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Abstract 

Concrete is a widely used construction material; however, the understanding of 

fatigue failure in cementitious material is lacking when compared to ferrous 

materials. The design life of concrete structures is also evaluated using PM rule 

of linear damage accumulation where the fatigue strength is represented by a 

combination of Goodman Diagrams & Wöhler Curves. Concrete is a 

heterogeneous material, which is inherently full of flaws, and has a considerable 

scatter in fatigue test data for same test conditions. Therefore, it is desirable to 

introduce probabilistic concepts to ensure adequate fatigue resistance of concrete 

structures. This paper attempts to identify the important parameter uncertainties 

associated with concrete fatigue material models for uniaxial compression based 

on a large data set of concrete fatigue tests obtained from literature. Parameter 

estimation from a given dataset of experiments can be done in different ways, and 

in addition sensitivity and identifiability analyses can be used to search for a 

unique set of parameters along with their uncertainties. 

Keywords: Identifiability, Sensitivity, Concrete, Fatigue, Uncertainty, 

Reliability

1. Introduction  

The design life of concrete structures is in 

most design standards evaluated similar to 

steel structures using theory of cumulative 

linear damage accumulation as proposed 

by Palmgren, [1] and Miner, [2]. Material 

models for concrete fatigue are generally 

developed using data from testing 

compaigns. Waagaard in 1981 tested 

concrete for axial and flexural fatigue 

under different confining conditions in the  

presence of water (for offshore concrete 

foundations), see Det Norske Veritas 

(currently DNVGL), [3]. Cornelissen in 

1986 tested concrete under tension fatigue 

at TU Delft, Netherlands [4]. Petkovic in 

1990 tested high strength concrete during 

that time which is less than 100 MPa 

compresive strength for axial compression 

fatigue, [5].  Lohaus and others tested ultra 

high strength concrete with compressive 

strength of 180 MPa, [6]. As outcome of 

all this research work international codes 

e.g. [7], [8], [9], [10] and [11] have 

proposed models for fatigue of concrete 

which is a combination of Goodman 

Diagram [12] and Wöhler Curves also 

denoted as S-N curves. Combination of 

Goodman Diagram with Wöhler curve is 

required since fatigue of concrete is 

governed not only by the stress range but 

also the mean stresses. 

All these researchers, codes and standards 

accepted scatter in concrete fatigue test 

data and proposed characteristic design 

curves/surfaces to be used with the partial 

safety factor concept. In order to obtain 

both reliable and cost-competitive design 

of reinforced and pre-stressed concrete 

structures, it is important that uncertainty 

of individual parameters are estimated and 

taken into account in the design process. 
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This can be obtained by adopting a 

probabilistic design philosophy where the 

structure is designed in order to meet a 

target reliability level. For this purpose 

uncertainty related to each parameter 

influencing the fatigue strength should be 

quantified and modeled by stochastic 

variable in order to estimate fatigue 

reliability. Thus, application of structural 

reliability theory could be an efficient way 

to adequately account for all these 

uncertainties while predicting fatigue 

lives of concrete structures, [13].  

This paper presents use of statistical 

methods incl. sensitivity and identifiabiliy 

analyses for identifying a unique set of the 

important uncertain parameters from 

available dataset of experiments of 

concrete fatigue under axial compression, 

complied by [14]. 

The aim of this paper is to model the 

fatigue strength of concrete in a stochastic 

way in order to use it for reliability 

assessment of a reinforced or/and 

prestressed concrete component.   

 

2. Deterministic material model 

The material model is based on the latest 

experiments on normal-, high- and ultra-

high strength concrete by [6] which is also 

adopted by Model Code 2010, [11]. The 

material model from the fib Model code 

2010 for compression-compression 

loading is presented below, see equation 

1, 2 and 3. 

 

log 𝑁1 =  
8

(𝑌−1)
∙ (𝑆𝑐,𝑚𝑎𝑥 − 1)             (1) 

log 𝑁2 = 8 +
8∙ln(10)

(𝑌−1)
∙ (𝑌 − 𝑆𝑐,𝑚𝑖𝑛) ∙

                  log (
𝑆𝑐,𝑚𝑎𝑥−𝑆𝑐,𝑚𝑖𝑛

𝑌−𝑆𝑐,𝑚𝑖𝑛
)                      (2) 

if, log 𝑁1 ≤ 8, then log𝑁 = log 𝑁1 

if, log 𝑁1 > 8, then log𝑁 = log 𝑁2 

where, 

𝑌 =
0.45+1.8∙𝑆𝑐,𝑚𝑖𝑛

1+1.8𝑆𝑐,𝑚𝑖𝑛−0.3∙𝑆𝑐,𝑚𝑖𝑛
2                    (3) 

 

3. Data used from literature 

For the purpose of modeling the fatigue 

strength, experimental data that is used 

throughout in this paper is data from two 

papers [14], [15] and a thesis [16]. All 

these papers deal with concrete axial 

compression-compression fatigue tests. 

For the study in this paper, only high 

strength concrete is used and is obtained 

from available data filtered for strengths 

above 90 MPa. 

 

4. Development of stochastic material 

model 

Based on equation 1 and 2, all parameters 

with deterministic value of 8, 0.45, 1.8 and 

0.3 and 1.0 are modeled as stochastic 

variables following normal distributions: 

8 = X2; 1 = X3; 0.45 = X4; 1.8 =  X5; 1.8 = 

X6; 0.3 = X7 and X1 is modelled as an error 

term (ε) for the model equation. X1is 

considered as normally distributed N (0, 

σ2). 

Equations 1, 2 and 3 are written: 

 

log 𝑁1 =
𝑋2

(𝑌−𝑋3)
∙ (𝑆𝑚𝑎𝑥 − 𝑋3) + 𝑋1       (4) 

log 𝑁2 = 𝑋2 +
𝑋2∙ln(10)

(𝑌−1)
∙ (𝑌 − 𝑆𝑚𝑖𝑛) ∙

                  log (
𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛

𝑌−𝑆𝑚𝑖𝑛
) + 𝑋1            (5) 

if, log 𝑁1 ≤ 8, then log𝑁 = log 𝑁1 

if, log 𝑁1 > 8, then log𝑁 = log 𝑁2 

where, 

𝑌 =
𝑋4+𝑋5∙𝑆𝑐,𝑚𝑖𝑛

𝑋3+𝑋6𝑆𝑐,𝑚𝑖𝑛−𝑋7∙𝑆𝑐,𝑚𝑖𝑛
2                    (6) 

 

All these six parameters along with the 

standard deviation of the error term σε are 

estimated using the Maximum Likelihood 

Method (MLM). Use of the Maximum 

Likelihood Method provides us with the 

option to include runouts in the available 

dataset, [17]. Equation 7 shows a typical 

MLM function, which takes care of 

runouts in parameter estimation and 

provides a better fitting, compared over 

other methods e.g. least square fitting.  
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min
𝐴,𝜎𝜀

 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐴, 𝜎𝜀)

= ∏ 𝑃(𝑁𝑖(𝐴, 𝜎𝜀) = 𝑛𝑖)

𝑁𝐹

𝑖=1

∙ ∏ 𝑃(𝑁𝑖(𝐴, 𝜎𝜀) ≥ 𝑛𝑖)

𝑁𝑅𝑢𝑛𝑜𝑢𝑡

𝑖=1

 

(7) 
 

              

where A is the set of parameters, here X2 

to X7, Ni = Observed failure cycles, ni = 

calculated (theoretical) number of cycles 

for failure. NF = number of observations 

where, fatigue failure of specimen were 

observed and NRunout = number of 

observations where, runouts (no failure) 

were observed. 

 

The first term in equation 7 represents the 

probability for normal case of failure 

while second term represents a probability 

distribution function (cdf) for the case of 

runouts where number of cycles observed 

are greater than calculated failure cycles. 

 

In addition, MLM provides us with 

uncertainty associated with each 

parameter, which can be directly used into 

a reliability analysis. 
 

5. Parameter uncertainty and 

correlation 

Choosing six parameters and estimating 

by MLM creates problem of numerous 

solutions, with highly uncertainty values, 

since most of the parameters are highly 

correlated. There are several ways to deal 

with the issues of parameter uncertainty 

and correlation: 

1. Modify the model structure 

2. Increase information content of 

experimental data by proper 

design of experiments 

3. Search a parameter subset that can 

be reliably estimated from given 

data. 

Solution # 1 is beyond scope of this paper 

and that is not the direction of research of 

the author, also these experiments are very 

costly and time consuming. Solution # 2 

was attempted with use of Bootstrap 

methodology, [18] by generating more 

synthetic data, however for efficient use of 

Bootstrap methodology residuals should 

be random in nature, but for this particular 

model residuals were observed to follow a 

specific pattern and obtaining synthetic 

results was not possible, hence discarded. 

Therefore, all available information is 

used evaluating solution # 3.  

Solution # 3 consists of performing ‘Local 

Sensitivity Analysis’ and ‘Identifiability 

Analyses’, which is explained in detail in 

Section 6 & 7 respectively.  

 

6. Local Sensitivity Analysis 

Local sensitivity analysis is also denoted 

as the one factor at a time (OAT) method. 

In OAT methods, each parameter/input 

variable is perturbed one at a time around 

its nominal value and resulting effect on 

output is measured.  

Local sensitivity measures are commonly 

defined using first order derivative of the 

output, y =  f(x), with respect to an input 

parameter, x. sa represents absolute 

sensitivity: 

𝑠𝑎 =
𝜕𝑥

𝜕𝑦
                                      (8) 

and sr represents a relative sensitivity 

 𝑠𝑟 =
𝜕𝑥

𝜕𝑦
∙

𝑥°

𝑦°
                                  (9) 

  

The relative sensitivity functions are non-

dimensional with respect to units and very 

useful for comparing effect of model 

inputs among each other; the same is also 

used in identifiability analysis for 

identifying parameters.  

The partial derivatives presented in 

Equation 8 can be obtained numerically 
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by model simulations with a small 

positive or negative perturbation, Δx, of 

the model inputs around their nominal 

values, x0
. Depending on direction 

perturbations, the sensitivity analysis can 

approximated using forward, backward or 

central difference method. For current 

paper, partial derivative is performed by 

central difference method and shown in 

Equation 10. 
𝜕𝑥

𝜕𝑦
=

𝑓(𝑥0+∆𝑥)−𝑓(𝑥0−∆𝑥)

2∆𝑥
                    (10) 

A perturbation factor ε=10-3 is used, i.e. 

Δx = ε * x. 

All six parameters x2 to x7 are perturbed 

individually and effect of the same is 

observed logN and is plotted in Figure 1 

against Smin and Smax values from data. It 

is observed that perturbation of the first 

three parameters gives positive and 

negative effects while last three 

parameters the effect of perturbation is 

very small in log N value. 

 
Figure 1: Effect of perturbation on Log N, plotted against Smin 

and Smax values  
 

7. Identifiability Analysis 

First step in the parameter estimation 

problem is determining which sets of 

parameters can be selected for estimation. 

The identifiability analysis is concerned 

with identifying those subset of 

parameters that, can be identified uniquely 

from given set of data (measurements). 

Uniqueness is important, in the sense that 

these parameters can be independently 

estimated accurately (with low 

uncertainty / variance). This also demands 

a low correlation between these 

parameters (e.g. lower than 0.5). Most of 

the times a lot of parameters can be used 

to get a better fit to the data but then the 

problem becomes ill conditioned. Thus; 

preferably an optimization can be done on 

the number of parameters to be estimated 

from a given set of data; Brun and others 

present a two step procedure for 

identifiability analysis [19], by calculating  

parameter significance ranking and 

collinearity indices, which is further 

explained below in detail in Section 7.1 

and 7.2, respectively. 
 

7.1. Parameter significance ranking  

In this step, significance of each parameter 

is calculated as a non-dimensional 

number 𝛿𝑚𝑠𝑞𝑟. Value of 𝛿𝑚𝑠𝑞𝑟close form 

to unity indicates parameter is significant 

while values close to zero indicates a non-

significant parameter. 
 

𝛿𝑚𝑠𝑞𝑟 = √
1

𝑁
∑ (𝑠𝑟𝑖)𝑁

1                       (11) 

where sr is the relative sensitivity. 

 

Figure 2 shows 𝛿𝑚𝑠𝑞𝑟 values plotted for 

all six parameters and it can be seen that 

the parameters X2, X3 and X4 are 

significant while the others are not.  

 

 
Figure 2: Parameter significance ranking  

 

7.2. Collinearity indices  

In this step, for each parameter subset (all 

combinations of parameter subsets which 
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include the 2, 3, 4, 5 and 6 parameters) a 

collinearity index is calculated, which 

assess joint influence of the parameters in 

a given subset on the model output. A 

change in the model output caused by a 

perturbation of a parameter within the 

subset can be compensated in the linear 

approximation up to a fraction 1/𝛾𝑘 by 

appropriate changes in the other 

parameters in given subset. High values of 

𝛾𝑘 indicate that, the subset of parameters 

is poorly identifiable due to relations 

between at-least two parameters, thus 

totally independent vectors will have a 

very small value, [19], [20], [21], [22] & 

[23].  

The collinearity index of a parameter 

subset k, can be calculated by Equation 

12. 

𝛾𝑘 =
1

√min 𝜆𝑘

                                    (12) 

where,  

𝜆𝑘 = eigen(𝑠𝑛𝑜𝑟𝑚𝑘
𝑇 ∙ 𝑠𝑛𝑜𝑟𝑚𝑘)                   

 

𝑠𝑛𝑜𝑟𝑚 =
𝑠𝑟

‖𝑠𝑟‖
 

is the normalized non-dimensional sensitivity 

function using an Euclidian norm. 

λk are eigenvalues of normalized sensitivity 

matrix for parameter subset k. 

 

Based on the collinearity indices theory, γk 

is calculated for each possible subset of 

six parameters. In total 57 subsets were 

analyzed and important subsets are 

identified. Identification of important 

subsets are done based on a criteria with a 

threshold of 5‐ 15, see [19], [20], [21], 

[22] & [23]. The best practice is to start 

with the parameter subset with the largest 

size (of parameters) and lowest γk. Results 

are shown in Table 1. 
 

 Table 1: Collinearity indices for each subset 

k 
Size 

of k  
Parameter combination 

  γk 

1 6 X2 X3 X4 X5 X6 X7 852.7 

2 5 X3 X4 X5 X6 X7  118.7 

3 5 X2 X3 X5 X6 X7  852.5 

4 5 X2 X3 X4 X5 X6  126.8 

5 5 X2 X3 X4 X6 X7  106.7 

6 5 X2 X3 X4 X5 X7  93.45 

7 5 X2 X3 X4 X5 X6  77.52 

8 4 X2 X3 X4 X5   25.41 

9 4 X2 X3 X4 X6   33.58 

10 4 X2 X3 X4 X7   52.58 

11 4 X2 X3 X5 X6   11.89 

12 4 X2 X3 X5 X7   5.69 

13 4 X2 X3 X6 X7   10.47 

14 4 X2 X4 X5 X6   76.43 

15 4 X2 X4 X5 X7   92.36 

16 4 X2 X4 X6 X7   105.9 

17 4 X2 X5 X6 X7   125.3 

18 4 X3 X4 X5 X6   11.58 

19 4 X3 X4 X5 X7   5.48 

20 4 X3 X4 X6 X7   10.02 

21 4 X3 X5 X6 X7   50.51 

22 4 X4 X5 X6 X7   117.1 

23 3 X2 X3 X4    13.54 

24 3 X2 X3 X5    2.12 

25 3 X2 X3 X6    2.08 

26 3 X2 X3 X7    2 

27 3 X2 X4 X5    22.71 

28 3 X2 X4 X6    30.37 

29 3 X2 X4 X7    48.52 

30 3 X2 X5 X6    11.02 

31 3 X2 X5 X7    5.34 

32 3 X2 X6 X7    9.75 

33 3 X3 X4 X5    2.25 

34 3 X3 X4 X6    2.2 

35 3 X3 X4 X7    2.08 

36 3 X3 X5 X6    11.11 

37 3 X3 X5 X7    4.73 

38 3 X3 X6 X7    7.7 

39 3 X4 X5 X6    10.49 

40 3 X4 X5 X7    5.07 

41 3 X4 X6 X7    9.2 

42 3 X5 X6 X7    47.49 

43 2 X6 X7     5.17 

44 2 X5 X7     3.27 

45 2 X5 X6     8.56 

46 2 X4 X7     1.36 

47 2 X4 X6     1.68 
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48 2 X4 X5     1.87 

49 2 X3 X7     1.05 

50 2 X3 X6     1.19 

51 2 X3 X5     1.29 

52 2 X3 X4     1.74 

53 2 X2 X7     1.25 

54 2 X2 X6     1.51 

55 2 X2 X5     1.68 

56 2 X2 X4     12.61 

57 2 X2 X3     1.83 

 

 

8. Results and Conclusion 

From Table 1 it can be observed that the 

parameter combination of X2, X3 & X4 can 

be considered as the best combination of 

important parameters that can be 

estimated out of the given dataset 

(highlighted in red), as collinearity index 

for these parameters is 13.54, which is in 

required range of 10 – 15, based on [19], 

[20], [21], [22] & [23].  Figure 2 also 

exhibits the same subset of parameters 

since the parameter significance ranking is 

also higher for these parameters among 

six. 

 

Based on the results of sensitivity and 

identifiability analysis, the parameter 

subset is chosen and can be estimated by 

the Maximum Likelihood Method 

(MLM). The material model can be 

updated and fitted to the data with mean 

values of estimated parameters. This new 

fit would be a better fit than model code 

fit to the data. Presentations of these 

results are outside the scope of this paper 

and will be presented in a subsequent 

paper. 
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