∈ZN ⊂ ZL to obtain to the
proper support. With this notation, the nonstationary Gabor system (NSGS)
{gm,n}m∈ZMn ,n∈ZN is defined as

gm,n[l] := Tan Mmbn gj(n)[l] = gj(n)[l − an]e
2πimbn(l−an)

L .

If {gm,n}m,n spans CL, then it is called a NSGF. If Mn := M, for all n ∈ ZN ,
then it is called a uniform NSGS (or uniform NSGF if it is also a frame). In
Figure D.1 we see an example of a simple (non-uniform) NSGS with Nw = 2
and N = 4.

Time

Mn
bn

Tangj(n)

Fr
eq

u
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cy

an n

Fig. D.1: Illustration of a NSGS with Nw = 2 and N = 4.

Let us now show that the theory of NSGFs extends the theory of standard
Gabor frames.
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Example 2.1. Let g ∈ CL and a, b ∈ ZL satisfy Na = Mb = L for some
N, M ∈ N. Then, with gj(n) := g, an := na, and bn := b for all n ∈ ZN , we
obtain the NSGS

gm,n[l] = TnaMmbg[l], m ∈ ZM, n ∈ ZN ,

which just corresponds to a standard Gabor system. 4

The total number of elements in a NSGS {gm,n}m,n is given by P =

∑N−1
n=0 Mn and the redundancy is therefore P/L. The associated frame op-

erator S : CL → CL, defined by

S f :=
N−1

∑
n=0

Mn−1

∑
m=0
〈 f , gm,n〉 gm,n, ∀ f ∈ CL,

is invertible if and only if {gm,n}m,n constitutes a NSGF. If S is invertible, then
we have the expansions

f =
N−1

∑
n=0

Mn−1

∑
m=0
〈 f , gm,n〉 g̃m,n, ∀ f ∈ CL, (D.2)

with {g̃m,n}m,n := {S−1gm,n}m,n being the canonical dual frame of {gm,n}m,n.
The nonstationary Gabor transform (NSGT) of f ∈ CL is given by the coefficients
{c{n}(m)}m,n := {〈 f , gm,n〉}m,n in the expansion (D.2). We note that these
coefficients do not form a matrix in the general case. We now consider an
important case for which the calculation of {g̃m,n}m,n is particularly simple.

Painless NSGFs

If supp(gj(n)) ⊆ [cj(n), dj(n)] and dj(n) − cj(n) ≤ Mn for all n ∈ Zn, then
{gm,n}m,n is called a painless NSGS (or painless NSGF if it is also a frame). In
this case we have the following result [1].

Proposition 2.1. If {gm,n}m,n is a painless NSGS, then the frame operator S is an
L× L diagonal matrix with entries

Sll =
N−1

∑
n=0

Mn

∣∣∣gj(n)[l − an]
∣∣∣2 , ∀l ∈ ZL.

The system {gm,n}m,n is a frame for CL if and only if ∑N−1
n=0 Mn

∣∣∣gj(n)[l − an]
∣∣∣2 > 0

for all l ∈ ZL, and in this case the canonical dual frame {g̃m,n}m,n is given by

g̃m,n[l] =
gm,n[l]

∑N−1
n′=0 Mn′

∣∣∣gj(n′)[l − an′ ]
∣∣∣2 ,

for all n ∈ ZN and all m ∈ ZMn .
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We note that the canonical dual frame is also a painless NSGF, which
is a property not shared by general NSGFs. An immediate consequence of
Proposition 2.1 is the classical result for painless nonorthogonal expansions
[6], which just corresponds to the painless case for standard Gabor frames.

3 The phase vocoder

In this section we explain the classical PV [17] in the framework of Gabor
theory. The PV stretches the length of a signal by means of modifying its
discrete STFT. Since the discrete STFT corresponds to a DGT, this technique
can be perfectly well explained using Gabor theory. The main idea is to
construct a DGT of the signal with respect to an analysis hop size a, modifying
the DGT and then reconstructing from the modified DGT using a different
synthesis hop size a∗. We only consider the case a∗ = ra, for a constant
modification rate r > 0. The case r > 1 corresponds to slowing down the
signal by extending its length, while r < 1 corresponds to speeding it up
by shortening its length. The PV is a classic analysis-modification-synthesis
technique, and we will explain each of these three steps separately in the
following sections.

3.1 Analysis

Let {gm,n}m,n be a painless Gabor frame for CL. Given a real valued signal
f ∈ RL, we calculate the DGT c ∈ CM×N of f with respect to {gm,n}m,n as

cm,n = 〈 f , gm,n〉 =
L−1

∑
l=0

f [l]g[l − na]e
−2πimb(l−na)

L , (D.3)

for all m ∈ ZM and n ∈ ZN . Let us explain the consequences of the phase
convention used in (D.3). Define Ωm := 2πm/M as the center frequency of
the m’th channel and assume that g is real and symmetric around zero. Then,
since {gm,n}m,n is painless and b/L = 1/M, we may write (D.3) as

cm,n =
M−1

∑
l=0

f [l]g[na− l]e−iΩm(l−na) = eiΩmna ( fm ∗ g) [na], (D.4)

with fm[l] := f [l]e−iΩm l . If g and ĝ are both well-localized around zero, the
convolution in (D.4) extracts the baseband spectrum of fm at time na. Recall-
ing that fm is just a version of f that has been modulated down by m, this
baseband spectrum corresponds to the spectrum of f in a neighbourhood of
frequency m at time na. Finally, modulating back by m we obtain the band-
pass spectrum of f in a neighbourhood of frequency m at time na. This phase
convention is the traditional one used in the PV [17, 18, 21].
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3.2 Modification

To explain the modification step of the PV, we refer to a quasi-stationary
sinusoidal model that f is assumed to satisfy [16, 20]. This model is not used
explicitly anywhere in the derivation of the PV, but it serves an important
role for explaining the underlying ideas. We assume that f can be written as
a finite sum of sinusoids

f (t) = ∑
k

Ak(t)eiθk(t), (D.5)

in which Ak(t) is the amplitude, θk(t) is the phase, and θ′k(t) is the frequency of
the k’th sinusoid at time t. Since the model is quasi-stationary, Ak(t) and θ′k(t)
are assumed to be slowly varying functions. In particular, they are assumed
to be almost constant over the duration of g. Based on (D.5), the perfectly
stretched signal f∗ at time na∗ = nra is given by

f∗[na∗] = ∑
k

Ak(na)eirθk(na). (D.6)

We note that the amplitudes and frequencies of the stretched signal f∗ at time
na∗ equal the amplitudes and frequencies of the original signal f at time na.

The idea behind the modification step is to construct a new DGT d ∈
CM×N , based on c ∈ CM×N , such that reconstruction from d, with respect
to a∗, yields a time stretched version of f in the sense of (D.6). Since the
amplitudes need to be preserved we set

dm,n = |cm,n| ei∠dm,n , m ∈ ZM, n ∈ ZN ,

using polar coordinates. Estimating the phases {∠dm,n}m,n involves a task
called phase unwrapping [17].

Phase unwrapping

Assume there is a sinusoid of frequency ω in the vicinity of channel m at
time na. Then, we make the estimate

ei∠dm,n = ei(∠dm,n−1+ωa∗), (D.7)

since the two DGT samples dm,n−1 and dm,n are a∗ time samples apart. Using
the same argument we may write ei∠cm,n = ei(∠cm,n−1+ωa). Setting ω = ∆ω +
Ωm, and isolating the deviation ∆ω, yields

princarg {∆ωa} = princarg {∠cm,n −∠cm,n−1 −Ωma} ,

with "princarg" denoting the principal argument in the interval ]−π, π]. As-
suming ω is close to the center frequency Ωm, such that ∆ω ∈]− π/a, π/a],
we arrive at

∆ω =
princarg {∠cm,n −∠cm,n−1 −Ωma}

a
.
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We can now calculate ω as ∆ω + Ωm and use (D.7) to determine {∠dm,n}m,n
by initializing dm,0 = cm,0 for all m ∈ ZM.

3.3 Synthesis

The final step of the PV is to construct a time stretched version of f in the
sense of (D.6) from the modified DGT d ∈ CM×N . This is done by recon-
structing from d with respect to the synthesis hop size a∗. According to
(D.1), such a reconstruction yields

f∗[l] =
M−1

∑
m=0

N−1

∑
n=0

dm,nTna∗MmbS−1
∗ g[l], (D.8)

with S∗ : CL → CL being the modified frame operator

S∗x[l] =
M−1

∑
m=0

N∗−1

∑
n=0
〈x, Tna∗Mmbg〉Tna∗Mmbg[l],

where N∗ := L/a∗. The length of the reconstructed signal f∗ is given by
L∗ = Na∗ = Lr and translation is performed modulo L∗ in (D.8). In practice,
the reconstruction formula (D.8) is realized by applying an inverse FFT and
overlap-add.

Traditionally, a DGT with 75% overlap is used in the analysis step, which
allows for modification factors r ≤ 4. We note that if no modifications are
made (r = 1), we recover the original signal. In the next section we consider
some of the problems connected with the PV.

3.4 Drawbacks

The idea behind the PV is intuitive and easily implementable, which makes
it attractive from a practical point of view. Unfortunately, the assumptions
made in the modification part are not easily satisfied. This is true even for
signals constructed explicitly from the sinusoidal model (D.5). We now list
three main issues to be considered.

1. Vertical coherence: The PV ensures horizontal coherence [17] within each
frequency channel but no attempt is made to ensure vertical coherence
[17] across the frequency channels. If a sinusoid moves from one chan-
nel to another, the corresponding phase estimate might change dramat-
ically. This is undesirable since a small change in frequency should only
imply a small change in phase.

2. Resolution: In practice, we cannot assume that the sinusoids constitut-
ing f are well resolved in the DGT in the sense at most one sinusoid is
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present within each frequency channel. The channels will only provide
a "blurred" image of various neighbouring sinusoids. Furthermore, the
amplitudes and frequencies of each sinusoid will often not be constant
over the entire duration of g. As a consequence, the estimates made in
the modification part will be subject to error.

3. Transients: The presence of attack transients is not well modelled
within the PV as the phase values at such time instants cannot be pre-
dicted from previous estimates. Also, for music signals we often want
the onsets to stay intact after time stretching, which is not accounted
for in the PV approach.

In the next section we construct a new PV, which addresses the problems
mentioned above.

4 A phase vocoder based on nonstationary Gabor
frames

As mentioned in the introduction, the DGT is not always preferable for rep-
resenting music signals as it corresponds to a uniform resolution over the
whole TF plane. A poor TF resolution conflicts with the fundamental idea of
well resolved sinusoids and therefore causes problems for the PV. In this sec-
tion we change the TF representation from the DGT to an adaptable NSGT,
which better matches the sinusoidal model (D.5). To be consistent with the
description of the PV in Section 3 we separately explain the analysis, modifi-
cation, and synthesis steps of the proposed algorithm.

4.1 Analysis

First of all, an adaptation procedure must be chosen for the NSGT. We choose
to work with the procedure described in [1] since it is suitable for represent-
ing signals, which consist mainly of transient and sinusoidal components.
The adaptation procedure is based on the idea that window functions with
small support should be used around the onsets of attack transients, while
window functions with longer support should be used between these onsets.

Remark 4.1. The construction presented here necessarily yields the problem
of a coarse frequency resolution for the transient regions. However, as we
propose to keep the stretch factor equal to one during attack transients (cf.
Section 4.2), the impact of this problem is limited.

The onsets are calculated using a separate algorithm [8] and the window
functions are constructed as scaled versions of a single window prototype
(a Hanning window or similar). The resulting system is referred to as a
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4. A phase vocoder based on nonstationary Gabor frames

scale frame. In the following paragraphs we explain the construction of scale
frames in details.

Transient detection

To perform the transient detection we use a spectral flux (SF) onset function
as described in [1, 8]. This function is computed with a DGT of redundancy
16, and it measures the sum of (positive) change in magnitude for all fre-
quency channels. A time instant, corresponding to a local maximum of the
SF function, is determined as an onset if its SF value is larger than the SF
mean value in a certain neighbourhood of time frames. Hence, for region
with a dense set of transients, only the most significant onsets are calculated.
It is clear that such an approach must be taken to avoid an undesirably low
frequency resolution in such regions. The redundant DGT used for the SF
onset function is not used anywhere else in our algorithm and does not con-
tribute significantly to the overall complexity.

Constructing the window functions

After a set of onsets has been extracted, the window functions are constructed
following the rule that the space between two onsets is spanned in such a way
that the window length first increases (as we get further away from the first
onset) and then decreases (as we approach the next onset). The construction
is performed in a smooth way such that the change from one step to the next
corresponds to a window function that is either half as long, twice as long
or of the same length. For details see [1]. The overlap between the window
functions is chosen such that at most one onset is present within each time
frame, we shall elaborate further on this particular construction in Section
4.3.

Constructing the NSGT

Once the window functions {gn}n∈ZNw
have been constructed, we choose

the numbers of frequency channels {Mn}n∈ZN such that the resulting sys-
tem constitutes a painless NSGF. Additionally, we choose a lower bound on
{Mn}n∈ZN to avoid an undesirably low number of channels around the on-
sets (explicit choices of parameters are described in Section 6). Given a real
valued signal f ∈ RL, we calculate the NSGT {c{n}(m)}m∈ZMn ,n∈ZN of f
with respect to the scale frame {gm,n}m,n as

c{n}(m) = 〈 f , gm,n〉 =
L−1

∑
l=0

f [l]gj(n)[l − an]e
−2πimbn(l−an)

L ,

for all n ∈ ZN and all m ∈ ZMn . We note that the phase convention is the
same as used in the PV (cf. Section 3.1).
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4.2 Modification

The idea behind the modification step is the same as for the PV. We assume
f satisfies (D.5), and we construct a modified NSGT {d{n}(m)}m,n, based on
{c{n}(m)}m,n, such that reconstruction from {d{n}(m)}m,n, with respect to
a set of synthesis translation parameters, yields a time stretched version of
f in the sense of (D.6). Given a stretch factor r > 0, the distance between
synthesis time sample n and n + 1 is

a∗n := r(an+1 − an), n ∈ ZN . (D.9)

Since we do not want the transients to be stretched, we let r = 1, when an
corresponds to the onset of a transient, and then stretch with a correspond-
ingly larger factor r′ > r in remaining regions. Using polar coordinates we
set

d{n}(m) = |c{n}(m)| ei∠d{n}(m), n ∈ ZN , m ∈ ZMn ,

with ∠d{0}(m) = ∠c{0}(m) for all m ∈ ZM0 . Hence, in complete analogy
with the approach in the PV, the problem boils down to estimating the phase
values {∠d{n}(m)}m,n.

Making the transition from stationary Gabor frames to NSGFs, we are
facing a fundamental problem. The DGT corresponds to a uniform sampling
grid over the TF plane, while the NSGF corresponds to a sampling grid which
is irregular over time but regular over frequency for each fixed time position.
This is illustrated in Figure D.2.
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Fig. D.2: Sampling grids corresponding to a DGT and a NSGT.

As a consequence, we cannot guarantee that each sampling point has a
horizontal neighbour that can be used for estimating the frequency as in the
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PV (cf. Section 3). We therefore generalize the approach from [2] to the
nonstationary case and calculate the frequencies using quadratic interpolation.

Calculating the frequencies

For fixed n ∈ ZN , we define channel mp as a peak if its magnitude
∣∣c{n}(mp)

∣∣
is larger than the magnitudes of its two vertical neighbors, i.e.

∣∣c{n}(mp)
∣∣ >∣∣c{n}(mp ± 1)

∣∣. If there is a sinusoid of frequency ω in the vicinity of peak
channel mp, the "true" peak position will differ from mp unless ω is exactly
equal to 2πmp/Mn. The idea is thus to interpolate the true peak position,
using the neighboring channels mp ± 1, and then to apply this value as an
estimate for ω. To describe the setup we set the position of the peak channel
mp to 0, and the positions of its two neighbors to −1 and 1, respectively. Also,
we denote the true peak position by p and define

α := |c{n}(−1)| , β := |c{n}(0)| , and γ := |c{n}(1)| .

The situation is illustrated in Figure D.3, with y denoting the parabola to be
interpolated.
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Fig. D.3: Illustration of quadratic interpolation.

Writing y(x) = a(x− p)2 + b and solving for p yields

p =
1
2
· α− γ

α− 2β + γ
∈
(
−1

2
,

1
2

)
.

The value of p determines the deviation from the peak channel to the true
peak proportional to the size of the channel. After p has been determined,
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we calculate the frequency as

ω =
2π(mp + p)

Mn
. (D.10)

In practice, the calculations are done on a dB scale for higher accuracy of
the quadratic interpolation. Let us now explain how the frequency estimate
(D.10) is used to calculate the corresponding phase value ∠d{n}(mp).

Calculating the phases

Between each pair of peaks we define the (lowest) channel with smallest mag-
nitude as a valley and then use these valleys to separate the frequency axis
into regions of influence. As noted in [17], if a peak switches from channel
mp′ at time n− 1 to channel mp at time n, the corresponding phase estimate
should take this behavior into account. A simple way of determining the
previous peak mp′ is to choose the peak of the corresponding region of in-
fluence that channel mp would have belonged to in time frame n− 1. This is
illustrated in Figure D.4.
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Fig. D.4: Illustration of peak, valley and region of influence.

Based on this construction, with a∗n−1 given in (D.9), the phase estimate at
peak channel mp is

d{n}(mp) =
∣∣c{n}(mp)

∣∣ ei(∠d{n−1}(mp′ )+ωa∗n−1). (D.11)
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For the neighboring channels in the corresponding region of influence, the
phase values will be locked to the phase of the peak. Following the approach
in [17], we let

ei∠d{n}(m) = ei(∠d{n}(mp)+∠c{n}(m)−∠c{n}(mp)),

for all channels m in the region of influence corresponding to peak channel
mp. Hence, the phase locking is such that the difference in synthesis phase is
the same as the difference in analysis phase. It is important to note that the
actual phase estimates are done only at peak channels, which allows for a fast
implementation. As mentioned in Section 3.4, the phase estimate (D.11) is not
well suited for modelling attack transients. In the next section we explain our
approach for dealing with this issue.

Transient preservation

Since the phase values ∠d{n}(m) at transients locations cannot be predicted
from previous estimates, one might choose to simply reinitialize all phase
values at such locations ∠d{n}(m) = ∠c{n}(m). However, for stationary par-
tials passing through the transient, such a reinitialization completely destroys
the horizontal phase coherence, thereby producing undesirable artifacts in
the resulting sound. To deal with this problem, we propose the following
rule for phase estimation at transient locations: Assume time-instant n cor-
responds to the onset of an attack transient. Consider channel m, belonging
to the region of influence dominated by a peak channel mp, and let mp′ de-
note the peak channel of the region of influence that channel mp would have
belonged to in time frame n− 1 (same notation as in (D.11), see also Figure
D.4). Then, given a tolerance ε > 0, we reinitialize ∠d{n}(m) = ∠c{n}(m) if
and only if

|c{n}(m)| >
∣∣∣c{n− 1}(mp′)

∣∣∣+ ε. (D.12)

For the implementation, the calculations are done on a dB scale with ε = 2dB.
We note that in contrast to previously proposed techniques for onset reini-
tialization [3, 7, 26], our algorithm has the advantage that it tracks sinusoids
across frequency channels.

4.3 Synthesis

Before we can provide the actual synthesis formula, we need to return to
the issue of choosing the overlap between window functions (cf. Section
4.1). Originally, scale frames were invented with the intention of construc-
tion adaptive TF representations with a very low redundancy. To ensure a
low redundancy, and a stable reconstruction, the overlap between adjacent
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window functions is chosen as 1/3 of the length for equal windows and 2/3
of the length of the shorter window for different windows [1].

This construction makes sense in the general settings, since the result-
ing system constitutes a frame for CL as long as the painless condition from
Proposition 2.1 is satisfied. However, in the case of time-stretching with a
factor r > 1, this construction cannot guarantee that the dual windows (cf.
Proposition 2.1) overlap coherently when placed at the synthesis time in-
stants. To tackle this issue, we have chosen the overlap between window
functions in the following way:

1. First the onsets of attack transients are calculated (using the onset de-
tection algorithm from Section 4.1).

2. Then these onsets are relocated such that the distance between the re-
located onsets is r times the distance between the original onsets.

3. The window functions are now calculated according to the relocated
onsets, using the approach in [1], and afterwards centered at the origi-
nal time instants.

While this approach might give the impression that we just stretch the win-
dow lengths by a factor of r, this is not the case. Calculating the windows
with respect to the relocated onsets still produce a sequence of windows
functions of the same lengths as if the original onsets had been used. This is
illustrated in Figure D.5.

With this choice of overlap, we can construct the stretched signal f∗ using
the synthesis formula

f∗ = ∑
n∈ZN

∑
m∈ZMn

d{n}(m)g̃m,n, (D.13)

with {g̃m,n}m,n being the canonical dual frame from Proposition 2.1 con-
structed using the synthesis time instants. In practice, the reconstruction
formula (D.13) is realized by applying an inverse FFT and overlap-add as in
the classical PV.

4.4 Advances

In this section we explain how the proposed algorithm improves the tech-
niques of the PV. We do so by separately addressing the three drawbacks
described in Section 3.4.

1. Vertical coherence: If a sinusoid moves from channel mp′ at time n− 1
to channel mp at time n, then the corresponding peak channel also
changes from mp′ to mp. The estimate given in (D.11) therefore en-
sures that the corresponding phase increment takes this behavior into
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Fig. D.5: Construction of the overlap between window functions.

account. In this way we get coherence across the various frequency
channels in contrast to the standard PV which only provides coherence
within each frequency channel.

2. Resolution: Changing the representation from that of a DGT to an
adaptable NSGT automatically improves the TF resolution for signals,
which are well represented by the sinusoidal model (D.5). Further-
more, calculating the phase increment only at peak channels replaces
the underlying assumption of well resolved sinusoids in each frequency
channel with the weaker assumption of well resolved sinusoids in each
region of influence.

3. Transients: To reduce transient smearing, we keep the stretch factor
equal to one during attack transients and we reinitialize the phase val-
ues of relevant channels according to (D.12).

While the PV serves as a good starting point for understanding the funda-
mental concepts behind the proposed algorithm, it is not the main goal of
this article only to improve the resulting sound quality compared to this clas-
sical technique. The main advantage of the proposed algorithm is the ability
to produce good results, when compared to state of the art, while keeping a
low redundancy of the applied TF transform.
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Redundancy of the NSGT

As mentioned in Section 3.3, the classical PV applies an overlap of 75% cor-
responding to a redundancy of 4 in the DGT. There is some mathematical
justification to this choice [17], but mainly the overlap is chosen to ensure a
good TF resolution. It should be noted that the redundancy of the DGT is
independent of the signal under consideration — it only depends on the anal-
ysis hop size and the length of the window function (assuming the painless
condition is satisfied).

For multi-resolution methods, the situation changes as the TF resolution
adapts to the particular signal. A standard approach for multi-resolution
methods is to choose non-uniform sampling points in time, with correspond-
ing window functions, and a uniform number of frequency channels corre-
sponding to the length of the largest window function [19, 21]. This con-
struction corresponds to applying a uniform NSGF (cf. Section 2). Such an
approach is desirable from a practical point of view as the coefficients then
form a matrix and the standard techniques from the PV (and its improve-
ments) immediately apply. However, the choice of a uniform NSGF naturally
implies a high redundancy of the transform as the sampling density is much
higher than needed for the painless case (cf. Proposition 2.1). For real world
signals, such a high redundancy is undesirable as it implies a high computa-
tional cost for the time-stretching algorithm.

In contrast to previously suggested methods, our algorithm takes full ad-
vantage of the painless condition and produces good results with a redun-
dancy of ≈ 3 for a stretch factor of r = 1.5. It is important to note that
the redundancy of the proposed algorithm depends both on the signal under
consideration and the stretch factor (at least in the case where r > 1). For
different signals, the onset detection algorithm calculates different onsets,
which results in different time sampling points and different numbers of fre-
quency channels. As for the stretch factor, we recall the choice of overlap as
described in Section 4.3. For a large stretch factor, we need a large overlap
between the window functions to guarantee that the synthesis formula (D.13)
makes sense. We do not consider the dependency between the redundancy
and the stretch factor a problem, since the redundancy is still manageable
even for large stretch factors. For a stretch factor of r = 3, the redundancy is
≈ 5 and for a stretch factor of r = 4, the redundancy is ≈ 7.

In the next section we present the numerical experiments and compare
the proposed algorithm with state of the art algorithms for time stretching
(cf. Section 1.1).
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5 Experiments

The proposed algorithm has been implemented in MATLAB R2017A and the
corresponding source code is available at

http://homepage.univie.ac.at/monika.doerfler/NSPV.html

The source code depends on the following two toolboxes: The LTFAT [23]
(version 2.1.2 or above) freely available from http://ltfat.github.io/ and
the NSGToolbox [1] (version 0.1.0 or above) freely available from http://
nsg.sourceforge.net/.

For the classical PV, we use an implementation by Ellis [11], which in-
cludes some improvements to the procedure described in Section 3 (in par-
ticular, interpolation of magnitudes). As these improvements result in a sig-
nificantly improved audio quality, we have chosen this implementation for
comparison.

In Section 5.1 we compare the proposed algorithm to the classical PV by
stretching synthetic (music) signals and in Section 5.2 we turn to the analysis
of real world signals and compare the proposed algorithm with the algo-
rithms from Derrien [7] and Liuni et al. [19].

5.1 Synthetic signals

Analysing synthetic signals has the advantage that the perfect stretched ver-
sion is available and can be used as ground truth. For this experiment, we
construct a large number of synthetic signals and compared the performance
of the proposed algorithm with the classical PV for each of these signals.
More precisely, the approach is as follows:

1. For each synthetic melody we choose a random number of notes be-
tween 4 and 10. Each note has a randomly chosen duration of either
0.5 or 1 second and the corresponding tone consists of a fundamental
frequency and three harmonics of decreasing amplitudes. The funda-
mental frequencies are set to coincide with those of a piano and the
melody is allowed to move either 1 or 2 half notes up or down (ran-
domly chosen) per step. A randomly chosen envelope ensures that the
tones have both an attack and a release. The sampling frequency of the
resulting signal s is 16000 Hz.

2. A stretch factor 0.5 ≤ r ≤ 3.75 is chosen at random and another syn-
thetic signal sper f is constructed, such that sper f corresponds to a per-
fectly time stretched version of s in the sense of (D.6). The classical PV
and the proposed algorithm are applied to the original signal s, with
respect to the stretch factor r, resulting in the time stretched versions
spv and snsgt.
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3. Three DGTs Sper f , Spv and Snsgt are constructed from the time stretched
versions sper f , spv and snsgt, using the same parameter settings for each
signal. With |S| denoting a vector consisting of the absolute values of a
DGT S, we use the following error measure

E(Sper f , S) =

∥∥∥∣∣∣Sper f

∣∣∣− |S|∥∥∥
2∥∥∥∣∣∣Sper f

∣∣∣∥∥∥
2

, (D.14)

with S being either Spv or Snsgt.

Note that we cannot apply a sample by sample error measure in the time
domain, since in this case a small change in phase for the stretched signals
might cause a large error, which does not reflect the actual sound quality.
We therefore choose to compare the stretched versions using the magnitude
difference of their DGTs. Let us now define the parameters used for the TF
representations in this experiment.

Choice of parameters

For the DGT used in the PV, we apply two different parameter settings. Using
the notation (hopsize, number of frequency channels) we use the parameters
(256, 1024) and (128, 512). For the first parameter setting we use a Han-
ning window of length 1024 and for the second parameter setting we use
a Hanning window of length 512. In this way we obtain painless DGTs of
redundancy 4.

For the NSGT used in the proposed algorithm, we use 5 different Hanning
windows with lengths varying from 96 samples (at attack transients) to 96 ·
24 = 1536 samples. The lower bound on the number of frequency channels is
set to 96 · 23 = 768, corresponding to the length of the second largest window
functions.

For the DGT used for computing Sper f , Spv, and Snsgt, we use parameters
(128, 2048) and a Hanning window of 2048 samples. This results in a painless
DGT of redundancy 16.

Results

Repeating the experiment described above for 1000 synthetic test signals we
get the average results shown in Table D.1.

The results in Table D.1 show that the proposed algorithm outperforms
the classical PV, with respect to the error measure in (D.14), while keep-
ing a comparable redundancy of the applied transform. For a visualization
of the performances of the algorithms we have plotted, in Figure D.6, the
spectrograms corresponding to the three DGTs Sper f , Spv (with parameters
(128, 512)), and Snsgt for one particular synthetic test signal (with r = 1.5).
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Table D.1: Average results for 1000 synthetic test signals.

Algorithm: PV(256, 1024) PV(128, 512) Proposed algorithm
Average red.: 3.954813 3.977300 3.637370
Average error: 0.439982 0.415139 0.095104

We can easily see how the proposed algorithm more accurately repro-
duces the onsets, and how it reduces the noisy components between the har-
monics compared to the PV. However, we can also see how the frequencies
corresponding to the harmonics are better reproduced with the PV than with
the proposed algorithm. The proposed algorithm induces a certain amplitude
modulation due to the peak detection and phase locking approach described
in Section 4.2.

We have provided sound files on-line for the test signal shown in Figure
D.6 with respect to the stretch factors r = [0.75, 1.25, 1.5, 2.25, 3.0, 3.75]. The
sound files are available for the perfect stretched version, the PV(128, 512),
and the proposed algorithm. It is important to note that the error measure
given in (D.14) is not a direct reflection of the actual audio quality — it is
for instance not true that the proposed algorithm consistently performs 4
times as good as the classical PV. The results for the proposed algorithm are
particularly convincing for stretch factors r ≤ 2, where the timbre at attack
transients is nicely preserved in contrast to the classical PV. However for
larger stretch factors r ≥ 2, the impact of the amplitude modulation, and of
the coarse frequency resolution around onsets, becomes audible. Eventually,
this results in an overall sound quality comparable to the PV (or even below
for very large stretch factors r ≥ 3).

Since the authors do not have access to the source code of the more so-
phisticated algorithms as proposed in [3, 7, 19], the comparison for synthetic
signals could only be done for the PV and the proposed algorithm. However,
as the authors from [7] and [19] kindly provided us with sound files for real
world signals, we have included these algorithms for the comparison in the
next section.

5.2 Real world signals

For this experiment we consider three real world signals, each of length ≈ 4
seconds and with a sampling frequency of 44100 Hz. The signals are chosen
such that they challenge different aspects of the time stretching algorithms:

1. The first signal is a glockenspiel signal with few transients and many
harmonics at the higher frequencies.

2. The second signal is a piece of piano music consisting of a dense set of
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Fig. D.6: Spectrograms for stretched versions of a synthetic signal with r = 1.5.

transients with most of the energy concentrated at the lower frequen-
cies.

3. The third signal is from a rock song played by a full band, thereby
producing a complex polyphonic sound.

We chose to work with the stretch factors 0.75, 1.25, 1.5 and 2.25 for the
comparison. The algorithms we include are:

1. The PV as described in Section 3 and implemented in [11]. For the DGT
used in the PV, we use parameters (512, 2048) and a Hanning window
of length 2048.

2. The proposed algorithm from Section 4. We use 5 Hanning windows
with lengths varying from 384 to 384 · 24 = 6144 and with 384 · 22 =
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1536 being the lower bound on the number of frequency channels.

3. The matching pursuit algorithm by Derrien [7].

4. The SuperVP from IRCAM based on the theory of Röbel [26] and Liuni
et al. [19]. The algorithm uses only one frequency band and chooses
between window lengths of 1024, 2048, 3072, and 4096 samples for the
adaptive (uniform) NSGT. We refer the reader to [19] for details.

Since all the stretched sounds are available on-line, we only give the main
conclusions. The classical PV and the algorithm by Derrien are rather similar
in performance — they both produce a good overall sound quality but with
significant transient smearing. The proposed algorithm, on the other hand,
does a much better job of preserving the original timbre at attack transient,
but induces a certain "roughness" to the sounds (mainly for r = 2.25). Also,
some of the weaker transients, which are not detected by the onset detec-
tion algorithm, suffer from transient smearing for the proposed algorithm
(in particular, the "tapping" noises in the background of the piano music).
The SuperVP does not have this problem as the transient detection algorithm
works on the level of spectral bins. Overall, the SuperVP provides the best
audio quality for the three signals, which is to be expected as it applies a TF
representation of much higher redundancy than the other algorithms. Cal-
culating the average redundancies for the proposed algorithm (over the 4
stretch factors) for each signal we get 2.40, 2.90 and 2.65. Finally, let us note
that the third signal (the rock band signal) reveals a fundamental issue with
the application of NSGFs. For r = 2.25, neither the proposed algorithm nor
the SuperVP are capable of maintaining a steady bass, which results from
the changing window lengths. This particular issue is better resolved by the
classical PV as well as the algorithm by Derrien.

6 Conclusion and perspectives

Using discrete Gabor theory we have presented the classical PV and proposed
a new time stretching algorithm in a unified framework. This approach has
allowed us to address and improve on the disadvantages of the classical PV,
while preserving the mathematical structure provided by Gabor theory. The
proposed algorithm is the first attempt to use non-uniform NSGFs for time-
stretching, which allows for a low redundancy of the adaptive TF represen-
tation and leads to a fast implementation. The proposed algorithm has been
compared to other multi-resolution methods, in a reproducible manner, and
we have discussed its advantages and its shortcomings. As a future improve-
ment it could be interesting to connect the techniques presented in this article
with the ideas proposed by Röbel in [26], possibly allowing for an algorithm
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that uses non-uniform NSGFs without the need for fixing the stretch factor
during attack transients.
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