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Understanding and including the dynamics of extreme natural hazard 

event uncertainty within the overall offshore wind farm project risk 

assessment using a causality-based graphical modelling approach
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Danish Center for Risk and Safety Management, Aalborg University, Esbjerg, Denmark

S. Cuthbert
Ørsted, Fredericia, Denmark

ABSTRACT: Offshore wind structures are subject to the combined action of wind and wave loads. 
A change of these loads may significantly affect the integrity of the structural elements. Increased insta-
bilities in the Earth’s climate system could increase the frequency of extreme events (e.g. rogue waves) 
well beyond the frequency values currently recommended within structural design standards. Inherent to 
extreme event modelling is the need to use expert (subjective) judgement and sparse data sets. In this con-
text, a Bayesian Belief  Network (BBN) can be applied to describe the effect of these changes on the fre-
quency of rogue waves within wind farms located in shallow water depths of 20–60 metres. This graphical 
modelling approach provides the structure to effectively communicate, among others, parameter uncer-
tainty, causality across multiple risk factors, quantitative definition of assessment subjectivity or potential 
impact of a change in rogue wave frequency relative to that described in current design standards.

them in the customary Risk Assessment process 
of a company that operates physical assets in an 
offshore environment is entirely justified, despite 
its complexity and the high number of uncertain-
ties involved.

In the present work a causality-based proba-
bilistic graphical modelling methodology is pro-
posed to assess the risk associated with rogue 
waves in offshore wind farm projects at the final 
design stage. The methodology includes the 
impact of  future climate change and provides the 
structure in which to effectively communicate: 
a) parameter uncertainty; b) correlation across 
multiple risk factors (i.e. “Systems of  Systems” 
(SoS) complexity mapping/analyses); c) defini-
tion of  assessment subjectivity; d) and potential 
impacts of  low probability catastrophic events 
(i.e. extreme events). The methodology provides 
a holistic framework that can be integrated into 
existing decision-making processes currently 
defined within a large capital project execution 
process.

In brief, the method studies the probability 
of a rogue wave impacting an offshore structure 
situated in a predefined location of the North-
ern North Sea, between 20 and 60 m depth, and 
includes 3 main stages: risk understanding, quali-
tative bow-tie creation; and transformation to a 
Belief  Bayesian Network.

1 INTRODUCTION

The term “rogue”, “freak”, “abnormal” or “giant” 
wave commonly refers to waves that are very 
steep and large in absolute measures and, at the 
same time, significantly larger than the surround-
ing waves in the sea state, and are thus unexpected  
(Bitner-Gregersen, 2017). They are statistically 
unlikely to occur in a given sea state (either low, inter-
mediate or high), based on averaged properties of 
that sea state (Bitner-Gregersen & Gramstad, 2015).

This physical phenomenon is not fully under-
stood, but increasing reliable measurements and 
records, as well as the significant increase in com-
putational power and numerical modelling capac-
ity, allow to explore these extreme events with 
greater accuracy.

There are several motivations to reduce the 
risk of wave-related incidents. First, because they 
clearly represent a current threat to marine instal-
lations. Second, because more severe sea state 
conditions may be expected in some ocean regions 
associated with climate change and global warming 
(IPCC Panel, 2014). Third, because understanding 
and forecasting waves under various conditions is 
essential with respect to design and operation of 
offshore structures.

Based on these initial premises, addressing these 
extreme events as potential risk and including 
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2 RISK UNDERSTANDING

Risk assessment is to a large extent about gaining 
‘risk understanding’ in the sense of knowledge—
justified beliefs, by producing a risk description 
(C0,Q,K), where C0 are the specified consequences 
of the activity studied, Q a measure of uncer-
tainty, and K is the background knowledge on 
which C0 and Q are based (Amundrud & Aven, 
2015). According to these authors, these justified 
beliefs are based on data, information (relevant 
processed data) and models. The uncertainty judg-
ments about C0 using Q can also be seen as justi-
fied beliefs.

K is a limiting aspect in the proposed meth-
odology, due to the lack of understanding of the 
physical process of  creation of rogue waves. For 
example, describing the wave phenomenon is the 
result of  a set of  uncertainties. The random model 
for ocean waves is constructed by representing the 
sea surface as a sum of elementary waves with 
different wavelengths, frequencies, and directions 
of propagation (Bitner-Gregersen & Gramstad,  
2015). However, in reality ocean waves are not 
described exactly by a linear formulation or sec-
ond-order theories, and therefore require a set 
of  increasingly accurate formulations. The more 
accurate, the more mathematically complex and 
more difficult the model will be. As a result, the 
logical functions and equations included in the 
proposed graphical model are based on the linear 
theory, the most tractable approach for the graphi-
cal model under design.

Uncertainty related to environmental phenom-
ena may be divided in aleatory uncertainty (natural 
randomness) and epistemic (knowledge) uncer-
tainty; and the latest in: data uncertainty, statistical 
uncertainty, model uncertainty and climatic uncer-
tainty (Bitner-Gregersen et al. 2013).

Assessing data uncertainty is out of the scope 
of this study, so available data are assumed to 
be appropriate. To minimize the statistical and 
climatic uncertainty, a long-term data source 
was selected. The European Centre for Medium-
Range Weather Forecasts’ ERA-Interim is a global 
atmospheric reanalysis from 1979, publicly acces-
sible and continuously updated in real time (Euro-
pean Centre for Medium-Range Weather Forecast, 
2017). After establishing a geographical location in 
the Northern Sea, 4  measurements per day were 
obtained between 1979 and 2017 (about 55.000 
values per variable) for 30 different variables. Only 
9 of them were considered relevant for the project: 
model depth (d), zero-crossing mean period (Tz), 
wave spectral directional width (σθ), significant 
wave height (Hs), mean wave direction (θ), mean 
direction of wind waves (θ1), mean direction of 
swell (θ2), and Benjamin-Feir index (BFI).

There are other relevant variables, such as the 
wave length (λ), that are not independent. In these 
cases, formulae given by the Recommended Prac-
tice DNVGL-RP-C205 have been used (DNV GL, 
2017).

Finally, defining and managing the model is the 
core part of this work and a main responsibility 
of the risk analyst (designing, building, assigning 
probability, running simulations, reporting and 
maintaining). It reflects the limitations of the pre-
vious factors and adds new uncertainties, due to 
failed assumptions in physical process formulations, 
or choices of probability distribution types for 
representation of uncertainties. In this regard, the 
method tries to register and track all the detected 
uncertainties. To limit this effect, all the variables 
were fitted to a probability distribution using the 
software tool, ModelRisk (Vose Software, 2018) 
only when the best fit was not supported by the 
Bayesian Network software (OpenBUGS).

3 BOW-TIE CREATION

The bow-tie is a graphical approach frequently 
used to represent a Risk Event, its Causes (Driv-
ers), Prevention Barriers (Controls), Mitigation 
Barriers, and its Consequences (Impacts) in a vis-
ual and logical manner. Centered on a critical (risk) 
event, it is composed of a simplified fault tree on 
the left-hand side and an equally simplified event 
tree on the right-hand side showing the possible 
consequences of the critical event based on the fail-
ure or success of safety functions (Khakzad et al. 
2013). To understand the relations and depend-
ences among factors involved in the creation and 
impacts of rogue waves and climate change on 
offshore wind structures, a qualitative bow-tie is 
proposed. The first step consists of formulating 
the critical event: impact of a breaking rogue wave 
on an offshore wind structure (named “IMPACT” 
in the graphical model). This step seems to be obvi-
ous, but in complex or emerging risks it is essential 
to organize and plan the following phases of the 
method.

In this case, due to the complexity of the ana-
lyzed physical phenomena, the bow-tie focuses on 
the left-side, or analysis of causes (drivers) and 
barriers (controls). The event tree of consequences 
is reduced to one: the failure of the structure (F).

After a deep review of the state-of-the-art 
related to rogue waves and climate change impacts 
on the study area, as well as the available data, the 
drivers and controls are analyzed individually and 
placed in the bow-tie, establishing the appropriate 
connections and causal relations. The graphic is 
continuously updated until it gets its final shape, 
shown in Figure 1.
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Several different mechanisms may be responsi-
ble for generating rogue waves such as linear focus-
ing of energy (spatial and dispersive: Kf, Kc and Tf), 
wave-current interactions (CI), crossing seas (wind 
sea and swell or two swell systems, CS), quasi- 
resonant nonlinear interactions (modulational 
instability, BFI), shallow water effects (SWCi), 
solitons interactions (SO), directional spreading 
(DS), and wind forcing (W).

Atmospheric forcing has not been considered 
in the bow-tie as a cause of  waves to simplify the 
visual understanding of  the process. The relevant 
variables obtained from the dataset are included 
in the bow-tie as primary events. Other relevant 
variables, as slope (SL), angle between the wave 
crest and depth contours (α0), angle between tar-
get and protection structure (β), Ursell number 
(UR) or maximum height (Hm) are added as pri-
mary events, when statistical data are not available 
but are required for a consistent explanation of 
an intermediate event. Some of  them are calcu-
lated in future steps or treated as assumptions. 
The bow-tie shows two main controls: protective 
structure (O), as a physical barrier to avoid the 
impact of  a breaking rogue wave against the off-
shore wind structure (OWS); and climate change 
(C). C is placed as control, assuming its barrier 
effect is focused on limiting or preventing the 
CO2 emissions caused by humans, where the key 
assumption is that the accumulation of  CO2 and 
other greenhouse gases are the primary drivers for 
climate change and that the human population is 
largely the driver for the significant increase in the 
atmospheric concentrations of  those gases in the 
past 200 years. Other controls are related to shal-
low water restrictions or used for reversing inter-
actions of  separated subsystems (current, ship 
traffic, etc.) over the wave fields or between driv-
ers of  different nature, when needed. The other 
three are natural controls: shallow water condi-
tions and rogue wave conditions.

4 BAYESIAN NETWORK

The bow-tie graphical model is used in this method 
as a primary tool to understand the risk and locate 
the critical event in its cause-effect framework. 
However, it presents a static picture of the prob-
lem. Besides, no causal relation can be established 
between primary events or other events of differ-
ent branches of the fault or event tree. These prob-
lems are solved with its transformation to a Belief  
Bayesian Network (BBN).

A BBN is an explicit description of the direct 
dependencies between a set of variables, in the 
form of a directed graph and a set of nodes linked 
to a probability. This structure offers the following 
benefits (Fenton & Neil, 2013): modelling causal 
factors explicitly, reasoning from effect to cause 
and vice versa; updating the probability distribu-
tions for every unknown variable whenever an 
observation is entered into any node; reducing the 
burden of parameter acquisition; overturning pre-
vious beliefs in the light of new evidence (explain-
ing away); making predictions with incomplete 
data; combining diverse types of evidence includ-
ing both subjective beliefs and objective data; and 
arriving at decisions based on visible, auditable 
reasoning.

The conversion of a bow-tie into a BBN is sum-
marized in Figures 2 and 3.

The BBN includes different interacting systems 
besides the waves system, and includes the current, 
seabed, wind, climate, ship traffic and artificial 
structure. Figure 4 shows this graphical model.

The fitted distributions are included as par-
ent nodes, because are the basic parameters of 
the model. There are 13 “parent distributions”, 
whereas only four of them are not obtained from 
available data. In these cases, a uniform distribu-
tion is assumed. One variable relies on the seabed 
conditions and would be subject to a better charac-
terization with the consideration of a bathymetry 

Figure 1. Final bow-tie.

Figure 2. Mapping algorithm from bow-tie to Bayesian 

Network (Khakzad et al., 2013).
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model: the angle between wave crests and depth 
contours (α0). Another one (Froude Number Fd) 
depends on the ship traffic around the offshore 
wind turbine structure (OWS), but its assessment 
is out of the scope of this work.

Following the conclusions of the bow-tie analy-
sis, the failure of the OWS occurs when a rogue 
wave impacts on it. The probability of this impact 
is “the probability of a rogue wave breaking in front 
of the OWS within the plunging range without a pro-
tective structure in between”. When the wave breaks 
just at the location or behind, the plunge distance 
is not relevant for the targeted OWS. By contrast, 
when the wave breaks in front of the structure, 
this distance is relevant, because it defines the area 
where the wave is dangerous. However, given that 
the available data are restricted to the selected loca-
tion, further spatial considerations (i.e. defining a 
breaking point or a plunge distance in front of the 
OWS) are out of the scope of this study.

Therefore, for this event to happen or not, 
it is necessary the presence of a rogue wave that 
breaks without an opposing protective structure in 
between.

In the graphical model, an extreme wave is con-
sidered a rogue wave R when the height doubles the 
significant height Hs (R > 2Hs) (Bitner-Gregersen & 
Gramstad, 2015). The wave height is limited by 
breaking. The maximum wave height Hb condition 
is based on the Recommended Practice DNVGL-
RP-C205 (DNV GL, 2017):

H tanh
d

bH λ πdd

λ
0λ 142

2
.  (1)

where λ is the wave length corresponding to water 
depth d.

The accompanying structure may be natural 
or artificial. If  the structure is artificial, it can 
be either of floating type with a mooring to the 
seafloor or a solid anchored structure that is sub-
merged or slightly above the surface. In an offshore 
wind farm, another OWS may protect the selected 
structure from the impact of a rogue wave. The 
condition to be protective is being total or partially 
aligned with the OWS in the mean wave direction. 
This condition happens, as shown in Figure  5, 
when the angle between the wave and the segment 
that links both structures (β) is between θ+90º and 
θ+270º (no other physical phenomena, i.e. refrac-
tion or diffraction, are included).

The critical assumption of the model is that 
the extreme wave heights (Hm) calculated from the 
available data are generated exclusively by the wave 
focusing under the action of wind. The final wave 
height (W) is then the result of an increase over the 
value of Hm due to the causes explained through 
the bow-tie, as expressed in Eq. (2):

W = Hm (1+C5 m SWC1 M C6l C+step 
(0.6–UR) C7t TF C3f SWC2 step (Kf–1) 
(Kf –1) + C1c step (CI) Kc) (2)

where
Hm = extreme value of height;
Kc = height increase proportion due to current 

refraction;
Kf  =  height increase proportion due to floor 

refraction;
M  =  height increase proportion due to 

modularity;
C  =  height increase proportion due to the cli-

mate change; and
TF = height increase proportion due to tempo-

ral focusing.
It may be argued that the measured heights are 

already the result of these causes or, at least, the 

Figure  4. Overall Bayesian Network with interacting 

systems.

Figure 5. Alignment of the protective structure.

Figure  3. Bayesian Network related to bow-tie 

elements.
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linear causes, i.e. spatial and temporal focusing. To 
deal with such complications, each driver has one 
control node (constant), so that the unexpected 
cause or interacting system can be eliminated from 
the model: C1c for the current; C2 s for the ship traf-
fic; C3f for the seabed refraction; C4o for the protec-
tive structure; C5m for the modularity instability; 
and C6t for the temporal focusing.

There are also natural controls (step(0.6-UR), 
step(CI), SWC1, SWC2) that cancel the drivers due 
to natural conditions. These natural conditions can 
be modelled.

Only height increases are considered, so the 
condition to take refraction into account is Kf >1: 
step (Kf – 1).

Hm is calculated following the extreme value 
theory and fitting the results to a Gumbel 
distribution.

Kf is calculated based on the Recommended 
Practice DNVGL-RP-C205 (DNV GL, 2017):

K K Kf sK K rK.  (3)

K
sin tii anh

rK =
− ( )kd⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

−
1 2

0
2

0

1 4

α
α 0cos2

/

 (4)

K
c

c
sK

g

g

= ,0
 (5)

where
Ks = shoaling coefficient;
Kr = refraction coefficient;
α0 =  the angle between the wave crest and the 

depth contours at the location;
k = wave number;
d = depth; and
Cg = group velocity.
Kc is a good example of the difficulties found 

to model some of the drivers involved in the proc-
ess. The first approach to define the variable Kc 
was based on the analysis of this phenomenon 
presented by Sorensen (Sorensen, 2006). Figure 6 

shows how a wave propagating with speed C from 
still water to water having a current velocity U, 
changes its direction.

In mathematical terms, these equations are 
obtained:

K
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where
Hc = Height after refraction;
H = Height before refraction;
Lc = Wave length after refraction;
L = wave length before refraction;
U = current velocity;
C = wave velocity;
α =  angle between the current and the crest 

front;
αc =  angle between the current and the crest 

front after refraction.
Considering Kc  =  Hc/H, an expression of Kc as 

function of α and αc can be obtained, but introducing 
it in the model was impossible and always led to a sys-
tematic software error. Other equations were checked, 
such as those presented by Iwagaki et al. (1977). A 
different approach was finally selected based on the 
work by Mathiesen (1987), which is derived from the 
computer model to measure the refraction of ocean 
directional wave spectra and applied it to a circular 
current whirl typical in the Norwegian coastal cur-
rent. This model found that the relative changes in 
wave heights were within ±20% as compared with the 
wave height of the incoming waves.

M is calculated as the average probability of the 
nonlinear modularity drivers, which are: solitons 
interactions (SO), variable bathymetry (SL), cross-
ing seas (CS), Benjamin-Feir interaction (BFI), 
directional spreading (DS) and wave-current inter-
action (CI). M is limited to a maximum value (Mmax) 
of 0.20. This value is defined considering several sys-
tematic studies which shows that effects of modu-
lational instability can enhance the crest height for 
long-crested waves by up to 20%, at lower probability 
levels, while the troughs become about 20% deeper 
than second–order troughs (Kharif et al. 2009).

C is calculated based on the CO2 emissions origi-
nating from the socio-economic scenarios (A1B, 
A2, B1 and B2) proposed by The Intergovernmental 

Figure  6. Definition sketch for wave refraction by a 

current (Sorensen, 2006).
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Panel on Climate Change IPCC and the values of 
emissions currently estimated for the North Sea.

Tf is calculated as a function of the Ursell 
number UR, with a maximum value to be estab-
lished at the moment:

U
H

d
RU =

λ 2λλ
3

 (9)

Kharif  et  al. (2009) stated that this number 
characterizes the ratio of nonlinearity to disper-
sion. When the Ursell parameter is small, the non-
linearity can be neglected, and the wave is a linear 
dispersive wave. In real situations of wind waves, 
the values of UR parameters are not too large, and 
the dispersive trains contribute significantly to the  
statistical wave characteristics. Based on these 
authors, a value of UR < 0.6 is selected to consider 
the impact of the temporal focusing as relevant.

There are two restrictions related to the shallow 
waters which must be considered, and are given the 
variable names, SWC1 and SWC2. Water is consid-
ered shallow when the surface waves are noticeably 
affected by bottom topography (Bitner-Gregersen &  
Gramstad, 2015). This condition occurs when the 
depth, d, becomes less than half the wavelength, λ.

Modulational instability becomes weaker with 
decreasing depth and it is suspected to play a less 
important role in shallow water (Bitner-Gregersen &  
Gramstad, 2015). Benney & Roskes (1969) esti-
mated that modulational instability disappears 
when 2πd/l < 1.363 for unidirectional waves. Under 
this threshold, the model cancels the driver M. This 
is the restriction with the variable name, SWC1

Similarly, the seabed related refraction (Kf) is 
canceled when the shallow water condition is not 
accomplished (restriction SWC2).

4.1 Modulational instability drivers

Seven drivers are involved in the creation of non-
linear instability. Their inclusion, conditions and 
limits are discussed in the following sections.

4.1.1 Solitons interaction (SO)
Solitons interaction has been suggested as a source 
of nonlinearity in shallow water (Kharif  et  al., 
2009). Peterson et  al. (2003) linked this mecha-
nism to relatively shallow coastal areas with high 
ship traffic density, particularly high-speed ships 
when they sail with critical or supercritical speeds. 
These speed levels rely on a value of the Froude 
number, Fd, which is the ratio of the ship speed and 
the maximum phase speed of gravity waves, equal 
or higher than 1. Therefore, the model constrains 
the impact of this driver to this threshold. It is out 
of scope of this study to analyze the traffic in the 

vicinity of the location, so a uniform distribution 
has been used for the variable Fd.

4.1.2 Variable bathymetry (SL)
Recent works have shown that the probability of 
rogue waves may increase on the shallow side of 
an underwater slope. Sergeeva et al. (2011) linked 
the probability of rogue waves to the wave steep-
ness, which is characterized in terms of the Ursell 
parameter. Both variables increase when the depth 
decreases (water shallowing), and the wave state 
deviates from the Gaussian. Based on previous 
research, the condition for nonlinearity due to the 
interactions with a variable bottom has been fixed 
when UR > 0.6 (Kharif  et al., 2009).

4.1.3 Crossing seas (CS)
When two wave systems (wind sea and swell or 
two swell systems) are separated in direction or 
frequency and cross, the modularity increases 
depending on the angle between them. Both wave 
trains are assumed to be narrow banded and 
weakly nonlinear (Kharif  et al., 2009).

Onorato et al. (2010) suggested that an increased 
probability of rogue waves was associated with 
angles between 40° and 60°. This is the condition 
used in the graphical model. ERA INTERIM data-
base offers separated information about the mean 
wind waves directions (θ1) and mean swell direc-
tion (θ2), so the possibility of crossing wind seas is 
not considered.

4.1.4 Benjamin-Feir interaction (BFI)
A key parameter controlling the importance of the 
nonlinear wave-wave interactions is the Benjamin–
Feir Index (BFI) which is the ratio of the wave steep-
ness to the spectral bandwidth (Kharif et al., 2009).

BFIFF = ε
δ

2

θδδ  (10)

where:
ε = wave steepness; and
δθ = spectral directional width.
Instability condition is given by Eq. (11), and 

is used as a condition in the graphical model  
(Bitner-Gregersen, 2017):

2 1  (11)

4.1.5 Directional spreading (DS)
Onorato et al. (2002) showed that the probability of 
occurrence of rogue waves depends not only on BFI, 
but also on the directional spreading of the waves. 
Waseda et al. (2011) found evidence that occurrence 
of rogue waves was associated with sea states with 
directional spreading of less than about 30°, sug-
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gesting that sea states with increased occurrence of 
rogue waves may occur in realistic ocean conditions. 
This has been the condition used in the model.

4.1.6 Nonlinear wave-Current Interaction (CI)
There are theoretical, experimental, and numeri-
cal evidences to support that in some situations 
the combined effect of wave nonlinearity and cur-
rents can lead to an increase in rogue wave occur-
rence (Nakicenovic et al., 2000). Janssen & Herbers 
(2009) first discovered that initially stable narrow 
banded wave fields could become unstable when 
the nonlinearity was increased due to linear focus-
ing. Toffoli et al. (2015) experimentally showed that 
realistic random waves propagating in opposing 
currents could destabilize, with a resulting increase 
in the occurrence of rogue waves, even for waves 
with directional spread that normally obey near-
Gaussian properties. The probability of a current 
opposing to a wave field depends then on the angle 
between wave and current. The opposing condi-
tion is addressed by the model as the probability of 
the mean current direction (θc) between the values 
of θ 90º and θ 270º, with a maximum when θc 
is equal to θ 180º, as shown in the Figure 7.

4.2 Addressing climate change

For the estimation of the climate change impact on 
the frequency of occurrence of a breaking rogue 
wave within the location proposed for an offshore 
wind farm, several assumptions have been made. 
It is accepted that there is a stochastic dependence 
between levels of CO2 in the atmosphere and the 
ocean wave climate. On the other hand, only CO2 is 
considered as a factor of climate change, although 
it is just one of the components of the greenhouse 
gas group (GHG).

The projections of future climate change scenar-
ios are based on the four marker scenarios (A1B, 
A2, B1 and B2) proposed by The Intergovern-
mental Panel on Climate Change IPCC, over the 
twenty-first century (Quante & Colijn, 2016). Each 
emission scenario reflects different assumptions on 

future socioeconomic development. Scenario A2 is 
the worst, followed by A1, B2 and B1.

Regarding the study area, Grabemann et al (2015) 
analyzed a set of ten wave climate to estimate the 
possible impact of anthropogenic climate change on 
mean and extreme wave conditions in the North Sea. 
The projections were based on different IPCC emis-
sion scenarios, included different global and regional 
models starting from different initial conditions.

They found a solid pattern for the increase in 
median and severe significant wave height in the 
eastern North Sea (parts of the southeastern 
North Sea and large parts of the Dutch, German, 
and Danish coasts up to the Skagerrak) towards 
the end of the twenty-first century, while a decreas-
ing trend in the western North Sea was detected. 
However, the magnitude of this increase was much 
more uncertain and oscillates between about −10 
and 15% relative to the reference Hs. These num-
bers are consistent with other relevant studies in 
the area, which establish the increase between 
6–8%, or up to 10% (Kharif  et al., 2009).

Therefore, in the model the increase on the wave 
height has been defined as:

C c x sij ij∑0

10. x∑  (12)

where c0  =  maximum emission factor in decimal 
fraction; xij = reduction factor for the emission sce-
nario i during the decade j in decimal fraction; and 
sj = emission scenario.

Based on the abovementioned data, a value of 
0.10 has been assigned to co. It corresponds to the 
value for the worst scenario (A2). The values of sij 
have been calculated based on the projections of 
the IPCC simulated with model AIM in the OCDE 
region, as stated in Table 1.

Figure 7. Wave-current interaction.

Table  1. Emission Reduction factors based on IPCC 

scenarios (xij).

Decade

Scenario si

A2 A1 B2 B1

1990 1 1 1 1

2000 1 1 1 1

2010 1 0.97 0.93 0.89

2020 1 0.91 0.86 0.81

2030 1 0.83 0.78 0.71

2040 1 0.77 0.73 0.64

2050 1 0.72 0.68 0.58

2060 1 0.64 0.58 0.48

2070 1 0.57 0.49 0.4

2080 1 0.49 0.41 0.31

2090 1 0.4 0.33 0.23

2100 1 0.32 0.26 0.16
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The final structure of the proposed Bayesian 
Network is presented in Figure 8.

5 DISCUSSION AND CONCLUSIONS

In the current study, a method for assessing a com-
plex risk associated to physical phenomena not 
fully understood has been presented. The high 
level of complexity results in a high number of 
uncertainties which necessarily must be faced by 
the risk analyst. The focus of this study has been 
on understanding the physics behind the rogue 
wave phenomenon and determining the conditions 
under which such waves can be expected to occur 
more frequently when considering specific tempo-
ral and spatial ranges. Without the right outcome 
from this stage, the aim at creating a Bayesian Net-
work would have been impossible. The role of the 
analyst in a decision-making process is to create 
a model as efficient as possible. This requirement 
includes its running speed, computational calcu-
lation and memory requirements, maintenance 
effort, file size, the least amount of assumptions, 
and finally, the ability to communicate the risk and 
the utility for the decision makers.

Due to the complexity of the risk analyzed, the 
number of assumptions in the model is remarkable, 
but a considerable effort has been made to manage 
those assumptions via: tracking for awareness and 

future improvement; and defining the model with 
multiple options for isolating and simulating only 
a partial number of individual drivers.

Currently, the BNN is being tested under differ-
ent scenarios and limitations. Further conclusions 
will arise with the coming analysis of the results. In 
the worst scenario, the method will serve as a learn-
ing tool to understand the risk and its consequences 
in a deeper way. It will also be used to perform sensi-
tivity analysis of the different drivers involved in the 
critical event. The optimal implementation would 
be reached when the model is used as a part of the 
strategic decision-making process. However, several 
limitations have been already detected. The output 
interface of the BBN software (OpenBUGS) com-
plicates the presentation of results. There are other 
products in the market that seem to be more pre-
pared for sharing results with the management in 
a visual way. On the other hand, spatial considera-
tions cannot be addressed by the graphical model, 
i.e., the analysis of the plunging distance and the 
location of a potential breaking point of the wave 
in front of the structure.
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