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Abstract: This article concerns the basic understanding of parabolic final value problems, and a
large class of such problems is proved to be well posed. The clarification is obtained via explicit
Hilbert spaces that characterise the possible data, giving existence, uniqueness and stability of the
corresponding solutions. The data space is given as the graph normed domain of an unbounded
operator occurring naturally in the theory. It induces a new compatibility condition, which relies on
the fact, shown here, that analytic semigroups always are invertible in the class of closed operators.
The general set-up is evolution equations for Lax–Milgram operators in spaces of vector distributions.
As a main example, the final value problem of the heat equation on a smooth open set is treated, and
non-zero Dirichlet data are shown to require a non-trivial extension of the compatibility condition by
addition of an improper Bochner integral.

Keywords: parabolic boundary problem; final value; compatibility condition; well posed;
non-selfadjoint; hyponormal

MSC: 35A01; 47D06

1. Introduction

In this article, we establish well-posedness of final value problems for a large class of parabolic
differential equations. Seemingly, this clarifies a longstanding gap in the comprehension of
such problems.

Taking the heat equation as a first example, we address the problem of characterising the functions
u(t, x) that, in a C∞ -smooth bounded open set Ω ⊂ Rn with boundary ∂Ω, fulfil the equations, where
∆ = ∂2

x1
+ · · ·+ ∂2

xn denotes the Laplacian,
∂tu(t, x)− ∆u(t, x) = f (t, x) for t ∈ ]0, T[ , x ∈ Ω,

u(t, x) = g(t, x) for t ∈ ]0, T[ , x ∈ ∂Ω,

u(T, x) = uT(x) for x ∈ Ω.

(1)

Motivation for doing so could be given by imagining a nuclear power plant, which is hit by a
power failure at time t = 0. Once power is regained at time t = T , and a measurement of the reactor
temperature uT(x) is obtained, it is of course desirable to calculate backwards in time to provide an
answer to the question: were temperatures u(t, x) around some earlier time t0 < T high enough to
cause a meltdown of the fuel rods ?
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We provide here a theoretical analysis of such problems and prove that they are well-posed,
that is, they have existence, uniqueness and stability of solutions u ∈ X for given data ( f , g, uT) ∈ Y ,
in certain normed spaces X , Y to be specified below. The results were announced without proofs in
the short note [1].

Although well-posedness is of decisive importance for the interpretation and accuracy of
numerical schemes, which one would use in practice, such a theory has seemingly not been worked
out before. Explained roughly, our method is to provide a useful structure on the reachable set for a
general class of parabolic differential equations.

1.1. Background

Let us first describe the case f = 0, g = 0. Then the mere heat equation (∂t − ∆)u = 0 is clearly
solved for all t ∈ R by the function u(t, x) = e(T−t)λv(x), if v(x) is an eigenfunction of the Dirichlet
realization −∆D of the Laplace operator with eigenvalue λ.

In view of this, the homogeneous final value problem (1) would obviously have the above u as a
basic solution if, coincidentally, the final data uT(x) were given as the eigenfunction v(x). The theory
below includes the set B of such basic solutions u together with its linear hull E = spanB and a
certain completion E .

It is easy to describe E in terms of the eigenvalues 0 < λ1 ≤ λ2 ≤ . . . and the associated
L2(Ω)-orthonormal basis e1, e2, . . . of eigenfunctions of −∆D : corresponding to final data uT in
span(ej), which are the uT having finite expansions uT(x) = ∑j(uT | ej)ej(x) in L2(Ω), the space E
consists of solutions u(t, x) being finite sums

u(t, x) = ∑j e(T−t)λj(uT | ej)ej(x). (2)

Moreover, at time t = 0 there is, because of the finiteness, a vector u(0, x) in L2(Ω) that trivially fulfills

‖u(0, ·)‖2 = ∑j e2Tλj |(uT | ej)|2 < ∞. (3)

However, when summation is extended to all j ∈ N, condition (3) becomes very strong, as it is
only satisfied for special uT : Weyl’s law for the counting function, cf. ([2], Chapter 6.4), entails the
well-known λj = O(j

2
n ), so a single term in (3) yields |(uT | ej)| ≤ c exp(−Tj

2
n ); i.e., the L2 -coordinates

of such uT decay rapidly for j→ ∞.
Condition (3) has been known at least since the 1950s; the work of John [3] and Miranker [4] are

the earliest we know. While many authors have avoided an analysis of it, Payne found it scientifically
intolerable because uT is likely to be imprecisely measured; cf. his treatise [5] on the variety of methods
applied to (1) until the mid 1970s.

More recently, e.g., Isakov [6] emphasized the classical observation, found already in [4], that (2)
implies a phenomenon of instability. Indeed, the sequence of final data uT,k = ek has constant length 1,
yet via (2) it gives the initial states uk(0, x) = eTλk ek(x) having L2 -norms eTλk , which clearly blow up
rapidly for k→ ∞.

This L2-instability cannot be explained away, of course, but it does not rule out that (1) is
well-posed. It rather indicates that the L2 -norm is an insensitive choice for (1).

In fact, here there is an analogy with the classical stationary Dirichlet problem

− ∆u = f in Ω, u = g on ∂Ω. (4)

This is unsolvable for u ∈ C2(Ω) given certain f ∈ C0(Ω), g ∈ C0(∂Ω): Günther proved prior to
1934, cf. ([7], p. 85), that when f (x) = χ(x)(3x2

3|x|−2 − 1)/ log |x| for some radial cut-off function
χ ∈ C∞

0 (Ω) equal to 1 around the origin, Ω being the unit ball of R3 , then f ∈ C0(Ω) while the
convolution w = 1

4π|x| ∗ f is in C1(Ω) but not in C2 at x = 0; so w ∈ C1(Ω) \ C2(Ω). Yet w is the

unique C1(Ω)-solution of (4) in the distribution space D′(Ω) in the case g is given as g = w|∂Ω .
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Thus the Ck -scales constitute an insensitive choice for (4). Nonetheless, replacing C2(Ω) by its
completion H1(Ω) in the Sobolev norm (∑|α|≤1

∫
Ω |D

αu|2 dx)1/2 , it is classical that (4) is well-posed
with u in H1(Ω).

To obtain similarly well-adapted spaces for (1) with f = 0, g = 0, one could base the analysis
on (3). Indeed, along with the above space E of basic solutions, a norm |||uT ||| on the space of final data
uT ∈ span(ej) can be defined by (3), leading to the norm |||uT ||| = (∑∞

j=1 e2Tλj |(uT | ej)|2)1/2 on the uT

that correspond to solutions u in the completion E . This would give well-posedness of (1) with u ∈ E ;
cf. Remark 16.

But the present paper goes much beyond this. For one thing, we have freed the discussion from
−∆D and its specific eigenvalue distribution by using sesqui-linear forms, cf. Lax–Milgram’s lemma,
which allowed us to extend the proofs to a general class of elliptic operators A.

Secondly we analyse the fully inhomogeneous problem (1) for general f , g in Section 5. In this
situation well-posedness is not just a matter of choosing the norm on the data ( f , g, uT) suitably (as one
might think from the above |||uT |||). In fact, prior to this choice, one has to restrict the ( f , g, uT) to a
subspace characterised by certain compatibility conditions. While such conditions are well known in the
theory of parabolic boundary problems, they are shown here to have a new and special form for final
value problems.

Indeed, the compatibility conditions stem from the unbounded operator uT 7→ u(0), which maps
the final data to the corresponding initial state in the presence of the source term f . The fact that this
operator is well defined, and that its domain endowed with the graph norm yields the data space, is
the leitmotif of this article.

1.2. The Abstract Final Value Problem

Let us outline our analysis given for a Lax–Milgram operator A defined in H from a V -elliptic
sesquilinear form a(·, ·) in a Gelfand triple, i.e., in a set-up of three Hilbert spaces V ↪→ H ↪→ V∗

having norms denoted ‖ · ‖, | · | and ‖ · ‖∗ , and where V is the form domain of a.
In this framework, we consider the following general final value problem: given data

f ∈ L2(0, T; V∗), uT ∈ H, (5)

determine the V -valued vector distributions u(t) on ]0, T[ , that is the u ∈ D′(0, T; V), fulfilling{
∂tu + Au = f in D′(0, T; V∗),

u(T) = uT in H.
(6)

Classically a wealth of parabolic Cauchy problems with homogeneous boundary conditions have
been efficiently treated with the triples (H, V, a) and the D′(0, T; V∗) set-up in (6). For this the
reader may consult the work of Lions and Magenes [8], Tanabe [9], Temam [10], Amann [11]. Also
recently, e.g., Almog, Grebenkov, Helffer, Henry studied variants of the complex Airy operator via
such triples [12–14], and our results should at least extend to final value problems for those of their
realisations that have non-empty spectrum.

To compare (6) with the analogous Cauchy problem, we recall that whenever u′ + Au = f is
solved under the initial condition u(0) = u0 ∈ H , for some f ∈ L2(0, T; V∗), there is a unique solution
u in the Banach space

X =L2(0, T; V)
⋂

C([0, T]; H)
⋂

H1(0, T; V∗),

‖u‖X =
( ∫ T

0
‖u(t)‖2 dt + sup

0≤t≤T
|u(t)|2 +

∫ T

0
(‖u(t)‖2

∗ + ‖u′(t)‖2
∗) dt

)1/2.
(7)

For (6) it would thus be natural to envisage solutions u in the same space X . This turns out to be true,
but only under substantial further conditions on the data ( f , uT).
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To formulate these, we exploit that −A generates an analytic semigroup e−tA in B(H). This is
crucial for the entire article, because analytic semigroups always are invertible in the class of closed
operators, as we show in Proposition 1. We denote its inverse by etA , consistent with the case −A
generates a group,

(e−tA)−1 = etA. (8)

Its domain is the Hilbert space D(etA) = R(e−tA) that is normed by ‖u‖ = (|u|2 + |etAu|2)1/2 .
In Proposition 10 we show that a non-empty spectrum, σ(A) 6= ∅, yields strict inclusions

D(et′A) ( D(etA) ( H for 0 < t < t′ . (9)

For t = T these domains play a crucial role in the well-posedness result below, cf. (11), where
also the full yield y f of the source term f on the system appears, namely

y f =
∫ T

0
e−(T−s)A f (s) ds. (10)

The map f 7→ y f takes values in H , and it is a continuous surjection y f : L2(0, T; V∗)→ H .

Theorem 1. For the final value problem (6) to have a solution u in the space X in (7), it is necessary and
sufficient that the data ( f , uT) belong to the subspace Y of L2(0, T; V∗)⊕ H defined by the condition

uT −
∫ T

0
e−(T−t)A f (t) dt ∈ D(eTA). (11)

Moreover, in X the solution u is unique and depends continuously on the data ( f , uT) in Y, that is, we have
‖u‖X ≤ c‖( f , uT)‖Y , when Y is given the graph norm

‖( f , uT)‖Y =

(
|uT |2 +

∫ T

0
‖ f (t)‖2

∗ dt +
∣∣∣eTA(uT −

∫ T

0
e−(T−t)A f (t) dt

)∣∣∣2)1/2

. (12)

(The full statements are found in Theorems 7 and 8 below.)

Condition (11) is a fundamental novelty for the above class of final value problems, but more
generally it also gives an important clarification for parabolic differential equations.

As for its nature, we note that the data ( f , uT) fulfilling (11) form a Hilbert(-able) space Y
embedded into L2(0, T; V∗)⊕ H , in view of its norm in (12).

Using the above y f , (12) is seen to be the graph norm of ( f , uT) 7→ eTA(uT − y f ), which in terms
of Φ( f , uT) = uT − y f is the unbounded operator eTAΦ from L2(0, T; V∗)⊕ H to H . As (11) means
that the operator eTAΦ must be defined at ( f , uT), the space Y is its domain. Thus eTAΦ is a key
ingredient in the rigorous treatment of (6).

The role of eTAΦ is easy to elucidate in control theoretic terms: its value eTAΦ( f , uT) simply
equals the particular initial state u(0) which is steered by f to the final state u(T) = uT at time T ;
cf. (13) below.

Because of e−(T−t)A and the integral over [0, T], (11) involves non-local operators in both space
and time as an inconvenient aspect — exacerbated by use of the abstract domain D(eTA), which for
longer lengths T of the time interval gives increasingly stricter conditions; cf. (9).

Anyhow, we propose to regard (11) as a compatibility condition on the data ( f , uT), and thus we
generalise the notion of compatibility.

For comparison we recall that Grubb and Solonnikov [15] made a systematic investigation of
a large class of initial-boundary problems of parabolic (pseudo-)differential equations and worked
out compatibility conditions, which are necessary and sufficient for well-posedness in full scales of
anisotropic L2-Sobolev spaces. Their conditions are explicit and local at the curved corner ∂Ω× {0},
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except for half-integer values of the smoothness s that were shown to require so-called coincidence,
which is expressed in integrals over the product of the two boundaries {0} ×Ω and ]0, T[× ∂Ω; hence
it also is a non-local condition.

However, while the conditions of Grubb and Solonnikov [15] are decisive for the solution’s
regularity, condition (11) is crucial for the existence question; cf. the theorem.

Previously, uniqueness was shown by Amann ([11], Section V.2.5.2) in a t-dependent set-up, but
injectivity of u(0) 7→ u(T) was proved much earlier for problems with t-dependent sesquilinear forms
by Lions and Malgrange [16].

Showalter [17] attempted to characterise the possible uT in terms of Yosida approximations for
f = 0 and A having half-angle π

4 . As an ingredient, invertibility of analytic semigroups was claimed
in [17] for such A, but the proof was flawed as A can have semi-angle π/4 even if A2 is not accretive;
cf. our example in Remark 9.

Theorem 1 is proved largely by comparing with the corresponding problem u′ + Au = f , u(0) =
u0 . It is well known in functional analysis, cf. (7), that this is well-posed for f ∈ L2(0, T; V∗), u0 ∈ H ,
with solutions u ∈ X . However, as shown below by adaptation of a classical argument, u is also in this
set-up necessarily given by Duhamel’s principle, or the variation of constants formula, for the analytic
semigroup e−tA in V∗ ,

u(t) = e−tAu(0) +
∫ t

0
e−(t−s)A f (s) ds. (13)

For t = T this yields a bijective correspondence u(0)↔ u(T) between the initial and terminal states
(in particular backwards uniqueness of the solutions in the large class X)—but this relies crucially on
the previously mentioned invertibility of e−tA ; cf. (8).

As a consequence of (13) one finds the necessity of (11), as the difference Φ( f , uT) = uT − y f in
(11) must equal the vector e−TAu(0), which obviously belongs to D(eTA).

Moreover, (13) yields that u(T) in a natural way consists of two parts, that differ radically even
when A has nice properties:

First, e−tAu(0) solves the semi-homogeneous problem with f = 0, and for u(0) 6= 0 there is the
precise property in non-selfadjoint dynamics that the “height” function h(t) is strictly convex,

h(t) = |e−tAu(0)|. (14)

This is shown in Proposition 4 when A belongs to the broad class of hyponormal operators, studied by
Janas [18], or in case A2 is accretive; then h(t) is also strictly decreasing with h′(0) ≤ −m(A), where
m(A) is the lower bound of A.

The stiffness inherent in strict convexity is supplemented by the fact that u(T) = e−TAu(0) is
confined to a dense, but very small space, as by a well-known property of analytic semigroups,

u(T) ∈ ⋂n∈ND(An). (15)

Secondly, for u0 = 0 the integral in (13) solves the initial value problem, and it has a rather
different nature since its final value y f in (10) is surjective y f : L2(0, T; V∗)→ H , hence can be anywhere
in H , regardless of the Lax–Milgram operator A in our set-up. This we show in Proposition 6 using a
kind of control-theoretic argument in case A is self-adjoint with compact inverse; and for general A by
means of the Closed Range Theorem, cf. Proposition 5.

For the reachable set of the equation u′ + Au = f , or rather the possible final data uT , they will
be a sum of an arbitrary vector y f in H and a term e−TAu(0) of great stiffness (cf. (15)). Thus uT can
be prescribed in the affine space y f + D(eTA). As any y f 6= 0 will push the dense set D(eTA) ⊂ H in
some arbitrary direction, u(T) can be expected anywhere in H (unless y f ∈ D(eTA) is known a priori).
Consequently neither u(T) ∈ D(eTA) nor (15) can be expected to hold for y f 6= 0, not even if its norm
|y f | is much smaller than |e−TAu(0)|.
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As for final state measurements in real life applications, we would like to prevent a
misunderstanding by noting that it is only under the peculiar circumstance that y f = 0 is known a
priori to be an exact identity that (15) would be a valid expectation on u(T).

Indeed, even if f is so small that it is (quantitatively) insignificant for the time development of the
system governed by u′ + Au = f , so that f = 0 is a valid dynamical approximation, the (qualitative)
mathematical expectation that u(T) should fulfill (15) cannot be justified from such an approximation;
cf. the above.

In view of this fundamental difference between the problems that are truly and merely
approximately homogeneous, it seems that proper understanding of final value problems is facilitated
by treating inhomogeneous problems from the very beginning.

1.3. The Inhomogeneous Heat Problem

For (1) with general data ( f , g, uT) the above is applied with A = −∆D , that is the Dirichlet
realisation of the Laplacian. The results are analogous, but less simple to state and more demanding
to obtain.

First of all, even though it is a linear problem, the compatibility condition (11) destroys the old
trick of reducing to boundary data g = 0, for when w ∈ H1 fulfils w = g 6= 0 on the curved boundary
S = ]0, T[×∂Ω, then w lacks the regularity needed to test (11) on the data ( f̃ , 0, ũT) of the reduced
problem; cf. (127) ff.

Secondly, it is, therefore, non-trivial to clarify that every g 6= 0 does give rise to an extra term zg ,
in the sense that (11) is replaced by the compatibility condition

uT − y f + zg ∈ D(e−T∆D ). (16)

Thirdly, due to the low reqularity, it requires technical diligence to show that zg , despite
the singularity of ∆e(T−s)∆D at s = T , has the structure of a single convergent improper Bochner
integral, namely

zg = −
∫ T

0
∆e(T−s)∆D K0g(s) ds. (17)

The reader is referred to Section 5 for the choice of the Poisson operator K0 and for an account of the
results on the fully inhomogeneous problem in (1), especially Theorem 10 and Corollary 3, which we
sum up here:

Theorem 2. For given data f ∈ L2(0, T; H−1(Ω)), g ∈ H1/2(S), uT ∈ L2(Ω) the final value problem (1) is
solved by a function u in X1 = L2(0, T; H1(Ω))

⋂
C([0, T]; L2(Ω))

⋂
H1(0, T; H−1(Ω)), if and only if the

data in terms of (10) and (17) satisfy the compatibility condition (16). In the affirmative case, u is uniquely
determined in X1 and has the representation, with all terms in X1 ,

u(t) = et∆D e−T∆D (uT − y f + zg) +
∫ t

0
e(t−s)∆ f (s) ds−−

∫ t

0
∆e(t−s)∆D K0g(s) ds, (18)

The unique solution u in X1 depends continuously on the data ( f , g, uT) in the Hilbert space Y1 , when these
are given the norms in (130) and (158) below, respectively.

1.4. Contents

Our presentation is aimed at describing methods and consequences in a concise way, readable for
a broad audience within evolution problems. Therefore we have preferred a simple set-up, leaving
many examples and extensions to future work, cf. Section 6.

Notation is given in Section 2 together with the set-up for Lax–Milgram operators and semigroup
theory. Some facts on forward evolution problems are recalled in Section 3, followed by our analysis
of abstract final value problems in Section 4. The heat equation and its final and boundary value
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problems are treated in Section 5. Section 6 concludes with remarks on the method’s applicability and
notes on the literature of the problem.

2. Preliminaries

In the sequel specific constants will appear as Cj , j ∈ N, whereas constants denoted by c may
vary from place to place. 1S denotes the characteristic function of the set S.

Throughout V and H denote two separable Hilbert spaces, such that V is algebraically,
topologically and densely contained in H . Then there is a similar inclusion into the anti-dual V∗ , i.e.,
the space of conjugated linear functionals on V ,

V ⊆ H ≡ H∗ ⊆ V∗. (19)

(V, H, V∗) is also known as a Gelfand triple. Denoting the norms by ‖ · ‖, | · | and ‖ · ‖∗ , respectively,
there are constants such that for all v ∈ V ,

‖v‖∗ ≤ C1|v| ≤ C2‖v‖. (20)

The inner product on H is denoted by (· | ·); and the sesquilinear scalar product on V∗×V by 〈·, ·〉V∗ ,V
or 〈·, ·〉, it fulfils |〈u, v〉| ≤ ‖u‖∗‖v‖. The second inclusion in (19) means that for u ∈ H ,

〈u, v〉 = (u | v) for all v ∈ V . (21)

For a linear transformation A in H , the domain is written D(A), while R(A) denotes its range
and Z(A) its null-space. ρ(A), σ(A) and ν(A) = { (Au | u) | u ∈ D(A), |u| = 1 } denote the resolvent
set, spectrum and numerical range, while m(A) = inf Re ν(A) is the lower bound of A. Throughout
B(H) stands for the Banach space of bounded linear operators on H .

For a given Banach space B and T > 0, we denote by L1(0, T; B) the space of equivalence classes
of functions f : [0, T] → B that are strongly measurable with

∫ T
0 ‖ f (t)‖ dt finite. For such f the

Bochner integral is denoted by
∫ T

0 f (t) dt, cf. [19]; it fulfils 〈
∫ T

0 f (t) dt, λ 〉 =
∫ T

0 〈 f (t), λ 〉 dt for every
functional λ in the dual space B′ . Likewise L2(0, T, B) consists of the strongly measurable f with finite
norm (

∫ T
0 ‖ f (t)‖2 dt)1/2 .

On an open set Ω ⊂ Rn , n ≥ 1, the space C∞
0 (Ω) consists of the infinitely differentiable functions

having compact support in Ω; it is given the usual LF -topology, cf. [20,21]. The dual space of
continuous linear functionals D′(Ω) is the distribution space on Ω. We use the standard distribution
theory as exposed by Grubb [20] and Hörmander [22].

More generally, the space of B-valued vector distributions is denoted by D′(Ω; B); it consists of
the continuous linear maps Λ : C∞

0 (Ω)→ B, cf. [21], the value of which at ϕ ∈ C∞
0 (Ω) is indicated by

〈Λ, ϕ 〉. If Ω is the interval ]0, T[ we also write D′(Ω; B) = D′(0, T; B).
The Sobolev space H1(0, T; B) consists of the u ∈ D′(0, T; B) for which both u, u′ belong to

L2(0, T; B); it is normed by
∫ T

0 (‖u‖2 + ‖u′‖2) dt)1/2 . More generally W1,1(0, T; B) is defined by
replacing L2 by L1 .

2.1. Lax–Milgram Operators

Our main tool will be the Lax–Milgram operator associated to an elliptic sesquilinear form, cf. the
set-up in ([20], Section 12.4). For the reader’s sake we review this, also to establish a few additional
points from the proofs in [20].

We let a(·, ·) be a bounded, V -elliptic sesquilinear form on V , i.e., certain C3, C4 > 0 fulfil for all
u, v ∈ V

|a(u, v)| ≤ C3‖u‖‖v‖, Re a(v, v) ≥ C4‖v‖2. (22)
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Obviously, the adjoint sesquilinear form a∗(u, v) = a(v, u) inherits these properties (with the
same C3 , C4), and so does the “real part”, aRe(u, v) = 1

2 (a(u, v) + a∗(u, v)). Since aRe(u, u) ≥ 0, the
form aRe is an inner product on V , inducing the equivalent norm

|||u||| = aRe(u, u)1/2, for u ∈ V . (23)

We recall that s(u, v) = (Su | v)V gives a bijective correspondence between bounded sesquilinear
forms s(·, ·) on V and bounded operators S ∈ B(V), which is isometric since ‖S‖ equals the operator
norm of the sesquilinear form |s| = sup

{
|s(u, v)|

∣∣ ‖u‖ = 1 = ‖v‖
}

. So the given form a induces an
A0 ∈ B(V) given by

a(u, v) = (A0u | v)V ∀u, v ∈ V; (24)

and the adjoint form a∗ similarly induces an operator A∗0 ∈ B(V), which is seen at once to be the
adjoint of A0 in the sense that (A∗0v | u)V = (v | A0u)V .

The V -ellipticity in (22) shows that A0 , A∗0 are both injective with positive lower bounds
m(A0), m(A∗0) ≥ C4 , so A0 , A∗0 are in fact bijections on V (cf. ([20], Theorem 12.9)).

By Riesz’s representation theorem, there exists a bijective isometry J ∈ B(V, V∗) such that for
every v∗ = Jṽ one has 〈Jṽ, v〉 = (ṽ | v)V for all v ∈ V . Therefore A := J ◦ A0 is an operator in
B(V, V∗), for which (24) gives

〈Au, v〉 = a(u, v), ∀u, v ∈ V. (25)

Similarly A′ := J ◦ A∗0 fulfils 〈A′u, v〉 = (A∗0u | v)V = a∗(u, v) for all u, v ∈ V .
Clearly A and A′ are bijections, as composites of such. Hence they give rise to a Hilbert space

structure on V∗ with the inner product

(w1 |w2)V∗ = aRe(A−1w1,A−1w2), (26)

inducing the norm |||w|||∗ = aRe(A−1w,A−1w)1/2 = |||A−1w||| on V∗ , equivalent to ‖w‖∗ .
The Lax–Milgram operator A is defined by restriction of A to an operator in H , i.e.,

Av = Av for v ∈ D(A) := A−1(H). (27)

So D(A) consists of the u ∈ V for which some f ∈ H fulfils ( f | v) = a(u, v) for all v ∈ V .
The reader may consult ([20], Section 12.4) for elementary proofs of the following: A is closed

in H , with D(A) dense in H as well as in V ; in H also A′ has these properties, and it equals the
adjoint of A in H ; i.e., A′|A′−1(H) = A∗ . As A is closed, D(A) is a Hilbert space with the graph norm
‖v‖2

D(A) = |v|
2 + |Av|2 , and D(A) ↪→ V is bounded due to (22). Geometrically, σ(A) and ν(A) are

contained in the sector of z ∈ C given by

| Im z| ≤ C3C−1
4 Re z. (28)

Actually 0 ∈ ρ(A) since a is V -elliptic, so A−1 ∈ B(H); moreover m(A) ≥ C1C4/C2 > 0.
Both the closed operator A in H and its extension A ∈ B(V, V∗) are used throughout.

(For simplicity, they were both denoted by A in the introduction, though.)

2.2. The Self-Adjoint Case

As is well known, if A is selfadjoint, i.e., A∗ = A (or a∗ = a), and has compact inverse, then H
has an orthonormal basis of eigenvectors of A, which can be scaled to orthonormal bases of V and V∗ .
This is recalled, because our results can be given a more explicit form in this case, e.g., for −∆ in (1).
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The properties that A is selfadjoint, closed, and densely defined with dense range in H carry
over to A−1 (e.g., ([20], Theorem 12.7)), so when A−1 in addition is compact in H (e.g., if V ↪→ H is
compact), then the spectral theorem for compact selfadjoint operators states that H has an orthonormal
basis (ej) consisting of eigenvectors of A−1 , where the eigenvalues µj of A−1 by the positivity can be
ordered such that

µ1 ≥ µ2 ≥ . . . ≥ µj ≥ · · · > 0, with µj → 0 if j→ ∞. (29)

The orthonormal basis (ej) also consists of eigenvectors of A with eigenvalues λj = 1/µj . Hence
σ(A) = σpoint(A) = { λj | j ∈ N }. Indeed, σres(A) = ∅ as A∗ = A; and A−1 ∈ B(H) while
A− νI = (ν−1 I − A−1)νA has a bounded inverse for ν 6= λj , as ν−1 /∈ σ(A−1).

As aRe = a here, V is now renormed by |||v|||2 = a(v, v). However, if moreover V is considered
with a(u, v) as inner product, then A : V → V∗ is the Riesz isometry; and one has

Fact 1. For every v ∈ V the H-expansion v = ∑∞
j=1(v | ej)ej converges in V. Moreover, the sequence

(ej/
√

λj)j∈N is an orthonormal basis for V, and |||v|||2 = ∑∞
j=1 λj|(v | ej)|2 .

Proof. The ej/
√

λj are orthonormal in V since a(ej, ek) = 〈Aej, ek〉 = λj(ej | ek), cf. (25). They also

yield a basis for V since similarly w ∈ V 	 span(ej/
√

λj) implies w = 0. As λj > 0, expansion of any
v in V gives

v =
∞

∑
j=1

a(v, λ−1/2
j ej)λ

−1/2
j ej =

∞

∑
j=1

a(ej, v)λ−1
j ej =

∞

∑
j=1

(v | ej)ej, (30)

whence the rightmost side converges in V . This means that v = ∑∞
j=1

√
λj(v | ej)ej/

√
λj is an

orthogonal expansion in V , whence |||v|||2 has the stated expression.

For V∗ the set-up (26), (25) here gives (w1 |w2)V∗ = a(A−1w1,A−1w2) = 〈w1,A−1w2〉.

Fact 2. For every w ∈ V∗ the expansion w = ∑∞
j=1〈w, ej〉ej converges in V∗ . Moreover, the sequence

(
√

λjej)j∈N is an orthonormal basis of V∗ and |||w|||2∗ = ∑∞
j=1 λ−1

j |〈w, ej〉|2 .

Proof. (
√

λjej) is orthonormal as (ej | ek)V∗ = 〈ej,A−1ek〉 = λ−1
k (ej | ek); and if w ∈ V∗ for all j fulfils

0 = 〈ej,A−1w〉 = (ej | A−1w) , then w = 0 as A−1 is injective. Therefore

w =
∞

∑
j=1

(w | λ1/2
j ej)V∗λ

1/2
j ej =

∞

∑
j=1
〈w,A−1ej〉λjej =

∞

∑
j=1
〈w, ej〉ej, (31)

so the rightmost side converges in V∗ , and the expression for |||w|||2∗ results.

2.3. Semigroups

Assuming that the reader is familiar with the theory of semigroups etA , we review a few needed
facts in a setting with a general complex Banach space B. The books of Pazy [23], Tanabe [9] and
Yosida [19] may serve as general references.

The generator is Ax = limt→0+
1
t (e

tAx− x), with domain D(A) consisting of the x ∈ B for which
the limit exists. A is a densely defined, closed linear operator in B that for certain ω ≥ 0 and M ≥ 1
satisfies ‖(A− λ)−n‖B(B) ≤ M/(λ−ω)n for λ > ω , n ∈ N.
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The corresponding semigroup of operators is written etA , it belongs to B(B) with

‖etA‖B(B) ≤ Meωt for 0 ≤ t < ∞. (32)

Its basic properties are that etAesA = e(s+t)A for s, t ≥ 0, e0A = I , limt→0+ etAx = x for x ∈ B, and the
first of these gives at once the range inclusions

R(e(s+t)A) ⊂ R(etA) ⊂ B. (33)

The following well-known theorem gives a criterion for A to generate an analytic semigroup that
is uniformly bounded, i.e., has ω = 0. It summarises the most relevant parts of Theorems 1.7.7 and
2.5.2 in [23], and it involves sectors of the form

Σ :=
{

λ ∈ C
∣∣∣ | arg λ| < π

2
+ θ
}
∪ {0} . (34)

Theorem 3. If θ ∈ ]0, π
2 [ and M > 0 are such that the resolvent set ρ(A) ⊇ Σ and

‖(λI −A)−1‖B(B) ≤
M
|λ| , for λ ∈ Σ, λ 6= 0, (35)

then A generates an analytic semigroup ezA for | arg z| < θ , for which ‖ezA‖ is bounded for | arg z| ≤ θ′ < θ ,
and etA is differentiable in B(B) for t > 0 with (etA)′ = AetA . Here

‖AetA‖B(B) ≤
c
t

for t > 0. (36)

Furthermore, if etA is analytic, u′ = Au, u(0) = u0 is uniquely solved by u(t) = etAu0 for every
u0 ∈ B.

2.3.1. Injectivity

Often it is crucial to know whether the semigroup etA consists of injective operators. Injectivity
is, e.g., equivalent to the geometric property that the trajectories of two solutions etAv0 and etAw0 of
u′ = Au have no point of confluence in B for v0 6= w0 .

However, the literature seems to have focused on examples with non-invertibility of etA ,
e.g., ([23], Example 2.2.1). However, injectivity always holds in the analytic case, as we now show:

Proposition 1. When a semigroup ezA on a complex Banach space B is analytic S → B(B) in the sector
S = {z ∈ C | | arg z| < θ} for some θ > 0, then ezA is injective for all z ∈ S.

Proof. Let ez0Au0 = 0 hold for some u0 ∈ B, z0 ∈ S. The analyticity of ezA in S carries over to the
map f : z 7→ ezAu0 , and to gv : z 7→ 〈 v, f (z) 〉 for arbitrary v in the dual space B′ . So gv has in a ball
B(z0, r) ⊂ S the Taylor expansion

gv(z) =
∞

∑
n=0

1
n!
〈 v, f (n)(z0) 〉(z− z0)

n. (37)

By the properties of analytic semigroups (cf. ([23], Lemma 2.4.2)) and of u0 ,

f (n)(z0) = Anez0Au0 = 0 for all n ≥ 0, (38)

so that gv ≡ 0 holds on B(z0, r) and consequently on S by unique analytic extension.
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Now f (z1) 6= 0 would yield gv(z1) 6= 0 for a suitable v in B′ , hence f ≡ 0 on S and

u0 = lim
t→0

etAu0 = lim
t→0

f (t) = 0, (39)

since etA is a strongly continuous semigroup. Altogether Z(ez0A) = {0} is proved.

Remark 1. We have only been able to track a claim of the injectivity in Proposition 1 in case z > 0, θ ≤ π/4
and B is a Hilbert space; cf. Showalter’s paper [17]. However, his proof is flawed, as A2 is non-accretive for some
A with θ ≤ π/4, cf. the counter-example in Remark 9 below.

Remark 2. Injectivity also follows directly when A is defined on a Hilbert space H having an orthonormal
basis (en)n∈N such that Aej = λjej : Clearly etAej = etλj ej as both sides satisfy x′ −Ax = 0, x(0) = ej . So if
etAv = 0, boundedness of etA gives

0 = etAv = ∑(v | ej)etAej = ∑(v | ej)e
tλj ej, (40)

so that v ⊥ ej for all j, and thus v ∈ span(en)⊥ = H⊥ = {0}. Hence etA is invertible for such A.

We have chosen to use the symbol e−tA to denote the inverse of the analytic semigroup etA

generated by A, consistent with the case in which etA does form a group in B(B), i.e.,

e−tA := (etA)−1 for all t ∈ R. (41)

This notation is convenient for our purposes (with some diligence).
For simplicity we observe the following when B = H is a Hilbert space and t > 0: clearly

e−tA maps D(e−tA) = R(etA) bijectively onto H , and it is an unbounded closed operator in H . As
(etA)∗ = etA∗ also is analytic, so that Z(etA∗) = {0} by Proposition 1, we have D(e−tA) = H , i.e., the
domain is dense in H .

A partial group phenomenon and other algebraic properties are collected here:

Proposition 2. The inverses e−tA in (41) form a semigroup of unbounded operators,

e−tAe−sA = e−(t+s)A for t, s ≥ 0. (42)

This extends to (s, t) ∈ ]−∞, 0]×R, but the right-hand side may be unbounded for t + s > 0.
Moreover, as unbounded operators the e−tA commute with esA ∈ B(H), i.e.,

esAe−tA ⊂ e−tAesA for t, s ≥ 0, (43)

and there is a descending chain of domain inclusions

D(e−t′A) ⊂ D(e−tA) ⊂ H for 0 < t < t′. (44)

Proof. When s, t ≥ 0, clearly e−tAe−sAe(s+t)A = IH holds, so that e−(s+t)A ⊂ e−tAe−sA ; but equality
necessarily holds, as the injection e−tAe−sA cannot be a proper extension of the surjection e−(s+t)A .
Whence (42). For t + s ≥ 0 ≥ s this yields e−tAe−sA = e−(t+s)AesAe−sA = e−(t+s)A . The case
−s > t ≥ 0 is similar.

Also the commutation follows at once, for the semigroup property gives

esAe−tA = e−tAetAesAe−tA = e−tAe(s+t)Ae−tA = e−tAesA IR(etA), (45)

where the right-hand side is a restriction of e−tAesA . Finally (33) yields (44).
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Remark 3. D(e−tAesA) = D(e−(t−s)A) holds in (43), because (42) extends to negative s as stated. Hence (43)
is a strict inclusion if the the first one in (44) is so for all t, t′ .

2.3.2. Some Regularity Properties

As a preparation we treat a few regularity questions for s 7→ e(t−s)A f (s), where the analytic
operator function E(s) = e(t−s)A has a singularity at s = t; cf. (36). This will be controlled when
f ∈ L1(0, t; B).

That E f = e(t−·)A f also is in L1(0, t; B) is undoubtedly known. So let us recall briefly how to
prove it strongly measurable, i.e., to find a sequence of simple functions converging pointwise to
E(s) f (s) for a.e. s ∈ [0, t]; cf. [19]. Now f can be so approximated by a sequence ( fn), and E can by its
continuity [0, t[→ B(B) also be approximated pointwise for s < t by En defined on each subinterval
[t(j− 1)2−n, tj2−n[ , j = 1, . . . , 2n , as the value of E at the left end point. Then E f = limn En fn on [0, t]
a.e. Therefore e(t−·)A f ∈ L1(0, t; B) follows directly from (32),

‖e(t−·)A f ‖L1(0,t;B) ≤
∫ t

0
‖e(t−s)A‖‖ f (s)‖ ds ≤ Meωt‖ f ‖L1(0,t;B). (46)

Moreover, 〈η, e(t−·)A f 〉 is seen to be in L1(0, t) by majorizing with ‖e(t−s)A f (s)‖B‖η‖B∗ , for strong
measurability implies weak measurability; cf. ([24], Section IV.5 appendix).

The main concern is to obtain a Leibniz rule for the derivative:

∂s(e(T−s)Aw(s)) = (−A)e(T−s)Aw(s) + e(T−s)A∂sw(s). (47)

For w ∈ C1(0, T; B) this is unproblematic for s < T : w(s + h) = w(s) + h∂sw(s) + o(h), where
o(h)/h → 0 for h → 0; and the operator is differentiable in B(B) for s < T , cf. Theorem 3, so that
e(T−(s+h))A = e(T−s)A + h(−A)e(T−s)A + o(h). Hence a multiplication of the two expansions gives the
right-hand side of (47) to the first order in h. The Leibniz rule is more generally valid in the vector
distribution sense:

Proposition 3. When A generates an analytic semigroup on a Banach space B and w ∈ H1(0, T; B), then the
Leibniz rule (47) holds in D′(0, T; B).

Proof. It suffices to cover the case ω = 0, for the other cases then follow by applying the formula to
the semigroup e−ωtetA generated by A−ωI . For w ∈ H1(0, T; B) the standard convolution procedure
gives a sequence (wk) in C1([0, T]; B) such that

wk → w in L2(0, T; B), w′k → w′ in L2,loc(0, T; B). (48)

For arbitrary φ ∈ C∞
0 ( ]0, T[ ), we find using the Bochner inequality that

‖
∫ T

0
e(T−s)A(w(s)− wk(s))φ(s) ds‖B ≤ C‖w(s)− wk(s)‖L2(0,T;B), (49)

with C = M(
∫

supp φ |φ(s)|
2 ds)1/2 , where M is the constant in (32).

Hence e(T−s)Awk → e(T−s)Aw in D′(0, T; B), so via the C1-case above, as ∂s is continuous in D′ ,
we get

∂s(e(T−s)Aw) = lim
k→∞

(∂s(e(T−s)Awk))

= lim
k→∞

((−A)e(T−s)Awk) + lim
k→∞

(e(T−s)A∂swk) = (−A)e(T−s)Aw + e(T−s)A∂sw.
(50)
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Indeed, the last limits exist in D′(0, T; B) by the choice of wk , for if ε > 0 is small enough,

‖
∫

supp φ
e(T−s)A(w′(s)− w′k(s))φ(s) ds‖B ≤ c

∫ T−ε

ε
‖w′(s)− w′k(s)‖B ds, (51)

‖
∫ T

0
(−A)e(T−s)A(w(s)− wk(s))φ(s) ds‖B ≤ C̃‖w− wk‖L2(0,T;B) (52)

with C̃ = (
∫

supp φ

∣∣ cφ(s)
T−s

∣∣2 ds)1/2 , using the bound on (−A)e(T−s)A in Theorem 3.

3. Functional Analysis of Initial Value Problems

Having set the scene by recalling elliptic Lax–Milgram operators A in Gelfand triples (V, H, V∗)
in Section 2.1, we now discuss solutions of the classical initial value problem{

∂tu +Au = f in D′(0, T; V∗)

u(0) = u0 in H.
(53)

By definition of vector distributions, the above equation means that for every scalar test function
ϕ ∈ C∞

0 (]0, T[) one has 〈 u, −ϕ′ 〉+ 〈 Au, ϕ 〉 = 〈 f , ϕ 〉 as an identity in V∗ .
First we recall the fundamental theorem for vector functions from ([10], Lemma III.1.1). Further

below, it will be crucial for obtaining a solution formula for (53).

Lemma 1. For a Banach space B and u, g ∈ L1(a, b; B) the following are equivalent:

(i) u is a.e. equal to a primitive function of g, i.e., for some vector ξ ∈ B

u(t) = ξ +
∫ t

a
g(s) ds for a.e. t ∈ [a, b]. (54)

(ii) For each test function φ ∈ C∞
0 (]a, b[) one has

∫ b
a u(t)φ′(t) dt = −

∫ b
a g(t)φ(t) dt.

(iii) For each η in the dual space B′ , d
dt 〈η, u〉 = 〈η, g〉 holds in D′(a, b).

In the affirmative case, u′ = g as vector distributions in D′(a, b; B) by (ii), the right-hand side in (i) is a
continuous representative of u such that ξ = u(a) and

sup
a≤t≤b

‖u(t)‖B ≤ (b− a)−1‖u‖L1(a,b;B) + ‖g‖L1(a,b;B). (55)

Remark 4. Lemma 1 is proved in [10], except for the estimate (55): the continuous function ‖u(t)‖B attains
its minimum at some t0 ∈ [a, b], so applying the Bochner inequality in (i) and the Mean Value Theorem,

‖u(t)‖B ≤ ‖u(t0)‖B + |
∫ t

t0

‖g(t)‖B dt| ≤ 1
b− a

∫ b

a
‖u(t)‖B dt +

∫ b

a
‖g(t)‖B dt. (56)

This yields (55), hence the Sobolev embedding W1,1(a, b; B) ↪→ C([a, b]; B). If furthermore u, g ∈ L2(a, b; B),
we get the Sobolev embedding H1(a, b; B) ↪→ C([a, b]; B) similarly,

sup
a≤t≤b

‖u(t)‖B ≤ (b− a)−1/2‖u‖L2(a,b;B) + (b− a)1/2‖g‖L2(a,b;B) ≤ c‖u‖H1(a,b;B). (57)

Secondly we recall the Leibniz rule d
dt ( f (t) | g(t)) = ( f ′(t) | g(t)) + ( f (t) | g′(t)) valid for

f , g ∈ C1([0, T]; H). The well-known generalization below was proved in real vector spaces in ([10],
Lemma III.1.2) for u = v. We briefly extend this to the general complex case, which we mainly use to
obtain that ∂t|u|2 = 2 Re〈 u′, u 〉, though also u 6= v will be needed.
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Lemma 2. If u, v ∈ L2(0, T; V) ∩ H1(0, T; V∗), then t 7→ (u(t) | v(t)) is in L1(0, T) and

d
dt
(u | v) = 〈u′, v〉+ 〈v′, u〉 in D′(′, T ). (58)

Furthermore, u and v have continuous representatives on [0, T], i.e., u, v ∈ C([0, T]; H).

Proof. Let u, v ∈ L2(0, T; V) with distributional derivatives u′, v′ ∈ L2(0, T; V∗). As in the proof
of Proposition 3 we obtain um ∈ C∞([0, T]; V) such that um → u in L2(0, T; V) while u′m → u′ in
L2,loc(0, T; V∗). Similarily v gives rise to vm .

By continuity of inner products, the function (u | v) is measurable on [0, T] for u, v ∈ L2(0, T; V),
and

∫ T
0 |(u | v)| dt < ∞. Sesquilinearity yields (um | vm)→ (u | v) in L1(0, T) for m→ ∞, while both

〈u′m, vm〉 → 〈u′, v〉 and 〈v′m, um〉 → 〈v′, u〉 hold in L2,loc(0, T), hence in D′(0, T).
As differentiation is continuous in D′(0, T), one finds from the C1 -case and (21) that

d
dt
(u | v) = lim

m

d
dt
(um | vm) = lim

m
(u′m | vm) + lim

m
(v′m | um) = 〈u′, v〉+ 〈v′, u〉. (59)

Taking v = u the function t 7→ |u(t)|2 is seen to be in W1,1(0, T) ⊂ C([0, T]), and since any u ∈
H1(0, T; V∗) is continuous in V∗ by Remark 4, one can also here obtain from Lemma III.1.4 in [10] that
u : [0, T]→ H is continuous. Similarly for v.

3.1. Existence and Uniqueness

In our presentation the following result is a cornerstone, relying on the full framework in
Section 2.1; in particular A need not be selfadjoint:

Theorem 4. Let V be a separable Hilbert space with V ⊆ H algebraically, topologically and densely, cf. (19)
and (20), and let A : V → V∗ be the bounded Lax–Milgram operator induced by a V-elliptic sesquilinear form,
cf. (25). When u0 ∈ H and f ∈ L2(0, T; V∗) are given, then (53) has a uniquely determined solution u(t)
belonging to the space

X = L2(0, T; V)
⋂

C([0, T]; H)
⋂

H1(0, T; V∗). (60)

We omit a proof of this theorem, as it is a special case of a more general result of Lions and
Magenes ([8], Section 3.4.4) on t-dependent forms a(t; u, v). Clearly the conjunction of u ∈ L2(0, T; V)

and u′ ∈ L2(0, T; V∗), which appears in [8], is equivalent to the claim in (60) that u belongs to the
intersection of L2(0, T, V) and H1(0, T; V∗).

Alternatively one can use Theorem III.1.1 in Temam’s book [10], where proof is given using
Lemma 1 to reduce to the scalar differential equation ∂t〈u, η〉+ a(u, η) = 〈 f , η〉 in D′(0, T), for η ∈ V ,
which is treated by Faedo–Galerkin approximation and basic functional analysis. His proof extends
straightforwardly, from a specific triple (H, V, a) for the Navier-Stokes equations, to the general set-up
in Section 2.1, also when A∗ 6= A.

However, either way, we need the finer theory described in the next two subsections.

3.2. Well-Posedness

We now substantiate that the unique solution from Theorem 4 depends continuously on the data,
so that (53) is well-posed in the sense of Hadamard. First we note that the solution in Theorem 4 is an
element of the space X in (60), which is a Banach space when normed, as done throughout, by

‖u‖X =
(
‖u‖2

L2(0,T;V) + sup
0≤t≤T

|u(t)|2 + ‖u‖2
H1(0,T;V∗)

)1/2. (61)

To clarify a redundancy in this choice, we need a Sobolev inequality for vector functions.



Axioms 2018, 7, 31 15 of 36

Lemma 3. There is an inclusion L2(0, T; V) ∩ H1(0, T; V∗) ⊂ C([0, T]; H) and

sup
0≤t≤T

|u(t)|2 ≤ (1 +
C2

2
C2

1 T
)
∫ T

0
‖u‖2 dt +

∫ T

0
‖u′‖2

∗ dt. (62)

Proof. If u belongs to the intersection, the continuity follows from Lemma 2, where the formula gives
∂t|u|2 = 2 Re〈 u′, u 〉. By Lemma 1, integration of both sides entails

|u(t)|2 ≤ |u(t0)|2 +
∫ T

0
(‖u‖2 + ‖u′‖2

∗) dt, (63)

which by use of the Mean Value Theorem as in Remark 4 leads to the estimate.

Remark 5. In our solution set X in (60) one can safely omit the space C([0, T]; H), according to Lemma 3.
Likewise sup |u| can be removed from ‖ · ‖X , as one just obtains an equivalent norm (similarly for the term∫ T

0 ‖u(t)‖
2
∗ dt in (7)). Thus X is more precisely a Hilbertable space; we omit this detail in the sequel for the sake

of simplicity. However, we shall keep X as stated in order to emphasize the properties of the solutions.

The next result on stability is well known among experts, and while it may be derived from the
abstract proofs in [8], we shall give a direct proof based on explicit estimates:

Corollary 1. The unique solution u of (53), given by Theorem 4, depends continuously as an element of X on
the data ( f , u0) ∈ L2(0, T; V∗)⊕ H, i.e.,

‖u‖2
X ≤ c(|u0|2 + ‖ f ‖2

L2(0,T;V∗)). (64)

That is, the solution operator ( f , u0) 7→ u is a bounded linear map L2(0, T; V∗)⊕ H → X.

Proof. Clearly u ∈ L2(0, T; V) while the functions u′, f and Au belong to L2(0, T; V∗), so as an identity
of integrable functions,

Re〈∂tu, u〉+ Re〈Au, u〉 = Re〈 f , u〉. (65)

Hence Lemma 2 and the V -ellipticity gives

∂t|u|2 + 2C4‖u‖2 ≤ 2|〈 f , u〉| ≤ C−1
4 ‖ f ‖2

∗ + C4‖u‖2. (66)

Using again that |u(t)|2 and ∂t|u(t)|2 are in L1(0, T), taking B = C in Lemma 1 yields

|u(t)|2 + C4

∫ t

0
‖u(s)‖2 ds ≤ |u0|2 + C−1

4 ‖ f ‖2
L2(0,T;V∗). (67)

For the first two contributions to the X-norm this gives

sup
0≤t≤T

|u(t)|2 ≤ |u0|2 + C−1
4 ‖ f ‖2

L2(0,T;V∗), (68)

‖u‖2
L2(0,T;V) ≤ C−1

4 |u0|2 + C−2
4 ‖ f ‖2

L2(0,T;V∗). (69)

Since u solves (53) it is clear that ‖∂tu(t)‖2
∗ ≤ (‖ f (t)‖∗ + ‖Au‖∗)2 , so we get

∫ T

0
‖∂tu(t)‖2

∗ dt ≤ 2
∫ T

0
‖ f (t)‖2

∗ dt + 2‖A‖2
B(V,V∗)

∫ T

0
‖u‖2 dt, (70)

which upon substitution of (69) altogether shows (64).
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3.3. The First Order Solution Formula

We now supplement the well-posedness by a direct proof of the variation of constants formula,
which requires that the extended Lax–Milgram operator A generates an analytic semigroup in V∗ .
This is known, cf. [9], but lacking a concise proof in the literature, we begin by analysing A in H :

Lemma 4. For a V-elliptic Lax–Milgram operator A, both −A and −A∗ have the sector Σ in (34) in their
resolvent sets for θ = arccot(C3/C4) and they generate analytic semigroups on H. This holds verbatim for the
extensions −A and −A′ in V∗ .

Proof. To apply Theorem 3, we let λ 6= 0 be given in the sector Σ for some angle θ satisfying
0 < θ < arccot(C3/C4). Then it is clear that δ = − sgn(Im λ)θ or δ = 0 gives

Re(eiδλ) ≥ 0. (71)

In case δ ∈ {±θ} a multiplication of the inequalities (28) by − sin δ yields

− sin δ Im a(u, u) ≥ −C3C−1
4 sin θ Re a(u, u). (72)

In addition Cθ := C4 cos θ − C3 sin θ > 0, because cot θ > C3C−1
4 . So for u ∈ D(A),

Re(eiδ(a(u, u) + λ(u | u))) ≥ Re(eiδa(u, u)) = cos δ Re a(u, u)− sin δ Im a(u, u)

≥ (cos θ − C3C−1
4 sin θ)Re a(u, u)

≥ Cθ‖u‖2. (73)

This V -ellipticity holds also if δ = 0, cf. (71), so eiδ(A + λI) is in any case bijective; and so is −A− λI .
To bound −(A + λI)−1 , we see from (73) that for u ∈ D(A),

|λ|(u | u) ≤ |((A + λ)u | u)|+ |a(u, u)| ≤ |((A + λ)u | u)|+ C3‖u‖2

≤ (1 + C3C−1
θ )|((A + λ)u | u)|. (74)

This implies (35) for −A. Since A∗ is the Lax–Milgram operator associated to the elliptic form a∗ , the
above also entails the statement for −A∗ .

For A it follows at once from (73) that Re〈eiδ(A+ λ)u, u〉 ≥ Cθ‖u‖2 for u ∈ V . Hence R(A+ λI)
is closed in V∗ , and it is also dense since R(A+ λI) ⊃ R(A + λI) = H by the above; i.e., A+ λI is
surjective. Mimicking (74), we get for u 6= 0, ‖w‖ = 1, both in V ,

|λ| · ‖u‖∗ ≤ sup
w

∣∣〈(A+ λ)u, w〉
∣∣+ C3C−1

θ

∣∣〈(A+ λ)u,
1
‖u‖u〉

∣∣ ≤ c‖(A+ λ)u‖∗. (75)

This yields injectivity of A+ λI and the resolvent estimate. A′ is covered through a∗ .

We denote by e−tA the semigroup generated by −A on V∗ , to distinguish it from e−tA on H .
Analogously for e−tA′ ∈ B(V∗). As A ⊂ A implies that (A + λI)−1|H = (A + λI)−1 , and since
A and A have the same sector Σ by Lemma 4, the well-known Laplace transformation formula,
cf. ([23], Theorem 1.7.7), yields the corresponding fact, say e−tA|H = e−tA for the semigroups:

Lemma 5. For all x ∈ H one has e−tAx = e−tAx as well as e−tA′x = e−tA∗x.

We could add that A and A∗ are dissipative, as m(A) > 0, m(A∗) > 0 in H , so e−tA , e−tA∗ are
contractions for t ≥ 0 by the Lumer–Philips theorem; cf. ([20], Corollary 14.12).

Using Lemmas 4 and 5, the announced formula results as an addendum to Theorem 4:
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Theorem 5. The unique solution u in X provided by Theorem 4 satisfies that

u(t) = e−tAu0 +
∫ t

0
e−(t−s)A f (s) ds for 0 ≤ t ≤ T, (76)

where each of the three terms belongs to X.

Proof. Once (76) has been shown, Theorem 4 applies in particular to cases with f = 0, yielding that
u(t) and hence e−tAu0 belongs to X . For general data ( f , u0) this means that the last term containing
f necessarily is a member of X too.

To derive Formula (76) in the present general context, one should note that all terms in the
equation ∂tu +Au = f belong to the space L2(0, T; V∗). Therefore the operator e−(T−t)A applies to
both sides as an integration factor, yielding

e−(T−t)A∂tu(t) + e−(T−t)AAu(t) = e−(T−t)A f (t). (77)

Now e−(T−t)Au(t) is in L1(0, T; V∗), cf. the argument prior to (46). For its derivative in D′(0, T; V∗)
the Leibniz rule in Proposition 3 gives, as u(t) ∈ V = D(A) for t a.e.,

∂t(e−(T−t)Au(t)) = e−(T−t)A∂tu(t) + e−(T−t)AAu(t). (78)

As both terms on the right-hand side are in L2(0, T; V∗), the implication (ii) =⇒ (i) in Lemma 1 gives

e−(T−t)Au(t) = e−TAu0 +
∫ t

0
e−(T−s)A f (s) ds. (79)

From this identity in C([0, T]; V∗) formula (76) results in case t = T by evaluation, when also Lemma 5
is used for the term containing u0 . However, obviously the above argument applies to any subinterval
[0, T1] ⊂ [0, T], whence (76) is valid for all t in [0, T].

Alternatively one could conclude by applying e−(T−s)A = e−(T−t)Ae−(t−s)A in (79) and use the
Bochner identity to commute e−(T−t)A with the integral: as analytic semigroups like e−(T−t)A are
always injective, cf. Proposition 1, formula (76) then results at once.

For later reference we show similarly the next inequality:

Corollary 2. The solution e−tAu0 to the problem with f = 0 in Theorem 4 belongs to L2(0, T; V) and fulfils,
for every u0 ∈ H,

sup
0≤t≤T

(T − t)|e−tAu0|2 ≤ C5

∫ T

0
‖e−tAu0‖2 dt. (80)

Proof. It is seen from Theorem 5 that u(t) = e−tAu0 always is in L2(0, T; V), as a member of X . By
taking scalar products with (T − ·)u on both sides of the differential equation, one obtains in L1(0, T)
the identity

(T − t)〈 u′(t), u(t) 〉+ (T − t)a(u(t), u(t)) = 0. (81)

Taking real parts here, applying Lemma 2 to u and integrating partially on [t, T], one obtains

∫ T

t
|u(s)|2 ds− (T − t)|u(t)|2 = −2

∫ T

t
(T − s)Re a(u(s), u(s)) ds. (82)

By reorganising this, a crude estimate yields the result at once for C5 = C2
C1

+ 2TC3 .
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3.4. Non-Selfadjoint Dynamics

It is classical that e−tAu0 in (76) is a term that decays exponentially for t→ ∞ if A is self-adjoint
and has compact inverse on H . This follows from the eigenfunction expansions, cf. the formulas
in the introduction and Section 2.2, which imply for the ’height’ function h(t) = |e−tAu0| that
h(t) = O(e−t Re λ1).

However, it is a much more precise dynamical property that h(t) is a strictly convex function for
u0 6= 0 (we refer to [25] for a lucid account of convex functions). Strict convexity is established below
for wide classes of non-self-adjoint A, namely if A is hyponormal or such that A2 is accretive.

Moreover, it seems to be a novelty that the injectivity of e−tA provided by Proposition 1 implies
the strict convexity. For simplicity we first explain this for the square h(t)2 .

Indeed, differentiating twice for t > 0 one finds for u = e−tAu0 ,

(h2)′′ = (−2 Re(Ae−tAu0 | e−tAu0))
′ = 2 Re(A2u | u) + 2(Au | Au). (83)

In case A2 is accretive, that is when m(A2) ≥ 0, we may keep only the last term in (83) to get that
(h2)′′(t) ≥ 2|Ae−tAu0|2 , which for u0 6= 0 implies (h2)′′ > 0 as both A and e−tA are injective; cf. (34)
and Proposition 1. Hence h2 is strictly convex for t > 0 if m(A2) ≥ 0.

Another case is when A is hyponormal. For an unbounded operator A this means, cf. the work of
Janas [18], that

D(A) ⊂ D(A∗) with |A∗u| ≤ |Au| for all u ∈ D(A). (84)

Note that if both A, A∗ are hyponormal, then A is normal. This is a quite general class, but it fits most
naturally into the present discussion:

For hyponormal A we have R(e−tA) ⊂ D(A) ⊂ D(A∗), which shows that A∗e−tAu0 is defined.
Using this and hyponormality once more in (83), we get

(h2)′′(t) ≥ (Au | A∗u) + (A∗u | Au) + |Au|2 + |A∗u|2 = |(A + A∗)e−tAu0|2. (85)

Now (h2)′′ > 0 follows for u0 6= 0 from injectivity of e−tA and of A + A∗ ; the latter holds since 2aRe

is V -elliptic. So h2 is also strictly convex for hyponormal A.
Also on the closed half-line with t ≥ 0 there is a result on non-selfadjoint dynamics. Here we

return to h(t) itself and normalise, at no cost, to |u0| = 1 to get cleaner statements:

Proposition 4. Let A denote a V-elliptic Lax–Milgram operator, defined from a triple (H, V, a), such that A
is hyponormal, as above, or such that A2 is accretive, and let u be the solution from Theorem 4 for f = 0 and
|u0| = 1. Then h(t) = |u(t)| is strictly decreasing and strictly convex for t ≥ 0 and differentiable from the
right at t = 0 with

h′(0) = −Re(Au0 | u0) for u0 ∈ D(A), (86)

and generally
h′(0) ≤ −m(A). (87)

Remark 6. The derivative h′(0) might be −∞ if u0 ∈ H \ D(A).

Proof. By the convexity shown above, (h2)′ is increasing. Since m(A) > 0 holds by the V -ellipticity,
h2 is strictly decreasing (and so is h) for t > 0 as

(h2)′(t) = −2 Re(Ae−tAu0 | e−tAu0) ≤ −2m(A)|e−tAu0|2 < 0. (88)

These properties give that h′ = (h2)′/(2
√

h2) is strictly increasing for t > 0, so the Mean Value
Theorem yields that (h(t)− h(s))/(t− s) < (h(u)− h(t))/(u− t) for 0 < s < t < u; i.e., h is strictly
convex on ]0, ∞[ .
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The inequality h((1− θ)t + θs) ≤ (1− θ)h(t) + θh(s), θ ∈ ]0, 1[ now extends by continuity to
t = 0. So does strict convexity of h, using twice that the slope function is increasing.

By convexity h′ is increasing for t > 0, so limt→0+ h′(t) = inf h′ ≥ −∞. For each 0 < s < 1 the
continuity of h yields |e−tAu0| ≥ s|u0| = s for all sufficiently small t ≥ 0. By the above formulas for
h′ and (h2)′ we have h′(t) = −Re(Ae−tAu0 | e−tAu0)/|e−tAu0|, so the Mean Value Theorem gives for
some τ ∈ ]0, t[ ,

t−1(h(t)− h(0)) = h′(τ) ≤ −m(A)s < 0. (89)

Hence h(0) > h(t) for all t > 0. Moreover, the limit of h′(τ) was shown above to exist for τ → 0+ , so
h′(0) exists in [−∞,−m(A)]. If u0 ∈ D(A) we may commute A with the semigroup in the formula
for h′(τ), which by continuity gives h′(0) = −Re(Au0 | u0).

Proposition 4 is a stiffness result for u = e−tAu0 , due to strict convexity of |e−tAu0|. It is
noteworthy that when A 6= A∗ , then Proposition 4 gives conditions under which the eigenvalues in
C \R (if any) never lead to oscillations in the size of the solution.

Remark 7. Since h′(0) is estimated in terms of the lower bound m(A), it is the numerical range ν(A), rather
than σ(A), that controls short-time decay of the solutions e−tAu0 .

Remark 8. In Proposition 4 we note that when A2 is accretive, i.e., m(A2) ≥ 0, then A is necessarily
sectorial with half-angle π/4; that is ν(A) ⊂

{
z ∈ C

∣∣ | arg(z)| ≤ π/4
}

. This may be seen as in ([17],
Lemma 3), where reduction to bounded operators was made in order to invoke the operator monotonicity of the
square root.

Remark 9. We take the opportunity to point out an error in ([17], Lemma 3), where it incorrectly was claimed
that having half-angle π/4 also is sufficient for m(A2) ≥ 0. A counter-example is available already for A in
B(H) (if dim H ≥ 2), as A = X + i Y for self-adjoint X, Y ∈ B(H): here m(A) ≥ 0 if and only if X ≥ 0, and
we can even arrange that A has half-angle π/4, that is | Im(Av | v)| ≤ Re(Av | v) or |(Yv | v)| ≤ (Xv | v),
by designing Y so that −X ≤ Y ≤ X. Here we may take Y = δX + λ1U, where δ > 0 is small enough
and U is a partial isometry that interchanges two eigenvectors v1 , v2 of X with eigenvalues λ2 > λ1 > 0,
U = 0 on H 	 span(v1, v2). In fact, writing v = c1v1 + c2v2 + v⊥ for v⊥ ∈ H 	 span(v1, v2), since
v1 ⊥ v2 , the above inequalities for Y are equivalent to 2λ1|Re(c1 c̄2)| ≤ λ1(1− δ)|c1|2 + (1− δ)λ2|c2|2 +
(1− δ)(Xv⊥ | v⊥), which by the positivity of X and Young’s inequality is implied by 1/(1− δ) ≤ (1− δ) λ2

λ1
,

that is if 0 < δ ≤ 1−
√

λ1/λ2 . Now, m(A2) ≥ 0 if and only if |Xv|2 ≥ |Yv|2 for all v in H, but this
will always be violated, as one can see from |Yv|2 = δ2|Xv|2 + λ2

1|Uv|2 + 2δλ1 Re(Xv |Uv) by inserting
v = v1 , for the last term drops out as v1 ⊥ v2 = Uv1 , so that actually |Yv1|2 = (δ2 + 1)λ2

1 > |Xv1|2 . Thus
A =

(
λ 0
0 4λ

)
+ iλ

(
δ 1
1 4δ

)
is a counter-example in C2 for any λ > 0, 0 < δ ≤ 1/2.

Remark 10. It is perhaps useful to emphasize the benefit from joining the two methods. Within semigroup
theory the “mild solution” given in (76) is the only possible solution to (53); but as our class of solutions is
larger, the extension of the old uniqueness argument in Theorem 5 was needed. Existence of a solution is for
analytic semigroups classical if f : [0, T]→ H is Hölder continuous, cf. ([23], Corollary 4.3.3). Using functional
analysis, this gap to the weaker condition f ∈ L2(0, T; V∗) is bridged by Theorem 5, which states that the mild
solution is indeed the solution in the space of vector distributions in Theorem 4; albeit at the expense that the
generator A is a V-elliptic Lax–Milgram operator.

4. Abstract Final Value Problems

In this section, we show for a Lax–Milgram operator A that the final value problem{
∂tu +Au = f in D′(0, T; V∗),

u(T) = uT in H,
(90)
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is well-posed when the final data belong to an appropriate space, to be identified below. This is obtained
via comparison with the initial value problem treated in Section 3.

4.1. A Bijection From Initial to Terminal States

According to Theorem 4, the solutions to the differential equation u′ +Au = f are for fixed f
parametrised by the initial states u(0) ∈ H . To study the terminal states u(T) we note that (76) yields

u(T) = e−TAu(0) +
∫ T

0
e−(T−s)A f (s) ds. (91)

This representation of u(T) is essential in what follows, as it gives a bijective correspondence
u(0)↔ u(T) between the initial and terminal states, as accounted for below.

First we analyse the integral term above by introducing the yield map f 7→ y f given by

y f =
∫ T

0
e−(T−s)A f (s) ds, f ∈ L2(0, T; V∗). (92)

Clearly y f is a vector in V∗ by definition of the integral (and since C([0, T]; V∗) ⊂ L1(0, T; V∗)). But
actually it is in the smaller space H , for y f = u(T) holds in H when u is the solution for u0 = 0
of (53), and then Corollary 1 yields an estimate of supt∈[0,T] |u(t)| by the L2-norm of f ; cf. (61).
In particular, we have

|y f | ≤ c‖ f ‖L2(0,T;V∗). (93)

Moreover, f 7→ y f is by (93) bounded L2(0, T; V∗)→ H , and it has dense range in H containing
all x ∈ D(eεA) for every ε > 0, for if in (92) we insert the piecewise continuous function

fε(s) = 1[T−ε,T](s)e
(T−ε−s)A(

1
ε

eεAx), (94)

then the semigroup property gives y fε
=
∫ T

T−ε e−εA( 1
ε eεAx) ds = 1

ε

∫ T
T−ε x ds = x. However, standard

operator theory gives the optimal result, that is, surjectivity:

Proposition 5. The yield map f 7→ y f is in B(L2(0, T; V∗), H) and it is surjective, R(y f ) = H. Its adjoint
in B(H, L2(0, T; V)) is the orbit map given by v 7→ e−(T−·)A∗v.

Proof. To determine the adjoint of f 7→ y f , we first calculate for f ∈ L2(0, T; H) so that the integrand
in (92) belongs to C([0, T]; H). For v ∈ H we get, using the Bochner identity twice,

(y f | v) =
∫ T

0
(e−(T−s)A f (s) | v) ds =

∫ T

0
( f (s) | e−(T−s)A∗v) ds = 〈 f , e−(T−s)A∗v 〉. (95)

The last scalar product makes sense because s 7→ e−(T−s)A∗v is in L2(0, T; V), as seen by applying
Corollary 2 to the Lax–Milgram operator A∗ , and L2(0, T; V) is the dual space to L2(0, T; V∗);
cf. Remark 11 below. Since L2(0, T; H) is dense in L2(0, T; V∗), it follows by closure that the left-
and right-hand sides are equal for every f ∈ L2(0, T; V∗) and v ∈ H . Hence v 7→ e−(T−·)A∗v is the
adjoint of y f .

Applying Corollary 2 to A∗ for t = 0, a change of variables yields for every v ∈ H ,

|v|2 ≤ C5

T

∫ T

0
‖e−(T−s)A∗v‖2 ds. (96)
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This estimate from below of the adjoint is equivalent to closedness of the range of y f , as the range is
dense by (94). This follows from the Closed Range Theorem; cf. ([26], Theorem 3.1) for a general result
on this.

Remark 11. The Banach spaces L2(0, T; V), L2(0, T; V∗) are in duality, and L2(0, T; V)∗ identifies with
L2(0, T; V∗): for each Λ ∈ L2(0, T; V)∗ the inner product aRe and Riesz’ theorem yield h ∈ L2(0, T; V) that
for g ∈ L2(0, T; V) fulfils 〈Λ, g 〉 =

∫ T
0 aRe(h, g) dt; so 〈Λ, g 〉 =

∫ T
0 〈 f , g 〉 dt for f = 1

2 (A+A′)h in
L2(0, T; V∗); cf. (23) and (25).

The surjectivity of y f can be shown in important cases using an explicit construction, which is of
interest in control theory (cf. Remark 12), and given here for completeness:

Proposition 6. If A∗ = A and A−1 is compact, every v ∈ H equals y f for some computable f ∈ L2(0, T; V∗).

Proof. Fact 1 yields an ortonormal basis (en)n∈N so that Aen = λnen , hence any v in H fulfils
v = ∑j αjej with ∑j |αj|2 < ∞. By Fact 2 every f ∈ L2(0, T; V∗) has an expansion

f (t) =
∞

∑
j=1

β j(t)ej =
∞

∑
j=1
〈 f (t), ej〉ej (97)

converging in V∗ for t a.e. Since e−(T−s)Aej = e−(T−s)λj ej , cf. Remark 2, such f fulfill

y f =
∫ T

0
e−(T−s)A f (s) ds =

∞

∑
j=1

e−Tλj(
∫ T

0
β j(s)e

sλj ds)ej. (98)

Hence y f = v is equivalent to the validity of
∫ T

0 β j(s)e
sλj ds = αje

Tλj for j ∈ N. So if, in terms of some
θj ∈ ]0, 1[ to be determined, we take the coefficients of f (t) as

β j(t) = k j1[θjT,T](t) exp(t(
√

λj − λj)), (99)

then the condition will be satisfied if and only if k j = αje
Tλj
√

λj(e
T
√

λj − eθjT
√

λj)−1 .

Moreover, using the equivalent norm ||| · |||∗ on V∗ in Fact 2,

‖ f ‖2
L2(0,T;V∗) =

∫ T

0
||| f (t)|||2∗ dt =

∞

∑
j=1

λ−1
j

∫ T

0
|β j(t)|2 dt. (100)

Therefore f is in L2(0, T; V∗) whenever
∫ T

0 |β j|2 dt ≤ Cλj|αj|2 holds eventually for some C > 0, and
here a direct calculation gives

∫ T

0

|β j|2

|k j|2
dt =

e2T(
√

λj−λj) − e2θjT(
√

λj−λj)

2
√

λj − 2λj

=
e2T
√

λj(e2T(1−θj)(λj−
√

λj) − 1)

2e2Tλj(λj −
√

λj)
. (101)

So in view of the expression for k j , the quadratic integrability of f follows if the θj can be chosen

so that the above numerator is estimated by C(λj −
√

λj)(e
T
√

λj − eθjT
√

λj)2 with C independent of
j ≥ J for a suitable J , or more simply if

e2T(1−θj)(λj−
√

λj) − 1 ≤ C(λj −
√

λj)(1− e−(1−θj)T
√

λj)2. (102)
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We may take J so that λj > 3 for all j ≥ J , since at most finitely many eigenvalues do not fulfill this.

Then θj := 1− (λj −
√

λj)
−1 belongs to ]0, 1[ , and the above is reduced to

exp(2T)− 1 ≤ C(λj −
√

λj)(1− exp(− T√
λj − 1

))2. (103)

Applying the Mean Value Theorem to exp on [− T√
λj−1

, 0], we obtain the inequality

(λj −
√

λj)(1− exp(
−T√
λj − 1

))2 ≥ exp(− 2T√
3− 1

)
T2λj

λj −
√

λj

> exp(−4T)T2 > 0. (104)

Hence (103) is fulfilled for C = exp(6T)/T2 .

Remark 12. In the above proof supp β j ⊂ [θjT, T], so the given v can be attained by y f by arranging the
coefficients β j in each dimension successively as time approaches T, as θj ↗ 1 follows in (99) by counting
the eigenvalues so that λj ↗ ∞. This can even be postponed to any given T0 < T, for supp β j ⊂ [T0, T]
holds whenever θjT ≥ T0 , and we may reset to θj = T0/T and adjust the k j accordingly, for the finitely many
remaining j. Both themes may be of interest in infinite dimensional control theory.

In order to isolate u(0) in (91), it will of course be decisive that the operator e−TA has an inverse,
as was shown for general analytic semigroups in Proposition 1.

For our Lax–Milgram operator A with analytic semigroup e−tA generated by A = −A, it is the
symbol etA that denotes the inverse, consistent with the sign convention in (41). Hence the properties
of etA can be read off from Proposition 2, where (43) gives

e−tAeTA ⊂ e(T−t)A for 0 ≤ t ≤ T . (105)

Moreover, it is decisive for the interpretation of the compatibility conditions in Section 4.2 below
to know that the domain inclusions in Proposition 2 are strict. We include a mild sufficient condition
along with a characterisation of the domain D(etA).

Proposition 7. If H has an orthonormal basis of eigenvectors (ej)j∈N of A so that the corresponding eigenvalues
fulfil Re λj → ∞ for j → ∞, then the inclusions in (44) are both strict, and D(etA) is the completion of
span(ej)j∈N with respect to the graph norm,

‖x‖2
D(etA) =

∞

∑
j=1

(1 + e2 Re λjt)|(x | ej)|2. (106)

The domain D(etA) equals the subspace S ⊂ H in which the right-hand side is finite.

Proof. If x ∈ S the vector v = ∑∞
j=1 eλjt(x | ej)ej is well defined in H , and with methods from Remark 2

it follows that e−tAv = x; i.e., x ∈ D(etA).
Conversely, for x ∈ D(etA) there is a vector y ∈ H such that x = e−tAy = ∑∞

j=1(y | ej)e
−tλj ej . That

is, eλjt(x | ej) = (y | ej) ∈ `2 , so x ∈ S. Then |etAx|2 = ∑ e2 Re λjt|(x | ej)|2 yields (106).
Now any x ∈ D(et′A) is also in D(etA) for t < t′ , since Re λj > 0 holds in (106) for all j by

V -ellipticity. As Re λj → ∞, we may choose a subsequence so that Re λjn > n and set

x =
∞

∑
n=1

1
n

e−λjn tejn . (107)
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Here x ∈ D(etA) as it is in S by construction for t ≥ 0; but not in D(et′A) for t′ > t as

∞

∑
j=1

e2 Re λjt′ |(x | ej)|2 =
∞

∑
n=1

e2 Re λjn (t
′−t) 1

n2 >
∞

∑
n=1

e2n(t′−t)

n2 = ∞. (108)

Furthermore, using orthogonality, it follows for any x ∈ D(etA) that, for N → ∞,∥∥x− ∑
j≤N

(x | ej)ej
∥∥2

D(etA)
= ∑

J>N
(1 + e2 Re λjt)|(x | ej)|2 → 0. (109)

Hence the space D(etA) has span(ej)j∈N as a dense subspace. That is, the completion of the latter with
respect to the graph norm identifies with the former.

After this study of the map y f , the injectivity of the operator e−tA and the domain D(etA), cf.
Propositions 1, 2, 5 and 7, we address the final value problem (90) by solving (91) for the vector u(0).
This is done by considering the map

u(0) 7→ e−TAu(0) + y f . (110)

This is composed of the bijection e−TA and a translation by the vector y f , hence is bijective from H to
the affine space R(e−TA) + y f . In fact, using (41), inversion gives

u(0) = eTA(u(T)− ∫ T

0
e−(T−s)A f (s) ds

)
= eTA(u(T)− y f ). (111)

This may be summed up thus:

Theorem 6. For the set of solutions u in X of the differential equation (∂t + A)u = f with fixed data
f ∈ L2(0, T; V∗), the Formulas (91) and (111) give a bijective correspondence between the initial states u(0) in
H and the terminal states u(T) in y f + D(eTA).

In view of the linearity, the affine space y f + D(eTA) might seem surprising. However, a suitable
reinterpretation gives the compatibility condition introduced in the next section.

4.2. Well-Posedness of the Final Value Problem

Since R(eTA) ⊂ H , the initial state in (111) can be inserted into Formula (76), so any solution u
of (90) must satisfy

u(t) = e−tAeTA(uT − y f ) +
∫ t

0
e−(t−s)A f (s) ds. (112)

Here one could contract the first term a bit, as e−tAeTA ⊂ e(T−t)A by (105). But we refrain from this
because e−tAeTA rather obviously applies to uT − y f if and only if this vector belongs to D(eTA) — and
the following theorem corroborates that this is equivalent to the unique solvability in X of the final
value problem (90):

Theorem 7. Let V be a separable Hilbert space contained algebraically, topologically and densely in H, and
let A be the Lax–Milgram operator defined in H from a bounded V-elliptic sesquilinear form a, and having
bounded extension A : V → V∗ . For given f ∈ L2(0, T; V∗) and uT ∈ H, the condition

uT − y f ∈ D(eTA) (113)
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is necessary and sufficient for the existence of some u ∈ X, cf. (60), that solves the final value problem (90).
Such a function u is uniquely determined and given by (112), where all terms belong to X as functions of t.

Proof. When (90) has a solution u ∈ X , then uT is reachable from the initial state u(0) determined
from the bijection in Theorem 6, which gives that uT − y f = e−TAu(0) ∈ D(eTA). Hence (113) is
necessary and (112) follows by insertion, as explained prior to (112). Uniqueness is obvious from the
right-hand side of (112).

When uT , f fulfill (113), then u0 = eTA(uT − y f ) defines a vector in H , so Theorem 4 yields a
function u ∈ X solving (∂t +A)u = f and u(0) = u0 . According to Theorem 6 this u has final state
u(T) = e−TAeTA(uT − y f ) + y f = uT , hence solves (90).

Finally, the fact that the integral in (112) defines a function in X follows at once from Theorem 5,
for it states that it equals the solution in X of ũ′ +Aũ = f , ũ(0) = 0. Since u ∈ X in (112), also
e−tAeTA(uT − y f ) is a function in X .

Remark 13. When ( f , uT) fulfils (113), then (111) yields that uT − y f = e−TAu(0).

Remark 14. Writing condition (113) as uT = e−TAu(0) + y f , cf. Remark 13, this part of Theorem 7 is natural
inasmuch as each set of admissible terminal data uT are in effect a sum of the terminal state, e−TAu(0), of the
semi-homogeneous initial value problem (53) with f = 0 and of the terminal state y f of the semi-homogeneous
problem (53) with u(0) = 0. Moreover, the uT fill at least a dense set in H, as for fixed u(0) this follows from
Proposition 5; for fixed f from the density of D(eTA) seen prior to Proposition 2.

Remark 15. To elucidate the criterion uT− y f ∈ D(eTA) in formula (113) of Theorem 7, we consider the matrix

operator PA =
(

∂t+A
rT

)
, with rT denoting restriction at t = T, and the “forward” map Φ( f , uT) = uT − y f ,

which by (61) and Proposition 5 give bounded operators

X
PA−−−−−→

L2(0, T; V∗)
⊕
H

Φ−−−−→ H. (114)

Then, in terms of the range R(PA), clearly (90) has a solution if and only if
(

f
uT

)
∈ R(PA), so the compatibility

condition (113) means that R(PA) = Φ−1(D(eTA)) = D(eTAΦ).

The paraphrase at the end of Remark 15 is convenient for the choice of a useful norm on the data.
Indeed, we now introduce the space of admissible data Y = D(eTAΦ), i.e.,

Y =
{
( f , uT) ∈ L2(0, T; V∗)⊕ H

∣∣∣ uT − y f ∈ D(eTA)
}

, (115)

endowed with the graph norm on D(eTAΦ) given by

‖( f , uT)‖2
Y = |uT |2 + ‖ f ‖2

L2(0,T;V∗) + |e
TA(uT − y f )|2. (116)

Using the equivalent norm ||| · |||∗ from (26) for V∗ , the above is induced by the inner product

(uT | vT) +
∫ T

0
( f (s) | g(s))V∗ ds + (eTA(uT − y f ) | eTA(vT − yg)). (117)

This space Y is complete: as Φ in Remark 15 is bounded, the composite map eTAΦ is a closed operator
from L2(0, T; V∗)⊕ H to H , so its domain D(eTAΦ) = Y is complete with respect to the graph norm
given in (116). Hence Y is a Hilbert(-able) space—but we shall often just work with the equivalent
norm on the Banach space Y obtained by using simply ‖ · ‖∗ on V∗ .
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Moreover, the norm in (116) also leads to continuity of the solution operator for (90):

Theorem 8. The solution u ∈ X in Theorem 7 depends continuously on the data ( f , uT) in the Hilbert space
Y in (115), or equivalently, for some constant c we have

∫ T

0
‖u(t)‖2 dt + sup

t∈[0,T]
|u(t)|2 +

∫ T

0
‖∂tu(t)‖2

∗ dt

≤ |uT |2 + c
( ∫ T

0
‖ f (t)‖2

∗ dt +
∣∣eTA(uT −

∫ T

0
e−(T−t)A f (t) dt)

∣∣2). (118)

Another equivalent norm on the Hilbert space Y is obtained by omitting the term |uT |2 .

Proof. This follows from Corollary 1 by inserting u0 = eTA(uT − y f ) from (111) into (64), for this gives
‖u‖2

X ≤ c|eTA(uT − y f )|2 + c‖ f ‖2
L2(0,T;V∗) , where one can add |uT |2 . Conversely the boundedness of

y f and e−TA yield that |uT |2 ≤ c‖ f ‖2 + c|eTA(uT − y f )|2 .

Of course, Theorems 7 and 8 together mean that the final value problem in (90) is well posed in
the spaces X and Y .

5. The Heat Equation With Final Data

To apply the theory in Section 4, we treat the heat equation and its final value problem. In the
sequel Ω stands for a smooth, open bounded set in Rn , n ≥ 2 as described in ([20], Appendix C).
In particular Ω is locally on one side of its boundary Γ := ∂Ω.

For such sets we consider the problem of finding the u satisfying
∂tu(t, x)− ∆u(t, x) = f (t, x) in Q :=]0, T[×Ω,

γ0u(t, x) = g(t, x) on S :=]0, T[×∂Ω,

rTu(x) = uT(x) at {T} ×Ω.

(119)

Hereby the trace of functions on Γ is written in the operator notation γ0u = u|Γ ; similarly we also use
γ0 for traces on S. rT denotes the trace operator at t = T .

We shall also use H1
0(Ω), which is the subspace obtained by closing C∞

0 (Ω) in the Sobolev space
H1(Ω). Dual to this one has H−1(Ω), which identifies with the set of restrictions to Ω from H−1(Rn),
endowed with the infimum norm. The reader is referred to Chapter 6 and Remark 9.4 in [20] for the
spaces Hs(Rn) and the infimum norm.

5.1. The Boundary Homogeneous Case

In case g ≡ 0 in (119), the consequences of the abstract results in Section 4.2 are straightforward
to account for. Indeed, with

V = H1
0(Ω), H = L2(Ω), V∗ = H−1(Ω), (120)

the boundary condition γ0u = 0 is imposed via the condition that u(t) ∈ V for all t, or rather through
use of the Dirichlet realization of the Laplacian−∆γ0 (denoted by −∆D in the introduction), which is
the Lax–Milgram operator A induced by the triple (L2(Ω), H1

0(Ω), s) for

s(u, v) =
n

∑
j=1

(∂ju | ∂jv)L2(Ω). (121)

In fact, the Poincaré inequality yields that the form s(u, v) is H1
0(Ω)-elliptic, and as it is symmetric too,

A = −∆γ0 is a selfadjoint unbounded operator in L2(Ω), with D(−∆γ0) ⊂ H1
0(Ω).
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Hence the operator −A = ∆γ0 generates an analytic semigroup et∆γ0 in B(L2(Ω)); the bounded
extension −A = ∆ : H1

0(Ω) → H−1(Ω) generates the analytic semigroup e−tA = et∆ on H−1(Ω);
cf. Lemma 4. Consistently with Section 4.1 we also set (et∆γ0 )−1 = e−t∆γ0 .

For the homogeneous problem with g = 0 in (119) we have the solution and data spaces

X0 = L2(0, T; H1
0(Ω))

⋂
C([0, T]; L2(Ω))

⋂
H1(0, T; H−1(Ω)), (122)

Y0 =
{
( f , uT) ∈ L2(0, T; H−1(Ω))⊕ L2(Ω)

∣∣∣ uT − y f ∈ D(e−T∆γ0 )
}

. (123)

Here, with y f as the usual integral (cf. (125) below), the data norm in (116) amounts to

‖( f , uT)‖2
Y0

=
∫ T

0
‖ f (t)‖2

H−1(Ω) dt +
∫

Ω
(|uT |2 + |e−T∆γ0 (uT − y f )|2) dx. (124)

From Theorems 7 and 8 we may now read off the following result, which is a novelty even though
the problem is classical:

Theorem 9. Let A = −∆γ0 be the Dirichlet realization of the Laplacian in Ω and A = −∆ its extension, as
introduced above. When g = 0 in the final value problem (119) and f ∈ L2(0, T; H−1(Ω)), uT ∈ L2(Ω), then
there exists a solution u in X0 of (119) if and only if the data ( f , uT) are given in Y0 , i.e., if and only if

uT −
∫ T

0
e−(T−s)A f (s) ds belongs to D(e−T∆γ0 ). (125)

In the affirmative case, such u are uniquely determined in X0 and fulfil the estimate ‖u‖X0 ≤ c‖( f , uT)‖Y0 .
Furthermore the difference in (125) equals eT∆γ0 u(0) in L2(Ω).

Remark 16. For A = −∆γ0 one has the equivalent norms in Facts 1, 2 and the characterisation of D(e−T∆γ0 )

in Proposition 7. This is a classical consequence of the compact embedding of H1
0(Ω) into L2(Ω) for bounded

sets Ω (e.g., ([20], Theorem 8.2) ). Thus one obtains for f = 0, g = 0 the situation described in the introduction,
where the space of final data, normed by |||uT |||, via Proposition 7 is seen to be D(e−T∆γ0 ) with equivalent norms.
As the completed solution space E in the introduction one may take the Banach space E = X0 , cf. Theorem 9.

5.2. The Inhomogeneous Case

For non-zero data, i.e., when g 6= 0 on S, cf. (119), one may of course try to reduce to an equivalent
homogeneous problem by choosing a function w so that γ0w = g on the surface S. Here we recall
the classical

Lemma 6. γ0 : H1(Q)→ H1/2(S) is a continuous surjection having a bounded right inverse K̃0 , so w = K̃0g
maps every g ∈ H1/2(S) to w ∈ H1(Q) fulfilling γ0w = g and

‖w‖H1(Q) ≤ c‖g‖H1/2(S). (126)

Lacking a reference with details, we note that the lemma is well known for sets like Ω, hence
for smooth open bounded sets Ω1 ⊂ Rn+1 with operators γ0,Ω1 and K̃0,Ω1 ; cf. Theorem B.1.9 in [22]
or Theorem 9.5 in [20] for the flat case. In particular, one can stretch Q to ]− 2T, 2T[×Ω and attach
rounded ends in a smooth way to obtain a set Ω1 ⊂ ]− 3T, 3T[×Ω equal to Q for 0 < t < T . Here
H1(Q) = rQH1(Ω1) is a classical result, when the latter space of restrictions to Q has the infimum
norm. While Hs(∂Ω1) is defined using local coordinates in a standard way, cf. ([20], Formula (8.10)),
the Sobolev space Hs(S) on the surface S can be defined as the set of restrictions rS Hs(∂Ω1). When
rS g̃ = g, then K̃0g = rQK̃0,Ω1 g̃ defines the desired operator K̃0 , as γ0,Ω1 acts as γ0 in Q.
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Remark 17. The norm in Hs(S) can be chosen so that this is a Hilbert space; cf. ([20], Formula (8.10)).
However, Sobolev spaces on smooth surfaces is a vast subject, requiring so-called distribution densities as
explained in ([22], Section 6.3). We refer the reader to ([20], Section 8.2) for a short introduction to this subject;
as there, we prefer a more intuitive approach (exploiting the surface measure on Ω1 ) but skip details. A systematic
exposition of this framework can be found in ([27], Section 4), albeit in a general Lp -setting with mixed-norms
leading to anisotropic Triebel–Lizorkin spaces Fs,~a

~p,q(S) on the curved boundary, which in general are the correct
boundary data spaces for parabolic problems with different integrability properties in space and time, as noted
in [28]; cf. the discussion of the heat equation in ([27], Section 6.5) and the more detailed account in ([29],
Chapter 7).

However, when splitting the solution of (119) as u = v + w for w as in Lemma 6, then v should
satisfy (119) with data ( f̃ , 0, ũT),

f̃ = f − (∂tw− ∆w), ũT = uT − rTw. (127)

At first glance one might therefore think that w is inconsequential for the compatibility condition (125),
for ũT − y f̃ there equals the usual term uT − y f minus rTw− y∂tw−∆w , where the latter seemingly

belongs to D(e−T∆γ0 ) as the pair (∂tw−∆w, rTw) could seem to be a vector in the range of the operator
P−∆ in Remark 15.

But obviously this is not the case, because the function w is outside the domain X0 of P−∆ . Indeed,
w ∈ L2(0, T; H1(Ω)) and has γ0w = g 6≡ 0 in the non-homogeneous case, whence w /∈ L2(0, T; H1

0(Ω)).
So one might think it would be necessary to discuss homogeneous problems with larger solution
spaces X̃0 than X0 .

We propose to circumvent these difficulties by applying Lemma 6 to the corresponding linear
initial value problem instead, since in the present spaces of low regularity there is no compatibility
condition needed for this: 

∂tu− ∆u = f in Q,

γ0u = g on S,

r0u = u0 at {0} ×Ω.

(128)

More precisely, we shall analogously to Section 4 obtain a bijection u(0)↔ u(T) between initial and
final states by establishing a solution formula as in Theorem 5. (For general background material
on (128) the reader could consult Section III.6 in [30], and for the fine theory including compatibility
conditions we refer to [15].)

Analogously to Theorem 4 and Corollary 1, we depart from well-posedness of (128). This is well
known per se, but we need to briefly review the explanation in order to account later for the decisive
existence of an improper integral showing up when g 6= 0 in (119).

Since the solutions now take values in the full space H1(Ω), we shall in this section denote the
solution space by X1 . It is given by

X1 = L2(0, T; H1(Ω))
⋂

C([0, T]; L2(Ω))
⋂

H1(0, T; H−1(Ω)), (129)

and X1 is a Banach space when normed analogously to (61),

‖u‖X1 = (‖u‖2
L2(0,T;H1(Ω)) + sup

0≤t≤T
‖u(t)‖2

L2(Ω) + ‖u‖
2
H1(0,T;H−1(Ω)))

1/2. (130)

As H1 , H−1 are not dual on Ω, the redundancy in Remark 5 does not extend to the term
sup[0,T] ‖u‖L2 above.
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Proposition 8. The heat initial value problem (128) has a unique solution u ∈ X1 for given data f ∈
L2(0, T; H−1(Ω)), g ∈ H1/2(S), u0 ∈ L2(Ω), and there is an estimate

‖u‖2
X1
≤ c(‖u0‖2

L2(Ω) + ‖ f ‖2
L2(0,T;H−1(Ω)) + ‖g‖

2
H1/2(S)). (131)

Proof. With w = K̃0g as in Lemma 6, we write u = v + w for some v ∈ X1 solving (128) for data

f̃ = f − (∂t − ∆)w, g̃ = 0, ũ0 = u0 − w(0). (132)

Here w(0) is well defined, as w ∈ H1(Q) implies w ∈ C([0, T]; L2(Ω)), by an application of Lemma 1.
That w even is in X1 results from the easy estimates, where I = ]0, T[ ,

‖w′‖2
L2(I;H−1) + ‖∆w‖2

L2(I;H−1) ≤ ‖w‖
2
H1(I;L2)

+ c‖w‖2
L2(I;H1) ≤ c‖w‖2

H1(Q). (133)

This moreover yields that f̃ ∈ L2(0, T; H−1(Ω)), and ũ0 ∈ L2(Ω), so by Theorem 4, the boundary
homogeneous problem for v has a solution in X0 ; cf. (122). Hence (128) has the solution u = v + w in
X1 ; and by linearity this is unique in view of Theorem 4.

Inspecting the above arguments, we first note that by (57),

sup
0≤t≤T

‖w(t)‖L2(Ω) ≤ c(‖w‖L2(0,T;L2(Ω)) + ‖∂tw‖L2(0,T;L2(Ω))) ≤ c‖w‖2
H1(Q), (134)

so the estimate (133) can be sharpened to ‖w‖2
X1
≤ c‖w‖2

H1(Q)
. Now Corollary 1 gives

‖u‖2
X1
≤ 2(‖v‖2

X0
+ ‖w‖2

X1
) ≤ c(‖ũ0‖2

L2(Ω) + ‖ f̃ ‖2
L2(0,T;H−1(Ω)) + ‖w‖

2
X1
)

≤ c(‖u0‖2
L2(Ω) + ‖ f ‖2

L2(0,T;H−1(Ω)) + ‖(∂t − ∆)w‖2
L2(0,T;H−1) + ‖w‖

2
H1(Q)) (135)

which via (133) and (126) entails the stated estimate (131).

As a crucial addendum, we may apply Theorem 5 directly to the function v constructed during
the above proof and then substitute v = u− w to derive that

u(t) = w(t) + et∆γ0 (u0 − w(0)) +
∫ t

0
e−(t−s)A( f − (∂s − ∆)w) ds. (136)

This formula for the u solving the inhomogeneous final value problem applies especially for t = T ,
but we shall keep t in [0, T] to deduce a formula for its solution.

Our strategy in the following will be to simplify the contributions from w, and ultimately to
reintroduce the boundary data g instead of w. To do so, we apply the Leibniz rule in Proposition 3 to
our function w in H1(0, t; L2(Ω)) and get

∂s(e(t−s)∆γ0 w(s)) = e(t−s)∆γ0 ∂sw(s)− ∆γ0 e(t−s)∆γ0 w(s). (137)

As the first inconvenience, ∆γ0 does not commute with the semigroup, since w as an element of
H1 \ H1

0 belongs to neither the domain of the realization −∆γ0 , nor to that of A.
Secondly, the right-hand side is only integrable on [0, t − ε] for ε > 0, as the last term has a

singularity at s = t; cf. Theorem 3. As a remedy, we may use the improper Bochner integral

−
∫ t

0
∆γ0 e(t−s)∆γ0 w(s) ds = lim

ε→0

∫ t−ε

0
∆γ0 e(t−s)∆γ0 w(s) ds. (138)
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Lemma 7. For every w ∈ H1(Q) the limit (138) exists in L2(Ω) and

w(t)− et∆γ0 w(0) =
∫ t

0
e(t−s)∆γ0 ∂sw(s) ds− −

∫ t

0
∆γ0 e(t−s)∆γ0 w(s)) ds. (139)

Proof. As et∆γ0 is uniformly bounded according to Theorem 3 and w ∈ C([0, T], L2(Ω)) was seen in
the above proof, bilinearity gives that in L2(Ω),

e(t−(t−ε))∆γ0 w(t− ε)→ w(t) for ε→ 0. (140)

Moreover, integration of both sides in (137) gives, cf. Lemma 1,

[e(t−s)∆γ0 w(s)]s=t−ε
s=0 =

∫ t−ε

0
(−∆γ0)e

(t−s)∆γ0 w(s) ds +
∫ t−ε

0
e(t−s)∆γ0 ∂sw(s) ds. (141)

The left-hand side converges by (140), and by dominated convergence the rightmost term does so
for ε → 0+ (through an arbitrary sequence), so also

∫ t−ε
0 ∆γ0 e(t−s)∆γ0 w(s) ds converges in L2(Ω) as

claimed. Then (139) is the resulting identity among the limits.

Identity (139) from the lemma applies directly in the solution formula (136), and because terms
with ∂sw cancel, one obtains

u(t) = et∆γ0 u0 +
∫ t

0
e−(t−s)A f ds +

∫ t

0
e−(t−s)A∆w ds− −

∫ t

0
∆γ0 e(t−s)∆γ0 w ds. (142)

We shall reduce the difference of the last two integrals in order to reintroduce the boundary data g
instead of w.

First we use that ∆ = AA−1∆ on H1(Ω) and write both terms as improper integrals,

− −
∫ t

0
Ae−(t−s)A(I −A−1∆)w(s) ds. (143)

Here Q = I −A−1∆ is a well-known projection from the fine elliptic theory of the problem

− ∆u = f , γ0u = g. (144)

Indeed, if this is treated via the matrix operator
( −∆

γ0

)
, which has an inverse in row form ( −A−1 K0 )

that applies to the data
(

f
g

)
, the basic composites appear in the two operator identities on H1(Ω) and

H−1(Ω)⊕ H1/2(Γ) respectively,

I =
(
−A−1 K0

)(−∆
γ0

)
= A−1∆ + K0γ0, (145)(

I 0
0 I

)
=

(
−∆
γ0

)(
−A−1 K0

)
=

(
∆A−1 ∆K0

−γ0A−1 γ0K0

)
. (146)

Thus we get from the first formula that Q = I −A−1∆ = K0γ0 on H1(Ω).
However, before we implement this, we emphasize that the simplicity of the Formulas (145)

and (146) relies on a specific choice of K0 explained in the following:
As A = ∆

∣∣
H1

0
holds in the distribution sense, P := A−1∆ clearly fulfils P2 = P, is bounded

H1 → H1
0 and equals I on H1

0 , so P is the projection onto H1
0(Ω) along its null space, which evidently

is the closed subspace of harmonic H1 -functions, namely

Z(−∆) = { u ∈ H1(Ω) | −∆u = 0 }. (147)
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Therefore H1 is a direct sum,

H1(Ω) = H1
0(Ω)u Z(−∆). (148)

We also let Q = I − P denote the projection on Z(−∆) along H1
0(Ω), as from the context it can be

distinguished from the time cylinder (also denoted by Q).
Since γ0 : H1(Ω)→ H1/2(Γ) is surjective with H1

0 as the null-space, it has an inverse K0 on the
complement Z(−∆), which by the open mapping principle is bounded

K0 : H1/2(Γ)→ Z(−∆). (149)

Hence K0 : H1/2(Γ) → H1(Ω) is a bounded right-inverse, i.e., γ0K0 = IH1/2(Γ) . The rest of (146)
follows at once. Moreover, since γ0P = 0,

K0γ0 = K0γ0(P + Q) = K0γ0Q = IZ(−∆)Q = Q, (150)

which by definition of Q and P gives (145). (K0 is known as a Poisson operator; these are amply
discussed within the pseudo-differential boundary operator calculus in [31].)

Using this set-up we obtain:

Proposition 9. If u denotes the unique solution to the initial boundary value problem (128) provided by
Proposition 8, then u fulfils the identity

u(t) = et∆γ0 u0 +
∫ t

0
e−(t−s)A f (s) ds− −

∫ t

0
Ae(t−s)∆γ0 K0g(s) ds, (151)

where the improper integral converges in L2(Ω) for every t ∈ [0, T].

Proof. Because of (150) we may write (I−A−1∆)w = Qw = K0γ0w = K0g when γ0w = g, and when
this is applied in (143), the solution formula (142) simplifies to (151).

For t = T the second term in (151) gives back y f =
∫ T

0 e−(T−s)A f (s) ds from Section 4. However,
the full influence on u(T) from the boundary data g is collected in the third term as

zg = −
∫ T

0
Ae(T−s)∆γ0 K0g(s) ds. (152)

That the map g 7→ zg is well defined is clear by taking t = T in Proposition 9; this is a non-trivial result.
The map is linear by the calculus of limits. In case f = 0, u0 = 0 it is seen from (151) that zg = u(T), so
obviously ‖zg‖L2(Ω) ≤ supt ‖u(t)‖L2(Ω) , which in turn is estimated by c‖g‖H1/2(S) using Proposition 8.
This proves

Lemma 8. The linear operator g 7→ zg is bounded H1/2(S)→ L2(Ω).

Finally, from Proposition 9, we conclude for an arbitrary solution in X1 of the heat equation
u′ − ∆u = f with γ0u = g on S that

u(T) = eT∆γ0 u(0) + y f − zg. (153)

Therefore we also here have a bijection u(0)↔ u(T), for the above breaks down to application of the
bijection eT∆γ0 , cf. Proposition 1, and a translation in L2(Ω) by the fixed vector y f − zg .

We are now ready to obtain the unique solvability of the inhomogeneous final value problem (119).
Our result for this is similar to the abstract Theorem 7 (as is its proof), except for the important
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clarification that the boundary data g do appear in the compatibility condition, but only via the
term zg :

Theorem 10. For given data f ∈ L2(0, T; H−1(Ω)), g ∈ H1/2(S), uT ∈ L2(Ω) the final value problem (119)
is solved by a function u ∈ X1 , whereby

X1 = L2(0, T; H1(Ω))
⋂

C([0, T]; L2(Ω))
⋂

H1(0, T; H−1(Ω)), (154)

if and only if the data in terms of (92) and (152) satisfy the compatibility condition

uT − y f + zg ∈ D(e−T∆γ0 ). (155)

In the affirmative case, u is uniquely determined in X1 and has the representation

u(t) = et∆γ0 e−T∆γ0 (uT − y f + zg) +
∫ t

0
e(t−s)∆ f (s) ds−−

∫ t

0
∆e(t−s)∆γ0 K0g(s) ds, (156)

where the three terms all belong to X1 as functions of t.

Proof. Given a solution u ∈ X1 , the bijective correspondence yields uT = eT∆γ0 u(0) + y f − zg ,
so that (155) necessarily holds. Inserting its inversion u(0) = e−T∆γ0 (uT − y f + zg) into the solution
formula from Proposition 9 yields (156); thence uniqueness of u.

If (155) does hold, u0 = e−T∆γ0 (uT − y f + zg) is a vector in L2(Ω), so the initial value problem
with data ( f , g, u0) can be solved by means of Proposition 8. Then one obtains a function u ∈ X1 that
also solves the final value problem (119), since in particular u(T) = uT is satisfied, cf. the bijection (153)
and the definition of u0 .

The final regularity statement follows from the fact that X1 also is the solution space for the initial
value problem in Proposition 8. Indeed, even the improper integral is a solution in X1 to (128) with
data ( f , g, u0) = (0, g, 0), according to Proposition 9; cf. the proof of Lemma 8. Similarly the integral
containing f solves an initial value problem with data ( f , 0, 0), hence is in X1 . In addition, the first
term in (156) is the solution of (128) for data (0, 0, e−T∆γ0 (uT − y f + zg)).

We let Y1 stand for the set of admissible data. Within L2(0, T; H−1(Ω))⊕ H1/2(Γ)⊕ L2(Ω) it is
the subspace given, via the map Φ1( f , g, uT) = uT − y f + zg , as

Y1 =
{
( f , g, uT)

∣∣∣ uT − y f + zg ∈ D(e−T∆γ0 )
}
= D(e−T∆γ0 Φ1). (157)

Correspondingly we endow Y1 with the graph norm of the operator e−T∆γ0 Φ1 , that is, of the
composite map ( f , g, uT) 7→ e−T∆γ0 (uT − y f + zg). Again, e−T∆D Φ1( f , g, uT) equals the initial state
u(0) steered by f , g to the final state u(T) = uT , as is evident for t = 0 in (156).

Recalling that A = −∆ : H1
0(Ω)→ H−1(Ω), the above-mentioned graph norm is given by

‖( f , g, uT)‖2
Y1

= ‖uT‖2
L2(Ω) + ‖g‖

2
H1/2(Q)

+ ‖ f ‖2
L2(0,T;H−1(Ω))

+
∫

Ω

∣∣∣e−T∆γ0

(
uT −

∫ T

0
e−(T−s)A f (s) ds +−

∫ T

0
Ae(T−s)∆γ0 K0g(s) ds

)∣∣∣2 dx. (158)

Here the last term is written with explicit integrals to emphasize the complexity of the fully
inhomogeneous boundary and final value problem (119).

Completeness of Y1 follows from continuity of Φ1 , cf. Lemma 8 concerning zg . Indeed, its
composition to the left with the closed operator e−T∆γ0 in L2(Ω) (cf. Proposition 2) is also closed.
Hence its domain D(e−T∆γ0 Φ1) = Y1 is complete with respect to the graph norm in (158). As this
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norm is induced by an inner product when the norm of H−1(Ω) is taken as ||| · |||∗ from (26), and when
H1/2(Q) is normed as in Remark 17, Y1 is a Hilbert(-able) space.

Analogously to the proof of Theorem 8, continuity of ( f , g, uT) 7→ u is now seen at once by
inserting the expression u0 = e−T∆γ0 (uT − y f + zg) from (153) into the estimate in Proposition 8. Thus
we obtain:

Corollary 3. The unique solution u of problem (119) lying in the Banach space X1 depends continuously on
the data ( f , g, uT) in the Hilbert space Y1 , when these are given the norms in (130) and (158), respectively.

Taken together, Theorem 10 and Corollary 3 yield that the fully inhomogeneous final value
problem (119) for the heat equation is well posed in the spaces X1 and Y1 .

6. Final Remarks

6.1. Applicability

For the special features of final value problems for Lax–Milgram operators A, it is of course
decisive to have a proper subspace D(eTA) ( H , for if D(eTA) fills H the compatibility condition (113)
will be redundant—and (113) moreover only becomes stronger as the terminal time T increases,
if D(eTA) decreases with larger T .

Within semigroup theory on a Banach space B, the above means that the ranges R(etA) should
form a strictly descending chain of inclusions in the sense that, for t′ > t > 0,

R(et′A) ( R(etA) ( B. (159)

Non-strictness is here characterised by the rather special spectral properties of A in (iv):

Theorem 11. For a C0 -semigroup etA with ‖etA‖ ≤ Meωt the following are equivalent:

(i) etA is injective and R(et′A) = R(etA) holds for some t, t′ with t′ > t ≥ 0.
(ii) etA is injective with range R(etA) = B for every t ≥ 0.

(iii) The semigroup is embedded into a C0 -group G(t) satisfying ‖G(t)‖ ≤ Meω|t| ;
(iv) The spectrum σ(A) is contained in the strip in C where −ω ≤ Re λ ≤ ω and

‖(A− λ)−n‖ ≤ M(|Re λ| −ω)−n for |Re λ| > ω , n ∈ N. (160)

Proof. Given (i) for t > 0, then R(e(t+δ)A) = R(etA) holds for all δ ∈ [0, t′ − t] in view of the
inclusions (33); and to every x ∈ B some y satisfies etAeδAy = etAx, which by injectivity gives
x = eδAy, so that eδA is surjective for such δ. Hence etA = (e(t/N)A)N is a bijection on B with bounded
inverse, i.e., 0 ∈ ρ(etA). If (i) holds for t = 0, clearly 0 ∈ ρ(et′A). In both cases (ii) holds because
0 ∈ ρ(esA) must necessarily hold for s > 0 according to ([23], Theorem 1.6.5), which also states that (iii)
holds. (The proof there uses ([23], Lem. 1.6.4) that can be invoked directly from (ii) since the inverse
of etA is bounded by the Closed Graph Theorem.) Conversely (iii) yields R(etA) = R(G(t)) = B and
injectivity for all t ≥ 0, so (ii) and hence (i) holds. That (iv) =⇒ (iii) is part of the content of ([23],
Theorem 1.6.3), which also states that (iii) implies (iv) for real λ, but the full statement in (iv) is then
obtained from ([23], Remark 1.5.4).

This result is essentially known, but nonetheless given as a theorem, as it clarifies how widely the
present paper applies. Indeed, for V -elliptic Lax–Milgram operators A, the semigroups are uniformly
bounded, so ω = 0; thus the strip in (iv) is the imaginary axis iR, but this is contained in ρ(A) by
Lemma 4. So except in the pathological case σ(A) = ∅, (iv) will always be violated, as will (i) and
(ii). However, since in (i) and (ii) the operator e−tA is injective by Proposition 1, the strict inclusions
in (159) hold for A = −A. This proves:
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Proposition 10. For a V-elliptic Lax–Milgram operator A with σ(A) 6= ∅ there is a strictly descending chain
of dense domains D(etA) of the inverses etA = (e−tA)−1 , i.e.,

D(et′A) ( D(etA) ( H for t′ > t > 0. (161)

Therefore, for elliptic Lax–Milgram operators A with non-empty spectrum, the compatibility
condition (113) is without redundancy, and it gets effectively stronger on longer time intervals.
Previously, these properties were verified only in a special case in Proposition 7.

Example 1. It is illuminating to consider the final value problem on Rn , for α ∈ C \R,

∂tu− ∆u + αx1u = f , u(T) = uT . (162)

At first glance this might seem to be a minor variation on the heat problem in Section 5, in fact just a zero-order
perturbation; and notably a change to Ω = Rn . However, interestingly it cannot be treated within the
present framework: in a paper fundamental to analysis of the Stark effect, Herbst [32] proved for the operator
h(α) = −∆ + αx1 I with Im α 6= 0 that the minimal realisation h̄(α) also is maximal in L2(Rn) with
empty spectrum,

σ(h̄(α)) = ∅. (163)

Moreover, the numerical range of h(α) itself is an open, slanted halfplane

ν(h(α)) = { z ∈ C | Re z > Re α
Im α Im z }. (164)

Therefore h̄(α) is not sectorial, as ν(h̄(α)) ⊂ ν(h(α)) shows that (28) does not hold, so existence and
uniqueness for the forward problem cannot be derived from Theorem 4. The fact proved in [32] that e− i th̄(α)/α is
a contraction semigroup, which for α = i applies to e−th̄(i) that pertains to (162), entails via the Hille–Yosida
theorem the estimate in Theorem 11 (iv) for −h̄(i), but only for Re λ > 0. Since Re λ < 0 is not covered, it is
despite the empty spectrum of A = −h̄(i) = ∆− i x1 not clear whether (159) holds with strict inclusions. Thus
it seems open which properties the final value problem (162) for the Herbst operator h(α) can be shown to have.

Remark 18. Recently Grebenkov, Helffer and Henry [14] studied the complex Airy operator A = −∆ + i x1

in dimension n = 1. They considered realizations defined on R+ by Dirichlet, Neumann and Robin conditions
using the Lax–Milgram lemma, so results on boundary homogenous final value problems for − d2

dx2 + i x should
be straightforward to write down, as in Section 5.1. The study was extended to dimension n = 2, under the
name of the Bloch–Torrey operator, by Grebenkov and Helffer in [13], where bounded and unbounded domains
with C∞ boundary was treated; in cases with non-empty spectrum there should be easy consequences for the
associated final value problems. The realisations induced by a transmission condition at an interface, which was
the main theme in [13,14], are defined from a recent extension of the Lax–Milgram lemma due to Almog and
Helffer [12], so in this case the properties of the corresponding final value problems are as yet unclear.

Remark 19. We expect that extension of the theory to certain systems of parabolic equations with prescribed
boundary and final value data should be possible. A useful framework for the discussion of this type of problems
could be the pseudo-differential boundary operator calculus, with matrix-formed operators acting in Sobolev
spaces of sections of vector bundles, as described in Section 4.1 of [31]. At least the present discussion should
carry over to this kind of problems when the realisations called (P + G)T there are variational, i.e., when they
are Lax–Milgram operators for certain triples (H, V, a); this property is analysed in great depth in Section 1.7
of [31], to which we refer the interested reader. It is conceivable that the variational property is unnecessary, and
might be avoided using the pseudo-differential boundary operator calculus, but this seems to require an addition
to the theory of parabolic systems covered by the calculus in the form of a result on backward uniqueness.
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6.2. Notes

Classical considerations were collected by Liebermann [33] for second order parabolic differential
operators (cf. also Evans [34]), with references back to the fundamental L2 -theory including boundary
points of Ladyshenskaya, Solonnikov and Uraltseva [35]. A fundamental framework of functional
analysis for parabolic Cauchy problems was developed by Lions and Magenes [8]. Later a full regularity
theory in scales of anisotropic L2-Sobolev spaces was worked out for general pseudo-differential
parabolic problems by Grubb and Solonnikov [15], who obtained the necessary and sufficient
compatibility conditions on the data, including coincidence for half-integer values of the smoothness;
cf. also ([31], Theorem 4.1.2). This study was carried over to the corresponding anisotropic Lp -Sobolev
spaces by Grubb [36]. A further extension to different integrability properties in time and space was
taken up in a systematic study of anisotropic mixed-norm Triebel–Lizorkin spaces on a time cylinder
and its flat and curved boundaries by Munch Hansen, the second author and Sickel [27]. Compatibility
conditions were addressed for the heat equation in mixed-norm Triebel–Lizorkin spaces in ([27],
Section 6.5) and ([29], Chapter 7). In particular, the latter showed that, except for coincidence at half
integer smoothness, the recursive formulation of the compatibility conditions in [15] is equivalent to
the requirement that the data belong to the null space of a certain matrix-formed operator at the curved
corner {0} × ∂Ω. Recent semigroup and Laplace transformation methods were exposed in [30]. Denk
and Kaip [37] treated parabolic multi-order systems via the Newton polygon and obtained Lp–Lq

regularity results using R-boundedness.
To our knowledge, the literature contains no previous account for pairs of spaces X and Y in

which final value problems for parabolic differential equations are well posed.
An early contribution on final value problems for the heat equation was given in 1955 by John [3],

who dealt with numerical aspects. In 1961, the idea of reducing the data space to obtain well-posedness
was adopted by Miranker [4] for the homogeneous heat equation on R, and he showed that in the
space of L2 -functions having compactly supported Fourier transform there is a bijection between the
initial and terminal states.

In addition to the injectivity of analytic semigroups in Proposition 1, it is known that u(0) is
uniquely determined from u(T) even for t-dependent sesquilinear forms a(t; v, w). This was shown
by Lions and Malgrange [16] with an involved argument. It would take us too far to quote the large
amount of work on the backward uniqueness in more loosely connected situations, often adopting the
log-convexity method (if |u(t)| ≤ |u(T)|t/T |u(0)|1−t/T then u(T) = 0 implies u(t) = 0 for all t > 0,
hence u(0) = 0 by continuity) attributed to Krein, Agmon and Nirenberg. Instead we refer the reader
to [38–40] and the references therein.

The method of quasi-reversibility for final value problems was introduced systematically in 1967
by Lattès and Lions [41]. The idea is to perturb the equation u′ + Au = 0 by adding, e.g., −ε2 A2 to
obtain a well-posed problem and to derive for its solution uε that uε(x, T) approaches uT for ε→ 0,
circumventing analysis of well-posedness of the original final value problem. They assumed f = 0 for
a V -elliptic self-adjoint A.

Showalter [17] addressed questions that were partly similar to ours. He proposed to perturb
instead by εA∂t under the condition that A is m-accretive with semiangle θ ≤ π/4 on a Hilbert
space for f = 0. He claimed uniqueness of solutions, and existence if and only if the final data via
the Yosida approximations of −A allow approximation of the initial state. Showalter also identified
injectivity of operators in analytic semigroups as an important tool. However, his reduction had certain
shortcomings; cf. Remark 1. In comparison we obtain the full well-posedness for general f 6= 0 and
V -elliptic operators of semiangle θ = arccot(C3C−1

4 ) belonging to the larger interval ]0, π/2[ .
An extensive account of the area around 1975, and of the many previous contributions using a

variety of techniques, was provided by Payne [5]. A more recent exposition can be found in Chapters 2
and 3 in Isakov’s book [6], and for methods for inverse problems in general the reader may consult
Kirsch [42].
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In the closely related area of exact and null controllability of parabolic problems, the inequality
in Corollary 2 is a little weaker than the observability inequality for the full subdomain O = Ω.
In this context, the role of observability was reviewed by Fernandez-Cara and Guerrero [43],
emphasising Carleman estimates as a powerful tool in the area. A treatise on Carleman estimates in
the parabolic context was given by Koch and Tataru [44].
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