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Abstract—Supervised non-negative matrix factorization (NMF)
is effective in speech enhancement through training spectral
models of speech and noise signals. However, the enhancement
quality reduces when the models are trained on data that is
not highly relevant to a speech signal and a noise signal in a
noisy observation. In this paper, we propose to train a classifier
in order to overcome such poor characterization of the signals
through the trained models. The main idea is to decompose
the noisy observation into parts and the enhanced signal is
reconstructed by combining the less-corrupted ones which are
identified in the cepstral domain using the trained classifier. We
apply unsupervised NMF followed by Wiener filtering for the
decomposition, and use a support vector machine trained on
the mel-frequency cepstral coefficients of the parts of training
speech and noise signals for the classification. The results show
the effectiveness of the proposed method compared with the
supervised NMF.

Index Terms—Speech enhancement, signal decomposition, un-
supervised NMF, Wiener filtering, SVM.

I. INTRODUCTION

The objective of speech enhancement is to reduce unwanted
noise from a noisy speech signal [1], [2]. A major challenge in
current enhancement techniques is to accurately estimate the
noise statistics, particularly in non-stationary environments.
The classical estimators are based on voice activity detectors
or on tracking the non-stationarity in short-length segments of
the signal [3]–[6]. However, these techniques are less-accurate
when tracking highly non-stationary noise with low signal-to-
noise ratio (SNR). Unlike the classical estimators, the time-
frequency (TF) analysis methods such as the empirical mode
decomposition (EMD), do not require estimation of the noise
statistics [7]. In these methods, the decomposition is applied to
the noisy speech signal, and a decision criterion identifies the
less-corrupted components in order to use them to reconstruct
the enhanced signal.

Most recently proposed speech enhancement methods rely
on training the spectral diversity of sources, e.g., speech and
noise, from relevant training data [8]–[11]. Such enhancement
techniques are based on supervised non-negative matrix fac-
torization (NMF). NMF is part-based factorization that aims
to approximate the spectral power of a source, e.g. speech and
noise, by spectral basis vectors and temporal activation ones,
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with non-negative element constraints [12]–[15]. Speech en-
hancement based on supervised NMF consists of two phases,
namely, training and enhancement. In the training phase, spec-
tral basis vectors, describing the speech and noise in a noisy
signal, are trained independently by factorizing the spectral
power of training signals. The trained spectral basis vectors
are used subsequently in the enhancement phase to estimate
temporal activation vectors of the speech signal and the noise
signal based on the spectral power of the noisy speech signal.
The enhanced signal is obtained via Wiener filtering using the
trained basis and estimated activation vectors.

In some situations, speech signals of different speakers and
signals of different types of noise are not known a priori,
especially when the training data is available through unla-
beled speech signals and unlabeled noise signals. Moreover,
in some cases the data does not contain training speech signals
and training noise signals that match a particular noisy signal.
Joint training of spectral basis vectors on unlabeled data was
presented in [16]. We show that the performance of the joint
training is limited when the training set does not contain
specific data that is explicitly relevant to a noisy observation.

To tackle this problem, we propose to train a classifier using
a support vector machine (SVM) [17]. To perform classifica-
tion with a good performance, however, enough amount of
data is required for the training and the testing. In order to
provide the classifier with enough data and to simplify its task,
inspired by the EMD, we propose to decompose speech and
noise signals for the training and a noisy speech signal for the
testing into non-overlapping parts by using NMF followed by
Wiener filtering. These multiple parts have different patterns
and they sum up to the signal to be decomposed. The enhanced
signal is then reconstructed by combining the less-corrupted
parts of the noisy signal. These parts are identified in the
cepstral domain [18] using the SVM that is trained on the
parts of training speech and noise signals.

II. PROBLEM FORMULATION

The observation model in the time domain is given by

x(t) = s(t) + n(t), (1)

where x(t) indicates a noisy speech signal, s(t) a clean speech
signal, n(t) a noise signal, and t a time-index. The observation



x(t) can be represented in the time domain by the sum of Kx

parts as follows

x(t) =

Kx∑
kx=1

xkx
(t). (2)

The speech signal s(t) and the noise signal n(t) can also be
represented by the sum of parts. Let Xkx

be the matrix of the
complex STFT coefficients of xkx(t). Due to the linearity of
the STFT, the proposed signal model in the time-frequency
domain is given by

X =

Kx∑
kx=1

Xkx
. (3)

We assume that the parts of the speech signal and the parts
of the noise signal in the noisy speech signal X are less-
overlapping. In this sense, the part xkx

(t) can be classified
as a part of either s(t) or n(t). The parts of the noisy speech
signal classified as speech are then combined together in order
to reconstruct an enhanced signal. To this aim, we propose to
use NMF followed by Wiener filtering in order to decompose
the noisy speech signal into Kx parts, and a trained SVM in
order to classify them.

III. PROPOSED METHOD

The proposed method consists of two phases, namely train-
ing and enhancement. In the training phase, a classifier is
trained using the parts of speech and noise signals. Later,
the parts of a noisy speech signal are classified using the
classifier and the ones of speech are linearly combined to
reconstruct an enhanced signal in the enhancement phase. This
explicitly requires to decompose the noisy speech signal into
less-overlapping and easily separable parts. Such decompo-
sition can be achieved by exploiting certain signal diversity,
e.g., spectral or temporal diversity. The noisy signal can, for
example, be passed through a bank of spectral filters, or can be
broken down into short-length temporal segments. However,
signal separability is not always guaranteed by doing so.

It is widely known that audio signals in the time-frequency
domain are sparse in their nature. This property can be
exploited to apply spectro-temporal filtering in order to de-
compose a noisy speech signal into less-overlapping parts. The
main challenge, however, is to find a way to compute spectro-
temporal filters. In this paper, we propose to use NMF to
compute a filter-bank of spectro-temporal Wiener gains, which
is used later to decompose the noisy speech signal into parts
in the time-frequency domain. In this sense, we exploit the
sparsity of audio signals and of the nonnegativity constraint
imposed on the factorization. The parts are finally obtained in
the time domain via the inverse short time Fourier transform
(ISTFT) of their STFT complex coefficients.

The proposed method also requires a means to identify the
less-corrupted signal parts. In [19], [20], it is demonstrated
that the distribution of mel-frequency cepstral coefficients
(MFCCs) is predictably modified by additive noise and the
amount of change is related to the noise level in a noisy
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Fig. 1. Block diagram of the proposed method in training and enhancement
phases.

speech signal. Considering this property, we propose to use
the MFCCs as features and a support vector machine (SVM)
as the classifier to detect these less-corrupted parts.

Fig.1 illustrates the block diagram of the proposed method.
In both the training and enhancement phases, the signals in
the time domain are represented by parts through the STFT,
the NMF-based filtering, and the ISTFT. The MFCCs of the
parts of the speech signals and the noise signals are computed
and used for training the classifier in the training phase. In
the enhancement phase, the MFCCs of the parts of the noisy
speech signal are extracted, and the speech and noise parts
are identified using the trained classifier. The parts classified
as speech are then combined together in order to reconstruct
the enhanced signal in the time domain.

A. Signal Decomposition using NMF and Wiener Filtering

NMF has been applied for low-rank modeling of signals. In
the context of modeling audio signals, the spectral power of
a source is approximately represented as linear combinations
of spectral basis vectors using temporal activation vectors. A
combination through the outer product of a basis vector and its
corresponding activation one results in a rank-1 matrix, which
is a part of the low-rank approximation of the spectral power.
The parts obtained by different combinations are supposed
to be overlapped to a lesser extent and they can be used to
compute a filter-bank of spectro-temporal Wiener gains.

1) NMF and Wiener Filtering: NMF aims at approximating
source spectral power V of size F × L by a spectral basis
matrix W = [w1w2 ... wK ] and a temporal activation matrix
H = [h1h2 ... hK ]T , so that V ≈ Ṽ = WH. wk is a spectral
basis vector of length F and hk is a temporal activation vector
of length L, and both have non-negative entries. Here, the
decomposition is performed by minimizing the error measured
by the Kullback-Leibler (KL) divergence [14]. W and H are
iteratively updated to minimize the divergence by alternating
the following multiplicative update algorithm [15]

W←W � [V � (WH).−1]HT

1 HT
, (4)

H← H�WT [V � (WH).−1]

WT 1
, (5)

where � denotes the element-wise product, and the power
and the division are also element-wise. The matrices are often
initialized by random positive numbers. 1 is a matrix of ones
of size F × L and T indicates the matrix transposition. After



each update of W, its columns are normalized using the l1-
norm and the rows of H are scaled, accordingly, in order to
avoid the scaling indeterminacy. Given the matrices W and
H, spectro-temporal Wiener gains can be calculated through
the outer product of the spectral basis vector wk and its
corresponding temporal activation one hk, as follows

Gk =
wkh

T
k

WH
, (6)

where the division is element-wise, wkhk is a rank-1 ma-
trix and WH is a rank-K matrix. The filter-bank of the
Wiener gains is then obtained for all the K vectors, i.e.,
G = [G1 .. Gk .. GK ].

2) Signal Decomposition: The spectral power matrices of
the training speech signal s(t), the training noise signal n(t),
and the testing noisy speech signal x(t) are factorized using
NMF, i.e., Vs = |S| � |S| ≈ WsHs, Vn = |N| � |N| ≈
WnHn, and Vx = |X| � |X| ≈WxHx, where S and N are
the complex STFT coefficients of s(t) and n(t), respectively,
and |.| indicates the absolute value. Subsequently, as explained
in Section III-A1, filter-banks of spectro-temporal Wiener
gains for each signal is obtained using the factorization of
its corresponding spectral power matrix, as in (6), namely,
Gs = [Gs

1 .. Gs
ks

.. Gs
Ks

], Gn = [Gn
1 .. Gn

kn
.. Gn

Kn
],

and Gx = [Gx
1 .. Gx

kx
.. Gx

Kx
]. Ks, Kn, and Kx are the

ranks of the approximations of the matrices Vs, Vn, and
Vx, respectively. Each signal is then decomposed into non-
overlapping parts using its corresponding filter-bank, namely

Sks = Gs
ks
� S, Nkn = Gn

kn
�N, and Xkx = Gx

kx
�X.

The k th parts of the training speech signal sks(t), the training
noise signal nkn

(t), and the testing noisy speech signal xkx
(t)

are obtained in the time domain via the ISTFT of Sks
, Nkn

,
and Xkx

, respectively. The parts sks
(t) with ks from 1 to

Ks, and nkn
(t) with kn from 1 to Kn, are used to train the

SVM. The parts xkx(t) with kx from 1 to Kx are classified
afterwards using the trained SVM.

Fig.2 shows examples of using NMF and Wiener filtering to
decompose a clean speech signal, a bird noise signal, and their
linear mixture signal into 5 parts. By focusing our attention
on the last row and comparing the signal parts to the ones in
the upper two rows, we can easily observe that the proposed
method is capable of producing separable parts of the noisy
speech signal.

B. Training the SVM Classifier

The SVM [17] is a discriminative classifier that attempts to
model the boundary between two classes of data by finding
the maximum margin separation hyper-plane such that it
generalizes well to the test data. The SVM is trained using the
MFCCs extracted from the parts of the training speech signal
sks

(t) with ks from 1 to Ks, and the parts of the training noise
signal nkn

(t) with kn from 1 to Kn. To compute the MFCCs,
each part is first segmented into short-length frames and the
spectral power of each frame is passed through a set of filters,
linearly spaced on the mel-frequency scale. The MFCCs are
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Fig. 2. Decomposition of a speech signal, a noise signal, and their linear
mixture.

the amplitudes of the discrete cosine transform (DCT) taken
from the output energy of the filters on a logarithmic scale
[18]. The MFCCs extracted from each signal part are averaged
over the frames in order to form one vector.

C. Enhancement of the Noisy Speech Signal

The enhancement step is performed by identifying the less-
corrupted parts of the noisy speech signal and then combining
them together to obtain an enhanced speech signal. Such
decision is taken by the trained SVM using the vector of the
MFCCs extracted from xkx . Similarly to the training phase,
the MFCCs extracted from each signal part of the noisy speech
signal are averaged over the frames in order to form one vector.
Once all the Kx parts are classified, the ones detected as the
speech parts are summed up in the time domain to reconstruct
the enhanced signal.

IV. EXPERIMENTAL EVALUATION

The experiments were carried out using 25 utterances ut-
tered by 5 English speakers, namely, 3 males and 2 females,
from the NOIZEUS dataset [21], with an average length of
2.5 s. We used 4 signals of 4 different types of non-stationary
noise, namely, train, bird, restaurant, and keyboard.

In order to investigate the enhancement performance of the
proposed method, we considered two different scenarios:

1) The whole data were used for the training and the
testing. In this case, the 25 utterances of the 5 different
speakers and the 4 signals of the 4 different types of
noise were used for the training and the testing. This
resulted in 100 noisy utterances for the testing.

2) The 5 utterances of a target speaker and the signal of
target noise in a noisy signal under testing were excluded
from the training data. In this case, 20 utterances of 4
different speakers and 3 signals of 3 different types of
noise were used for the training, and 5 utterances of the
target speaker and one signal of the target noise were
used for the testing. This procedure is repeated for each
speaker and each type of noise, which resulted in a total
of 100 noisy utterances for the testing.

The noisy observations x(t) were generated by linearly mixing
testing utterances and testing noise signals at 3 different input
SNR, namely −5, 0 and 5 dB. The training is done by
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Fig. 3. The enhancement results averaged over 100 noisy utterances in terms of K and the input SNR. The supervised NMF and the proposed methods when
the testing data is excluded from the training data are labeled as “Generalized”. The dotted-line in the bottom plot indicates the input PESQ.

concatenation of the training utterances in one speech signal,
s(t), and the training noise signals in one noise signal, n(t).
In the proposed method, the concatenated signals, s(t) and
n(t), are decomposed and the MFCCs extracted from each
part are used to train the SVM classifier. The enhanced signal
is then obtained by combining the less-corrupted parts of x(t)
classified as speech.

The proposed method was compared to speech enhancement
based on supervised NMF using the KL divergence [15]. In
the supervised NMF, the matrices Ws and Wn are trained
independently by factorizing the spectral power matrices Vs

and Vn of s(t) and n(t), respectively, as in (4) and (5). The
trained matrices are used later to estimate temporal activation
matrices Hs and Hn of speech and noise signals based on
the spectral power matrix Vx of x(t) for the enhancement as
in (5). The enhanced speech signal is obtained by means of
Wiener filtering using the trained and estimated matrices. The
enhancement performance was evaluated using the signal-to-
distortion ratio (SDR) in decibels (dBs) [22] and the perceptual
evaluation of speech quality (PESQ) [23] on a scale from 0 to
4.5. The higher the PESQ value, the better the signal quality.

A. Implementation Details
The complex STFT coefficients S, N, and X of s(t), n(t),

and x(t), respectively, are obtained using a hamming analysis
window with length of 32 ms (i.e., 512 samples at 16 kHz)
and shift 16 ms. The spectral power matrices Vs, Vn and Vx

for computing the sets of the filter-banks Gs, Gn, and Gx

were factorized by iterating the KL factorization algorithm in
(4) and (5) for 300 times, with Ks = Kn = Kx = K. For
the supervised NMF, the matrices Ws and Wn were trained
independently by using Vs and Vn, respectively, with the
number of spectral basis vectors equals K.

For the classification, the signal parts sks
(t), nkn

(t), and
xkx(t) are segmented into short frames of 30 ms long and 10
ms overlap using a hamming window. Then, for each frame, 12

MFCCs together with the log-energy are extracted to produce
a 13 dimensional feature vector. To have one vector per each
signal part, the MFCCs are averaged over the frames.

B. Results and Discussion
Fig.3 shows the enhancement results averaged over all the

speech and noise signals in terms of K and the input SNR.
In this figure, the results of the second scenario, described in
Section IV, are labeled as “Generalized”.

We can observe that the supervised NMF provides better
performance compared with the proposed method in terms of
the output SDR when the utterances of a target speaker and
the signal of target noise are included in the training data.
However, the proposed method provides an enhanced speech
signal with comparable or slightly better quality according to
the output PESQ values.

In the second scenario, in which the utterances of a target
speaker and the signal of target noise are excluded from the
training data, the enhancement performance of the supervised
NMF is degraded. This is probably because the training data
could not provide spectral basis vectors describing well the
speech and noise signals in the noisy signal for the good
reconstruction of an enhanced speech signal. However we
observe that the proposed method can better generalize the
problem. This is due to the fact that different noise types with
similar characteristics have similar impact on the distribution
of the MFCCs of a speech signal. That is, the mean and
the covariance of the MFCCs extracted from a speech signal
are similarly modified if the speech signal is corrupted by
different noise signals with similar characteristics [20]. For
this reason, we have achieved a comparable performance when
the proposed method is applied for the enhancement in both
scenarios. It suggests that the classifier can generalize for
unseen noise types if they have similar characteristics (and
not necessarily the same noise signal) to those present in the
training data.



V. CONCLUSION

A single-channel speech enhancement method for suppress-
ing non-stationary noise in a noisy speech signal has been
presented. We have tried to overcome the problem of missing
training data by using a trained classifier instead of trained
models based on NMF. The classifier is trained on relevant and
irrelevant data. Moreover, NMF followed by Wiener filtering
are applied to decompose the noisy speech signal into less-
overlapping parts. These parts are then contributed in recon-
structing the enhanced speech signal by linearly combining the
less-corrupted ones, detected in the cepstral domain using a
SVM classifier trained on MFCCs extracted from the parts of
training speech signals and the parts of training noise signals.
The performance of the proposed method has been evaluated
using utterances of different speakers and signals of different
types of noise at different input SNR levels. The experimental
results showed that the proposed method can better generalize,
comparing to the supervised NMF, when the signal of the
target noise and the utterances of the target speaker are not
included in the training data.
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