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Return period assessment of urban pluvial floods through

modelling of rainfall–flood response

Damian Murla Tuyls, Søren Thorndahl and Michael R. Rasmussen
ABSTRACT
Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to

design systems to minimize potential flood damages. Traditional, simple design of urban drainage

systems assumes agreement between rainfall return period and its consequent flood return period;

however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can

increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a

surface flood return period assessment was carried out at Lystrup (Denmark), which has received the

impact of flooding in recent years. A 35 years’ rainfall dataset together with a coupled 1D/2D surface

and network model was used to analyse and assess flood return period response. Results show an

ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff

relationships will, for the analysed case study, be insufficient for flood estimation. Simulation-based

mapping of return periods for flood area and volume has been suggested, and moreover, a novel

approach has been developed to map local flood response time and relate this to rainfall

characteristics. This approach allows to carefully analyse rainfall impacts and flooding response for a

correct flood return period assessment in urban areas.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY 4.0), which permits copying,

adaptation and redistribution, provided the original work is properly cited

(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
Urban drainage systems are most often designed with a

specific return period or frequency of exceeding the maxi-

mum capacity. In principle, this means that for rainfall

loading with a higher return period than designed for, a sur-

charging of the system is possible, leading to potential

flooding of urban areas. According to the European Stan-

dard DS/EN (): Drain and Sewer systems outside

buildings, simple design methods for drainage systems can

be based on the design storm frequency for surcharging of

the systems. For residential areas, this is, for example, rec-

ommended to be 1 in 2 years (i.e., a return period of 2

years). Thus, it is assumed that the return period of
exceeding capacity is related to the return period of the

design storm, i.e., the rainfall. In EN 752 it is recommended

to use intensity–duration–frequency (IDF) relationships

(e.g., Madsen et al. ) for the particular area in question.

The design rainfall, that a specific part of the system should

comply with for a specified return period, is thus defined by

estimating the maximum rainfall intensity corresponding to

the most critical rainfall duration of a point in question, e.g.,

following the Rational Method (Kuichling ). This

assumes steady flow conditions and a linear relations

between rainfall intensity and design flow at a specific

point of the system, the contributing area being its gradient.

The design flow can be used in simple systems to determine

pipe dimensions under the assumption of uniform flow con-

ditions, i.e., that backwater effects, pressurized pipes, etc.

must not occur.
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For more complex urban drainage systems, e.g., with

branched drainage systems, overflow structures, backwater

effects and which might be pressurized due to capacity

limits, EN 752 acknowledges that the simple design solutions

are inadequate and more advanced methods such as simu-

lation models are required. Using these more complex

methods, it is possible to estimate flooding of systems rather

than just surcharging. Analysis of flooding consequences as

an element for design leads to other criteria in terms of

return periods for exceedance. EN 752 thus recommends a

return period of 20 years of flooding of residential areas. It

is evident here, that it is the return period of the flooding

and not of a design storm. Therefore, their resulting effects

have been investigated in detail in this study.

Estimating the return period of urban flooding at a single

specified point based on the return period of the rainmight be

a difficult task. Due to the complexity of a flood where water

flows both in the drainage system, surcharges the drainage

system, as well as flows on the surface to depressions in the

terrain, theremight be a non-monotonical increasing relation

between the rain intensity and the maximum water level in a

given point. Other hydraulic structures causing flow irregula-

rities such as pumps, weirs, gates, retention basins, etc., in the

drainage system and preferential flow paths and ponding on

the surface will exacerbate these non-monotonicities even

more. Complex relationships between the rainfall intensity

and the flooding response cause the return period of the

rain intensity not necessarily to be equal to the return

period of the flooding, as it is assumed in the simple design

methods (e.g., Wright et al. ). Estimating the return

period of flooding from historical rainfall records therefore

requires detailed analysis of the rainfall–flood response; see

e.g., Berggren et al. () and Hlodversdottir et al. ()

for use of design storms for flood modelling.

The European Floods Directive (EC ) recommend

the European member states to produce flood risk assess-

ment and flood risk maps showing a likelihood of flooding,

e.g., corresponding to 100 year return periods. Using histori-

cal rainfall records to estimate the flood-response of a 100

year event will often be too difficult for three reasons:

1. As Djordjević et al. (), Maksimović et al. () and

Mark et al. () state, long-term rainfall time series

from this and the previous century might be non-
stationary due to climate change, that is, the frequency

(or return period) changes over time (see also Ntegeka

& Willems () and Willems (a)).

2. Accurate projection of how climate changes will impact

the 100 year return period in the future climate might

be a difficult task (e.g., Willems et al. ; Thorndahl

et al. b).

3. High temporal resolution rain series are often unavail-

able for periods more than less than half a decade (e.g.,

37 years in Denmark; Madsen et al. ). There are, how-

ever, exceptions, for example, in Belgium, where a

continuous series has been measured at the same

location over 100 years (Willems b).

Some of these problems might be the reason that design

storms have become popular. Design storms can be based

on extrapolation of rainfall statistics to estimate return

periods with a longer return period than the series contains,

and easily be multiplied to a climate factor to represent

future conditions (e.g., Arnbjerg-Nielsen et al. ).

In order to investigate the return period of flooding

based on historical rainfall series, we will in this paper per-

form a modelling experiment on a Danish case study area in

Lystrup, Denmark. With the intention to estimate the return

periods of flooding, we will investigate the three following

statements:

1. Estimation of flood return periods cannot be accom-

plished without applying complex coupled 1D/2D

models accounting for the interaction between rainfall,

drainage system, potential runoff from rural catchments,

and surface as well the flow dynamics.

This is investigated by estimating return period of

floods at catchment scale (Lystrup), by using an inte-

grated urban drainage and natural stream model (1D)

as well as a flood model (2D) with inputs from historical

rainfall series, where the obtained results will be inter-

compared and analysed in detail.

2. It is necessary to include the temporal dynamics associ-

ated with rainfall in the estimation of flooding hence

design storms based on fixed return periods will be

inadequate.

This is tested by studying the rainfall response locally

by estimating the local flood response time in flood-

prone areas. The local flood response time acts as a
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surrogate measure of the concentration time and is esti-

mated by correlating rainfall intensities aggregated over

different durations with local flood water levels.

3. The concept of the return period of flooding at a single

point does not make much sense in complex systems.

Instead, return periods should be linked to flood area

extent, flood volume, etc.

The third statement has already been introduced by

McRobie et al. (), Ochoa-Rodriguez et al. () and

Simões et al. (). In this study, this is investigated by

analysing, on the one hand, the flood return period stat-

istics for each flood-prone cell of the urban drainage

system and, on the other hand, local response time in

flood-prone areas has been correlated with its corre-

sponding maximum flood water level. These two

approaches allow a broader overview, perhaps increasing

the quality of the results when a flooding assessment is

performed under a local perspective.

The paper is structured as follows. Next is a methodology

section where the case study is presented. After that, the avail-

able precipitation data and their further selection process are

described and then the complete 1D/2D surface flood model

used for this study is introduced. The obtained results are

described and analysed. First, flood return periods are assessed

at catchment scale, then the temporal dynamics of rainfall are

analysed at local flooding areas, followed by analysis of results

of the local flood return period assessment. Discussion and

several aspects of rainfall and urban pluvial flood modelling

are considered followed by the final conclusions.
METHODOLOGY

Case study

The urban drainage system is located in Lystrup, close to

Aarhus, in Denmark. It consists of a separate system

(storm water), covering an area of about 875 × 104 m2, and

serving a population of approximately 10,300 inhabitants.

The area also has a small river system east of the catchment,

and has an overall slope of 0.015 m/m. The system is mainly

branched and its slope is not regular all over the study area

so steep areas can be found together with flat regions.

Terrain heterogeneity may have an influence on water
dynamics, especially when flooding occurs. The main

slope direction however, is from NW (high elevation) to

SE (low elevation). The catchment has been chosen since

it has suffered the impact of several floods due to extreme

rainfall in recent years, e.g., 26 August 2012 and 13–14

July 2014 (Thorndahl et al. ).
Precipitation data

In this study, a 35 year long rainfall measurement dataset

(1979–2015 with minor disruptions) from two different

rain gauges has been assembled. The rain gauges are oper-

ated by the Danish Wastewater Pollution Committee

together with the Danish Meteorological Institute (DMI),

and are part of a network of ∼150 different rain gauges

spread all over the country (e.g., Madsen et al. ). Both

are tipping bucket rain gauges measuring at 1 minute fre-

quency and are located close to the study area (Egaa

∼6 km, 1990–2015; Viby ∼16 km, 1979–1990).

Since the purpose of this study is to analyse urban flood

during extreme rainfall, the two rain gauge measurement

records were combined in a single dataset, filtering out dry

weather periods and rainfall events with a cumulative

depth lower than 10 mm. Events are separated by at least

1 hour with no recorded rain in the tipping bucket rain

gauges. One could argue for the use of a larger minimum

inter-event time in order to allow for coupled rainfall

events leading to single runoff events. However, since we

focus on relatively rare events, with return periods larger

than 1 year, this criterion has no practical implication.

Potential spatial variability of rainfall within the catchment

has been neglected throughout this study.
Rainfall event selection

The selection of the most severe flood-producing rainfall

events is performed through a two-step multi-criteria method.

First, a rainfall–runoff simulation of the urban drainage

system is carried out for the complete historical rainfall dataset

from which a list of events is pre-selected. This first filtering is

performed through the inter-combination of two criterions: (1)

threshold, defined as the exceedance of a given runoff flow

(characterized as the total inflow from the catchment to the



Table 1 | Data of 35 events with the highest number of surcharged manholes

Event #
rank

Rpa

(years)
Date
(dd-mm-yyyy)

#
SMb

Max. intensity
(over 1 min)
(mm/h)

Total depth
(mm)

1 35.00 27-06-2007 474 84.00 43.80

2 17.50 08-06-1996 473 168.00 17.00

3 11.67 24-08-1997 364 120.00 32.00

4 8.75 01-08-2006 344 108.00 56.20

5 7.00 05-05-2015 331 108.00 17.20

6 5.83 17-06-1981 293 132.00 13.60

7 5.00 07-08-2005 290 84.00 33.20

8 4.38 12-08-2006 287 108.00 21.00

9 3.89 28-07-2001 278 96.00 11.20

10 3.50 24-07-1997 270 84.00 15.00

11 3.18 27-07-2013 267 174.00 12.80

12 2.92 14-07-2014 260 36.00 66.00

13 2.69 12-08-2002 255 84.00 34.80

14 2.50 10-06-1980 254 84.00 12.80

15 2.33 26-08-2012 245 108.00 51.60

16 2.19 08-08-1979 242 96.00 14.40

17 2.06 25-08-1995 234 84.00 13.80

18 1.94 17-08-2001 226 120.00 16.80

19 1.84 22-08-2012 225 96.00 25.20

20 1.75 18-08-1994 211 72.00 19.60

21 1.67 02-09-1979 205 84.00 36.80

22 1.59 19-09-2007 196 132.00 19.00

23 1.52 17-07-1986 188 60.00 16.20

24 1.46 08-06-2003 186 120.00 20.40

25 1.40 12-07-2010 180 72.00 11.00

26 1.35 17-08-2000 168 84.00 16.60

27 1.30 15-07-2005 167 84.00 11.40

28 1.25 06-09-1995 164 72.00 15.80

29 1.21 24-08-2015 161 84.00 13.20

30 1.17 29-06-1994 143 60.00 17.80

31 1.13 02-06-2014 142 84.00 19.00

32 1.09 18-06-2002 140 144.00 22.80

33 1.06 13-09-2001 133 84.00 21.00

34 1.03 25-06-2007 131 96.00 37.60

35 1.00 31-07-2005 129 72.00 14.80

aRp, return period in years.
b#SM, number of surcharged manholes (water level above ground level).
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drainage system); and (2) duration, defined as the amount of

time that runoff surpassed the defined threshold.

A matrix of six different thresholds (1 m3/s; 2 m3/s;

5 m3/s; 11 m3/s; 16 m3/s; 22 m3/s) and five different dur-

ations (1 min; 5 min; 10 min; 30 min; 60 min) is applied

using the long term simulations module (LTS) found in

MOUSE modelling packages (see, e.g., Schaarup-Jensen

et al. () and Thorndahl ()). Both the threshold and

duration values of the rainfall selection matrix are chosen

in accordance with the results obtained from the complete

rainfall–runoff simulation. Hence, the selection matrix can

guarantee an appropriate rainfall variability both in terms

of intensity and in terms of depth. As a result, 143 rainfall

events are pre-selected from the catalogue of 333 events

with total depths larger than 10 mm. The inter-combination

matrix between thresholds and durations includes different

rainfall types, from extreme high peak storms with a short

duration to more moderate rainfall with longer duration.

The final step for rainfall event selection implies the

hydraulic network simulation of the 143 pre-selected rainfall

events. From the obtained results, focus is placed on the

number of surcharged manholes in the urban drainage

system (defined as water exceeding ground level). The 35

events with the highest number of surcharged manholes

are selected for the final rainfall event list used in this

study (Table 1).

The selection of 35 events for a 35 year period enables

us to analyse data for a return period of up to 1 year. This

is obviously under the assumption that no events with

higher return periods than 35 years have been measured

during the observation period. Arnbjerg-Nielsen et al.

() recommend considering no more than a quarter of

the total period of a rain series for valid return period assess-

ment in urban drainage modelling. Since, in this study, only

relative comparisons between rainfall and rainfall response

are considered, potential errors estimating the real return

periods are neglected. Furthermore, it is assumed there is

no climate change impact on the frequency of events and

thus the return period assessment.

Urban flood model

A complete 1D/2D semi-distributed model of the study area

has been provided by Aarhus Vand (Aarhus Water Utility
Service). The model is built using MIKE modelling packages

from DHI (DHI ). Surface-runoff routing to the drainage

system is solved by a time–area surface-runoff package,
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integrated in MIKE Urban. Hydraulic modelling of the

urban drainage system has been carried out with MIKE

Urban, solving dynamically the 1D Saint-Venant equations

(DHI ). The model setup consists of 3,247 subcatch-

ments covering an area of 872 ha with 2,179 nodes

(representing manholes) and 2,180 links (pipes) spread

over 70 km within the catchment area. The model also con-

tains 18 storage basins and eight outlet discharge points.

The model includes runoff from impervious surfaces

based on detailed land register information defining roofs,

roads and other paved areas as impervious. This layout of

the model is normally applied to analyse system capacity

up to a return period of 5 years (since the recommended

return period of surcharging manholes to ground level is

5 years for separate water systems in Denmark; WPC

). In order to account for runoff from green and per-

vious surfaces to the drainage system and the stream, this

layout of the model has been extended by a model estimat-

ing the runoff from these surfaces. This model was built by

Løvgaard () independently from the MIKE Urban

model and is based on a modified version of Horton infiltra-

tion (Akan ). It is based on standard parameters for

clayey subsurfaces, which are present in Lystrup.

The sub-catchments modelled with runoff from imper-

vious areas only are shown as urban catchments in

Figure 1 (with minor exceptions for some green areas in

some parts of the town which are modelled as pervious,

not shown). Correspondingly, the areas with runoff from

pervious surfaces are shown as rural catchments in Figure 1.

The overland flow modelling is carried out with MIKE

Flood, a hydrodynamical surface flow model based on

MIKE 21, able to solve the shallow water equations in a

structured grid (DHI ). A digital terrain model (DTM)

provided by the Danish Geodata Agency (GST), with a

resolution of 2 × 2 m, is used as the topographical grid infor-

mation for the surface flood modelling. Coupling between

pipe–surface flow is performed through manholes rather

than gullies or inlets, typically found in reality. Since it is a

semi-distributed model, net rainfall–runoff is used as direct

input into the urban drainage system and, therefore, surface

flooding only occurs once manholes start surcharging. These

simplifications and their consequent errors have been

studied in detail by Fuchs & Schmidt () and Pina et al.

(), who highlight the importance of implementing
urban drainage surface data such as gullies/inlets onto the

model when available. However for this study, there is no

such available database that allows inclusion in the

model. Furthermore, since this study applies to relative com-

parisons between different rainfall events and their

consequent floods but always on the same model, their

associated errors can be neglected. The model also includes

a small section of a river stream of ∼2.5 km, Ellebæk,

located west of the study area and built in a series of river

sections of about 3 m length all along the river. Apart from

its base flow of 0.015 m3/s, the river also receives discharge

waters from drainage areas adjacent to the river system.

Finally, the river is also coupled with the overland surface

model so any flood caused by river overflow will also be con-

sidered. Figure 1 shows a layout of the model described

above with distinction of the catchments considered as

rural, contributing both to the river system but also directly

to the urban drainage system in the urban catchments.

The urban flood model has been developed and sup-

plied by Orbicon (engineering consultant company) for

Aarhus Water Utility Services. The model development

and build up follows the Danish operation practices for

drainage systems under rain (Publication no. 27 of the

Danish Water Pollution Commitee; WPC ), which

provides a series of recommendations and best practices

for urban drainage model development. Publication no.

27 has been widely used in recent years as a practice for

model development in the Danish water industry and it

is considered as a good reference point for urban drainage

model development since it allows producing models with

sufficient quality for further exploitation, either at private

industry or for research. In addition, Orbicon has per-

formed a further adjustment of the urban flood model.

This adjustment is based on a single high intensity rainfall

event (26/08/2012) where several floods were observed and

recorded by the local authorities and private citizens. The

urban flood model adjustment consists of a refinement of the

subcatchment runoff contributions to the urban drainage

system and also adjustment of the runoff contribution from

the pervious areas (which is normally not considered in Den-

mark). This has allowed the best setup to be obtained in terms

of flood depths when compared to the footage and narratives

of the flood-prone areas from local authorities and private citi-

zens. Since the urban flood model is adjusted through a single



Figure 1 | Model layout of Lystrup urban drainage system area.
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high intensity rainfall event, the simulation of other events less

severe than the one used for the floodmodel adjustmentmight

be overestimated, but again, since this study is based on rela-

tive comparisons, this is considered a minor issue.

In order to minimise model instabilities, simulations

are performed with a calculation time step of 60 sec

for rainfall–runoff, 5–60 sec for dynamic hydraulic calcu-

lations and 0.5 sec for 2D surface flood modelling. Return
periods are estimated ranking either rainfall intensities

aggregated over different durations or flood response

results using the California plotting position method

(Rakhecha & Singh ).

For estimation of relationships between rainfall and

flood response, the Spearman correlation coefficient (ρ) is

used since it is not assuming linearity as is the case with a

correlation parameter such as Pearson’s r.
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RESULTS

Flood return period assessment at catchment scale

Full 1D/2D simulations of the 35 selected rainfall events

have been performed and results analysed with special

focus on the observed flood area and flood volume. Figure 2

presents an example of the simulated results of event #15

(26/08/2012), in terms of maximum flood depth. This par-

ticular date has been chosen since there are several

recorded instances of flood during this event. Flood depths

under 0.002 m have been neglected and thus from >0.002

to 2 m were included. As seen in Figure 2(a), different

flood-prone areas can be observed throughout the urban

drainage system, both in low terrain areas, where surface

water is expected to accumulate, but also in some upstream

points, where water is retained in ponds. In addition, the

river system receives the contribution of several urban drai-

nage system discharge points which generate diverse areas

where flood is also observed. The flood-prone area located

at the most southern point on the map refer to Lake Egå

Engsø, which receives the contribution of the river system.

The lake is out of the boundary conditions for this study

thus results observed in this specific area will not be con-

sidered further. Figure 2(b) illustrates a timeline of the

main characteristics of rain and the simulated flood area

and volume for that specific event. Note that flood results

are separated between rural and urban areas; however, the

latter are the main point of interest and will be analysed in

major detail. Flood areas present higher values in urban

areas (max ∼6 × 105m2) while for flood volumes, these are

higher in rural catchments (max ∼10 × 104m3). These differ-

ences are mainly due to the river bed section profile, which

does not generate extensive flood areas but allows larger

amounts of water to be carried, and also to the model simpli-

fication at rural catchments, where water cannot easily enter

the drainage system or the stream and therefore tends to

pond on the surface.

Traditional 1D/1D flood modelling often considers the

surcharging of manholes as an indication of flood (Maksi-

mović et al. ). Although accurate flood modelling of

urban drainage systems has evolved notably in the last

years, manhole surcharging or urban drainage capacity

exceedance are still used concepts in the design of urban
drainage systems. Figure 3 shows a comparative plot

between the number of surcharged manholes (Figure

3(a)) and its corresponding observed flood area and

volume for each of the simulated events (Figure 3(b) and

3(c)). The three plots are displayed following a decreasing

order of number of surcharged manholes. Note that as in

Figure 2, a distinction has been made between rural areas

and urban areas. As can be seen, there is no clear relation-

ship between the number of surcharged manholes and

observed flood areas or volume. As also explained in

Figure 2, urban flooded areas are in all cases larger than

rural flood areas. Contrarily, flood volumes in rural areas

present higher values when compared to urban

catchments.

Comparing the three plots between each other, it is clear

that the relationship between the decreasing ranked rainfall

and flood area and volume is, in general, ambiguous

although some similarities are found between flood area

and volume, hence further analysis is needed in this

direction.

Accordingly, Figure 4(a) shows the correlation between

flood area and volume obtained from the simulated events

for both rural and urban catchments. The gradient in a

linear fit between the two, corresponds to the average

(water level) in flooded cells. There is a clear difference

between the two catchment types, the rural having a

higher tendency to increase in flood volume rather than

in area (ρ¼ 0.99), for as previously explained, flood water

from rural areas tends to pond. This is mainly due to the

simplification of rural catchments and their connectivity

to the urban drainage system. Regarding the urban catch-

ments, results are more scattered (ρ¼ 0.73), where

smaller and larger events present a better correlation; how-

ever, middle ranged event results are more diverse and

there is no clear correspondence between flood volume

and area. Rain characteristics and unsteady response

impacts on urban catchments are the main cause for the

observed variability. As done with flood area and volume,

their corresponding return periods have been scattered

and presented in this case, in a log scale (see Figure 4(b)).

Rural catchment results present a higher correlation coeffi-

cient when compared to urban catchments (ρ¼ 0.99).

Complexity of rainfall and of the urban drainage system

plays a key role in the differences found. Regarding the



Figure 2 | (a) Maximum flood depth and (b) rainfall intensity and depth, simulated urban and rural flood area and volume for event #15, 26/08/2012.
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urban correlation results, the obtained value is of ρ¼ 0.75,

which can be considered as acceptable from a general

viewpoint; however, return period values ranging from
approximately 3–20 years are more scattered, which high-

lights the necessity to consider both flood area and

volume variables since they can both provide valuable



Figure 3 | (a) Number of surcharged manholes, (b) flood area and (c) flood volume obtained after the simulation of the selected rainfall events.
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information in order to achieve precise and robust flood

return period assessment results.

From the analysis performed in Lystrup at catchment

scale, it is clear that the assessment of flood return period,

either based on area or volume, cannot be accomplished

without advanced 1D/2D coupled models, which allow rep-

resentation of both detailed hydraulic and surface dynamics.

In addition, flood area and volume and their corresponding

return period estimates should both be considered separ-

ately in order to guarantee the quality of results. The

variability between urban and rural areas indicates that the

return period assessment is very dependent on the complex-

ity of the system. In this case, the rural area behaves more

predictably (partly due to the simplified approach defining

rural catchments) than the urban area where the heterogen-

eity and non-linear rainfall runoff response of the drainage

system can play an important role.

Temporal dynamics of rainfall at local flooding areas

As previously mentioned, the selection of rainfall events

has been undertaken following a multi-criteria approach in
order to ensure appropriate rainfall variability. As different

rainfall dynamics can generate different impact responses

on the system, it is also interesting to investigate the relation-

ship between rainfall and flood response locally. Following

the steady-state assumption of the rational method, as

described in the Introduction, there is an unambiguous

dependency between the rainfall intensity over a specific

duration and the water level at a point for simple systems.

According to the rational method, the duration over which

the rainfall intensity is averaged corresponds to the time of

concentration. If an unambiguous relationship is present

in a flood-prone cell, it is possible to use the rainfall duration

as an estimate of the local flood response time to this

specific flood-prone cell. In this section, it is investigated

whether these assumptions for simple systems are valid for

the studied catchment, or whether the flood response is

too complex to develop simple relationships between the

rainfall and the flood response.

From the 35 flood maps obtained after simulation, flood-

prone areas have been outlined by selecting only the surface

cells that have any recorded flood >0.002 m for at least

30/35 events (see Supplementary information, Figure S1,



Figure 4 | Scatter plot between (a) flood area and flood volume for the simulated rainfall series and (b) return periods of flood area and flood volume.
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available with the online version of this paper). As a result, a

total of 108,923 cells (2 × 2 m) have been selected from a total

of 3,500,212. For each flood-prone cell, the maximum flood

level obtained per simulation has been correlated with the

maximum rainfall intensity of a specific event at 1 min dur-

ation intervals (see Figure 5(b) and 5(d)). Note that the

term ‘duration’ refers to the aggregation period and not to

the length of an event. This procedure has been repeated

for all 35 events’ varying rainfall durations from 1 min to

1,441 min (the latter being 1 day rainfall duration) and calcu-

lating its corresponding correlation coefficient. The varying

rainfall duration has been chosen in order to ensure that all

flooding water has been re-incorporated into the urban drai-

nage system, hence it has been considered for the analysis.

Thus, for each flood-prone cell, 1,440 scatter plots have

been obtained per rainfall event (36,000 in total). Delineating

the curve generated from all the obtained correlations (ρ)

over the range of rainfall durations allows determination of

the peak, which can be considered as an indicator of the

local flood response time for a given flood-prone cell

(Figure 5). Note that for a better understanding, two flood-

prone cells, Point 1 and Point 2, both located in urban

areas, have been exemplified in Figure 5.

Figure 5(a) and 5(c) illustrate how the local flood

response time is found by searching for the highest corre-

lation between the flood level (water level) and the rainfall

intensity (averaged over different durations from 1 to
1,440 min). Figure 5(b) and 5(d) show scatter plots of the

rainfall duration with the highest correlation which is

assumed to be equal to the local flood response time at

the point of interest. For Point 1, the maximum correlation

(ρ¼ 0.96) is found at a duration of 139 min, while for

Point 2 the maximum correlation (ρ¼ 0.61) is found for a

rainfall duration of 32 min.

Based on the whole set of obtained correlations (ρ) for

all flood-prone cells, a map is delineated highlighting the

response time distribution and maximum correlation

values (ρ) over the flood-prone areas of the urban drainage

system under study (see Figure 6).

Analysing in detail the local flood response time flood

map shown in Figure 6(a), the areas where the response

times are longer are mainly located north of the drainage

system, where rural catchments are found. Network com-

plexity is limited in these areas, thus storm water

connectivity to the urban system is low and consequently

more sensitive to generating flood during extreme rainfall

events. In addition, the terrain in these areas is rather flat

so surface water tends to pond. In contrast, urban areas pre-

sent, in general, short local flood response time, mainly

caused by the presence of impervious catchments and to a

better (and faster) connectivity to the drainage system.

Moreover, flood-prone areas are shaped by the urban

fabric, i.e., streets and larger roads, buildings or the main

slope direction throughout the urban system. In contrast,



Figure 5 | (a) and (c) Spearman’s correlation coefficient (ρ) vs. rainfall duration and (b) and (d) maximum correlation of flood level vs. rainfall intensity for Point 1 and Point 2.
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flood-prone cells in urban areas with longer response times,

are mainly caused by ponding surface water, originated at

different locations. Thus, the complexity of urban drainage

systems has a direct impact on the local flood response

time estimation. The river system, which receives a part

from the rural catchment contribution, and discharge

water from urban areas, has in general low to medium

response time. Simulation results show a tendency of an

increasing local flood response time along the river

system. As the river flows downstream from northwest to

southeast direction, the number and volume of contri-

butions from the urban drainage system to the river also

increase, having a direct impact on the progression of the

local flood response time results along the river stream.
Figure 6(b) illustrates the map of the obtained maxi-

mum Spearman’s correlation coefficients for each of

the flood-prone cells over a specific rainfall duration.

The map allows evaluation of the level of consistency

of the estimated local flood response time in Figure 6(a).

Results show a strong correlation where the drainage

system surcharges and water does not flow over the

surface but tends to pond (e.g., Point 1). Additionally,

correlation is weak-to-moderate for areas where there is a

large transport on surcharging points (manholes), mainly

due to the contribution of multiple surcharging manholes

with diverse local flood response time. This is an

indication of system complexity and thus an indication of

departure from the assumption of a monotonically



Figure 6 | (a) Local flood response time estimation map of flood-prone cells and (b) overall Spearman’s correlation coefficient map.
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increasing relation between the rain intensity and the maxi-

mum water level.

The estimation and mapping of the local flood response

time for the overall study area has emphasized the variabil-

ity that can be found in complex urban drainage systems.

The assumption that design storms monotonically increase

and have an unambiguous relationship between rainfall

intensity and surface water level, can be considered as

acceptable in areas where local flood response time is com-

paratively low. However, they are insufficient in areas with

larger local flood response times, thus, design storms

cannot be recommended in these cases.

Local flood return period assessment

In this section, the flood-prone cells delineated at Lystrup

have been used to perform a local flood return period assess-

ment. Flood water level results have been selected from

highest to lowest and return period statistics for each

flood-prone cell have been carried out. A map highlighting

the return period for each cell has been built, based on a

fixed water level (e.g., water level >0.1 m), i.e., in this

case, the map shows the frequency (in years) that a certain

cell will be flooding over 10 cm. This approach has the

advantage of allowing multiple and adjustable return

period flood maps depending on the desired water level.

For example, a return period map can be built based on a

water level>0 m (see Figure 7(a));>0.10 m (see Figure 7(b)).

Note that both figures have been built on a log scale for

better representation of results.

Figure 7(a) represents the flood-prone cell return period

map with a water level set over 0 m. It provides information

on how often a flood will occur. Results show that, based on

the applied rainfall dataset, the number of cells with a return

period between 1 and 3 years is large, thus they are more

likely to be flooded in comparison to other regions of the

urban drainage system. Figure 7(b) represents the flood-

prone cell return period map with a water level set over

0.1 m. In this case, the number of cells is reduced signifi-

cantly; however, when compared to Figure 7(a), it also

highlights the areas with larger demands for flood protec-

tion. Several flood-prone areas can be found, especially

north of the study area, in rural catchments, which are

mainly the consequence of water ponding. However,
similarities can also be found in urban catchments. Another

spot of urban flood-prone cells, located at the junctions

between rural and urban catchments, is caused by the

direct contribution from rural surface water, which flows

downstream following the natural terrain slope. Note that

the river system appears flooded; however, only in some

specific areas is there an actual flood, where the water

level reaches the limits of the riverbed.

A supplementary statistical analysis was performed at

the studied urban drainage system based on a combination

of results obtained at the temporal dynamics of rainfall in

local flooding areas section and the local return period

assessment section, where the maximum water level return

period for each flood-prone cell was correlated with the

return period of rainfall intensity averaged over the duration

found at the temporal dynamics of rainfall at local flooding

areas section. Two different approaches have been applied

in order to estimate the return period of the rainfall. The

first one considers each of the 35 selected rainfall events

only, while the second approach considers all events of

the entire rainfall dataset of 35 years (see Figure 8(b)).

These two approaches allow comparison of the results

between the selected extreme rainfall events and the com-

plete rainfall dataset.

Figure 8(a) shows the obtained statistics for Point 1, at a

rainfall duration of 139 min. When considering exclusively

the 35 selected events, the results present almost a linear

correlation between water level return period and rainfall

return period. When the whole rainfall dataset is con-

sidered, values are slightly biased and water level return

period values are higher for the same return period corre-

sponding to rainfall. The bias between rainfall and water

level return periods for the complete rainfall dataset indicate

that for Point 1 there are rainfall intensities which are likely

to produce flooding which are not included in the selection

of the 35 events for Point 1. Results for Point 2 (Figure 8(b))

are more dispersed, and correlation between water level

return period and rainfall return period is smaller if com-

pared to Point 1. In that case, both approaches present

similar results when considering the 35 events or the 35

years’ dataset. Differences found between Figure 8(a) and

8(b) are mainly due to the implicit local flood response

time for each point and ambiguous relation between rainfall

intensity and water level.



Figure 7 | Return period map of flood-prone cells for maximum water level of (a) 0 m and (b) 0.1 m.
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Figure 8 | Correlation between return period of water level and return period of rainfall for the derived critical time of concentration for (a) Point 1 and (b) Point 2.
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As stated, the diverse analysis performed at Lystrup

catchment emphasizes the need to apply a robust multiple

approach for a precise flood return period assessment. In

addition, a correct rainfall measurement, estimation, proces-

sing and analysis is necessary to better understand the

principles of flood dynamics and the interactions associated

with rainfall.
DISCUSSION

The various analyses performed in this study are intended to

contribute with additional tools, that combined with the use

of a more traditional approach, can upgrade the consistency

and resiliency of future planning of complex urban drainage

systems. However, the inclusion of longer temporal rainfall

time series as well as incorporating spatial variability (e.g.,

X-band or C-band radar data estimates; Thorndahl et al.

a) should be considered in future studies. Statistics and

uncertainties derived from rainfall measurements or esti-

mates, as well as the ones derived from urban drainage

system development and modelling, can have a large

impact on any analysis performed over complex urban drai-

nage systems, especially if the assessment is focused on

flooding, thus they should also be a subject to consider in

further studies (Deletic et al. ). Moreover, results
obtained in this study have underlined the importance to

consider return periods from flooded areas, volumes and

also local water levels to maximize rigor of flood return

period assessment. Furthermore, climate change should

also be considered in further analysis in order to build resi-

lient urban drainage systems against flood, together with the

continuous and active involvement of decision-makers and

different stakeholders.
CONCLUSION

Obtained results from the flood return period assessment at

catchment scale highlight that coupled 1D/2D models are

essential since they are able to outline the different inter-

actions between drainage system, runoff and surface flow

dynamics. Moreover, flood area and volume return periods

should be incorporated in the analysis and should be con-

sidered separately in order to guarantee the quality of

results.

Inclusion of temporal dynamics of rainfall by estimating

local flood response time over the flood-prone areas, as a

surrogate measure of the time of concentration, has illus-

trated its potential impact on the urban drainage system.

The assumed relationship between rainfall intensity and its

monotonical increasing relation on flood levels is not
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always applicable and very much depends on the urban drai-

nage system complexity. In addition, appropriate rainfall

selection and the temporal dynamics of rainfall have been

widely referred to as a key element when performing such

kind of analysis.

Return period analysis performed under a local perspec-

tive has shown that identification of flood-prone areas can

be crucial for a better understanding of surface flood

dynamics. It allows initially focusing on the areas where

most attention is needed and consequently increasing the

adequacy of storm water management of urban drainage sys-

tems under heavy rainfall.

Although the performed flood return period assessment

has shown promising results, it is important to state that it

only refers to one specific case study. Therefore, specifics

of the applied approach throughout this paper should be

reconsidered for other catchments or study areas.
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