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Preface

The present outline on tensor calculus with special apjptindo differential theory of surfaces

and dynamics represents a modified and extended versiorecfuae note written by the au-

thor as an introduction to a course on shell theory giventtagewith Ph.D. Jesper Winther

Steerdahl and Professor Lars Vabbersgaard Andersen in B&@8&d on the book of (Niordson,

1985). The text is written with inspiration from both mathegimal based texts on tensor calcu-
lus, such as the books of (Spain, 1965) and (Synge and StB#&), and the more geometrical
based interpretation often used in continuum mechanical@in, 1969).

Chapter 1 introduces the concept of vectors and tensors ieradRn space, and their com-
ponents in covariant and contravariant vector and tenssghaNext, the concepts of gradient
of vectors and tensors, as well as co- and contravariantadies are introduced. Finally, the
Riemann tensor and the concept of geodesics curves in Rrespate is treated.

Chapter 2 deals with the differential theory of a surfacénathree dimension Euclidean space,
as described by its first and second fundamental form. FRurihe Bianchi identities for the
surface Riemann-Christoffel tensor, and the Codazzi enuédr the second fundamental form
are derived.

Chapter 3 deals with the description of the motion of a mascpain curvilinear coordinates
and of a non-linear multi-degree-of-freedom dynamic syst@hich conveniently may be for-
mulated in tensor notation.

Thanks to Ph.D. student Tao Sun for preparing the figures.

Aalborg, May 2018

Sgren R.K. Nielsen
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CHAPTER 1
Tensor Calculus

1.1 Vectors, curvilinear coordinates, covariant and con-
travariant bases

22

Fig. 1-1 Spherical coordinate system.

Fig. 1-1 shows &Lartesian(x!, 22, z3)-coordinate systepas well as apherical (0, 62, 63)-
coordinate systent)! is thezenith angled? is theazimuth angleandé? is theradial distance
Notice that superscripts are use for the identification efdabordinates, which should not be
confused with power raising. Instead, this will be indichby parentheses, so:if specifies
the first Cartesian coordinate;!)? indicates the corresponding coordinate raised to the secon
power. With the restrictiong! € [0, ], 6% €]0,27] and§®> > 0 a one-to-one correspondence
between the coordinates of the two systems exists excepbofats at the line:! = 22 = 0.
These represent tr@ngular pointsof the mapping. Foregular pointsthe relations become,
see e.g. (Zill and Cullen, 2005):
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1 x
cos
x! 62 sin 6! cos 62 0! V(@1)? + (22)% + (2)?
2?| = | #*sinf'sin6? & 6?| = x? (1-1)
-1
28 03 cos H* 3 tan 2l
V(@) + (22)? 4 (23)? ]

We shall refer tdd', I = 1,2, 3, ascurvilinear coordinates Generally, the relation between the
Cartesian and curvilinear coordinates are given by relataf the type:

ol = f(0') (1-2)

The Jacobianof the mapping (1-2) is defined as:

of’
Points, where/ = 0, represensingular pointsof the mapping. In any regular point, where
J # 0, the inverse mapping exists locally, given as:

07 = h(zh) (1-4)

Ford! = ¢, (constant), (1-2) defines a surface in space, defined by tlaenedric description:

@ = fi(c, 0%, 6% (1-5)

Similar parametric description of surfaces arise, witeor 6 are kept constant, and the remain-
ing two coordinates are varied independently. The indcc#teee surfaces intersect pairwise
along three curves’, j = 1,2, 3, at which two of the curvilinear coordinates are constaut, e
the intersection curve' is determined from the parametric descriptign= f7(0*, ¢?, ¢*). All
three surfaces intersect at the palhwith the Cartesian coordinates = f7(ct, ¢, ¢®). Lo-
cally, at this point an additional curvilineés!, s?, s*)-coordinate system may be defined with
axes made up of the said intersection curves as shown on Fig. We shall refer to these
coordinates as tharc length coordinates

The position vectok from the origin of the Cartesian coordinate system to thetfaBihas the
vector representation:

x = o'y + 2%y + 2%y = 27y (1-6)

wherei;, 7 = 1,2, 3, signify the orthonormabase vector®f the Cartesian coordinate sys-
tem. In the last statement tisemmation conventioover dummy indices has been used. This
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convention will extensively be used in what follows. Theesuiis that dummy Latin indices
involves summation over the range= 1, 2, 3, whereas dummy Greek indices merely involves
summation over the range = 1,2. As an exampler’b; = a'b; + a®by + a®b3, Whereas
a“b, = a'b; + a’b,. The summation convention is abolished, if the dummy insli@ee sur-
rounded by parentheses, i&!)b;) merely means the product of thith components’ andb;.

Let d2’ denote an infinitesimal increment of thith coordinate, whereas the other coordinates
are kept constant. From (1-6) follows that this induces anghaof the position vector given as
dx = i¢jdz"). Hence:

,_0x
b= g

A corresponding independent infinitisimal increméfit of the jth curvilinear coordinate in-
duce a change of the position vector givenias= g(j)dﬁ(j), S0:

(1-7)

_ ox
~ 00

g; is tangential to the curve’ at the pointP, see Fig. 1-1. In any regular point the vectgss
j =1,2,3, may be used as base vector for the arc length coordinaensydf. The indicated
vector base vectors is referred to as¢beariant vector baseandg; are denoted theovariant
base vectorsEspecially, if the motion is described in arc length coonades g; becomes equal
to theunit tangent vectors, i.e.:

gj (1-8)

g = & (1-9)

T 9l

Use of the chain rule of partial differentiation provides:

k
ox ox Oz f i\ (1-10)

8= 901 = 0k o0
ox  ox ok

E R i L (a-11)
where:
ook _op
J 007 06’ (1-12)
dk = 0_6}]6 — 8_hk’
I 9xd Qad

cf specify the Cartesian components of the covariant baseggt Similarly, df specifies
the components in the covariant base of the Cartesian basa ye Obviously, the following
relation is valid:
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ox* 06!
5? denotekKronecker’s deltan the applied notation, defined as:
0 , Jj#k
gt — 7 (1-19)
L j=k

Fig. 1-2 Covariant and contravariant base vectors.

Generally, the covariant base vectgrsare neither orthogonal nor normalized to the length
1, as is the case for the Cartesian base vedtorén order to perform similar operations on
components of vectors and tensors as for an orthonormainease, a so-callezbntravariant
vector baser dual vector basés introduced. The correspondirgntravariant base vectogs/

are defined from:

g gt = o (1-15)

where " indicates a scalar product. (1-15) implies tlgdtis orthogonal tag; andg,. Further,
the angle betweeg; andg? is acute in order thag; - g® = +1, see Fig. 1-2. Generally, the
contravariant base vectors can be determined from the ieowdrase vectors by means of the
vector products:

1 y )

g —Vg2 g3

2 1 N

g = 8 xel = & =y ¢ 8 X8k (1-16)
o1

g _Vgl g2

whereV’ denotes the volume of the parallelepiped spanned by theiaavhase vectors;, see
Fig. 1-2. This is given as:
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V =g (82x83) = 8- (83x81) = g3- (81 X g) (1-17)

¢* is thepermutation symbalefined as:

1, (i,5,k)=1(1,2,3),(2,3,1), (3,1,2)
et =< 1, (4,5,k)=(1,3,2), (3,2,1), (2,1,3) (1-18)

0 , else

The permutation symbol does not indicate the components3odl @rder tensor in any coor-
dinate system, and should merely be considered as an indege@nce of numbers. For this
reason we shall not make distinction between subscript apdrscript indices, so we may
write e;;x = €%, The permutation symbol and the Kronecker delta are relayetie following
so-callede — ¢ relation:

e A Y A (1-19)

In the Cartesian coordinate system we héve- i;, i.e. the dual vector basis is identical to
original. Further, the Cartesian base vectors are congteoughout the space, whereas the co-
variant and contravariant base vector are locally attattvedch point in the space, and change
from point to point.

The previous theory merely applies to a 3-dimensional Beeln spaces. In the following this is
generalized to aRiemann spaceof arbitrary dimension N. A Riemann
space is a manifold related with a distance measure, whitéfised between any two points in
the space. A curve and surface in the 3-dimensional Euadlisiiace are examples of Riemann
spaces of dimensio’v = 1 and N = 2. The space-time manifold in relativity theory is a
Riemann space of dimension = 4.

Similar to the concept in the 2- and 3-dimensional Euclidipaces a vector in Riemann space
is envisioned as a geometric quantity (an "arrow” with a gilength and orientation). From
this interpretation it follows that a vector is independehany coordinate system used for its
specification. Actually, infinitely many coordinate systeoan be used for the representation (or
decomposition) of one and the same vector. In the Carte$iacovariant and the contravariant
bases a given vectercan be represented in the following ways:

vV = T)j ij = Uj g = Uj gj (1_20)

wherev’, v/ andv; denotes th€artesian vector componentiecovariant vector components
and thecontravariant vector components the vectorv. Dummy indices now indicates sum-
mation over the range, ..., N. Generally, Cartesian components of vectors and tensdirs wi
be indicated by a bar. Use of (1-15), and scalar multiplocadf the two last relations in (1-
20) with g;, andg”, respectively, provides the following relations betweka tovariant and
contravariant vector components:
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k
vj = (iU
o (1-21)
v = gjkvk
where:

Gik = 8j -8k = Jkj } (1-22)

g =gl gf=g"

The indicated symmetry property of the quantitiesand ¢’* follows from the commutativity
of the involved scalar products. From (1-21) follows:

v = gy’ = gug" v = gug™ = 0y (1-23)

By the use of (1-20), (1-21) and (1-22) the following relasdoetween the covariant and the
contravariant base vectors may be derived:

Vg =vg = g’ = g g = g
J J J J - ]} J (1_24)

vig! = vig; = ¢Mug = vigF e g = ¢'"g,

As seeng;; represent the components gf in the contravariant vector base. Similag{*
signify the components af’ in the covariant vector base. Use of (1-10) and (1-11) pexid
the following relation between the Cartesian and the camhnector components:

i, =v'g, =, = ok v = coF
J J j LU 4 N & (1-25)

Jo. — 573, — gl gk — Pk o, i ik
vgy =01 = vdigr = diut g v = dyv

Finally, using (1-15) and (1-21) the scalar product of twoteesu andv can be evaluated in
the following alternative ways:

(1-26)

0 = o = a7k
wu; = wvp = g uvg
u-v = .

1.0 = w?d = gl
u;v = w0 = g’ v

where it has been used that= .

1.2 Tensors, dyads and polyads

A second order tensdrF is defined as a linear mapping of a vectoonto a vectom by means
of a scalar product, i.e.:

u=T v (1-27)
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Since the vectora andv are coordinate independent quantities, the 2nd order téhsoust
also be independent of any selected coordinate systemrthiosthe specification of the re-
lation (1-27). Equations in continuum mechanics and plsyare independent of the chosen
coordinate system for which reason these are basicallyUiated as tensor equations.

A dyad (or outer productor tensor produgtof two vectorsa andb is denoted aab. An al-
ternatively often applied notation, which will not be usegtdy isa @ b. The tensor product
of more than two vectors is denoteghalyad The polyadabc formed by the three vectots
b andc is denoted driad, and the polyadibcd formed by the four vectors, b, c andd is
denoted detrad

For dyads and triads the followiragsociative rulespply:

m(ab) = (ma)b = a(mb) = (ab)m
abc = (ab)c = a(bc) (1-28)
(ma) (nb) = mnab

wherem andn are arbitrary constants. Further, the followihgtributive rulesare valid:

a(b+c) = ab+ ac }
(1-29)

(a+b)c = ab+ bc

No commutative rule is valid for dyads formed by two vecte@ndb. Hence, in general:

ab # ba (1-30)

If the outer product of two vectors entering a polyad is repthby a scalar product of the same
vectors, a polyad of an order two smaller is obtained. Therajon is known asontraction
Contraction of a triad is possible in the following two ways:

a-bc = (a-b)c}
(1-31)
ab-c = (b:-c)a

The scalar product of two dyads, the so-calfiedible contractioncan be defined in two ways:

ab:cd = (a-c)(b-d) } (1-32)

ab--cd = (a-d)(b-c)
Hence, the symbal :” defines scalar multiplication between the two first and the kst
vectors in the two duads, whereas- 7 defines scalar multiplication between the first and the

last vector, and the last and the first vectors in the two dyBdsause of the commutativity of
the scalar product of two vectors follows:

(1-33)
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Use of (1-32) and (1-33) provides the following identities louble contraction of two dyads:

ab:cd = ba:dc = cd:ab = dc:ba
(1-34)

ab--cd = ba--dc = cd--ab = dc--ba

From the second relation of (1-31) follows that the dyds)/ (b - c) is mapping the vector
c onto the vectom via a scalar multiplication. From the definition (1-27) fmdls that this
makes a dyad a second order tensor. Now, it can be provedrihateaond order tensor can
be represented as a linear combination of nine dyads, foamedter product of three arbitrary
linearly independent base vectors. Hence, we have folipwlternative representations of a
second order tensdr in the Cartesian, a covariant base and its contravariaet bas

T =T"ijix = T" g;g, = Tjr g'g" (1-35)

The dyadsi;i;, g;gr andg’g” form so-calledtensor basesObviously, (1-35) represents the
generalization to second order tensors of (1-20) for theuposition of a vector in the cor-
responding vector based7*, T7* and T}, denotes theCartesian componentshe covariant
componentsand thecontravariant componentsf the second order tens@r. Using (1-10), (1-
11), (1-13) and the associate rules (1-28) the followingtrehs between the dyads and tensor
components related to the considered three tensor baselsentkeyived:

iy = djd gigm

gig = i = gugrmg'g” (1-36)

glgh = ¢'d"" gig,,

Tk = ek Tim i = b T
(1-37)

Ty, = gjlgkalm ) T = gjlgkalm

Hence,cg.c’,;1 andg;;gxn specify the Cartesian and contravariant tensor compoiétie dyad
g;gr, Whereasy’! g"™ denotes the covariant tensor componentg/gf. (1-36) and (1-37) rep-
resent the equivalent to the relations (1-23) and (1-24b&se vectors and vector components.
In some outlines of tensor calculus the transformationsrite(1-37) between Cartesian and
curvilinear tensor components are used as a defining pyopethe tensorial character of a
doubled indexed quantity, (Spain, 1965), (Synge and Sch466).

Alternatively, T may be decomposed after a tensor base with dyads of mixediaolvand
contravariant base vectors, i.e.:

T =T, g;g" = T)g"g; (1-38)

Tj:k and Tkj represent thenixed covariant and contravariant tensor componertsgeneral,
T, # T,’ as a consequence gfg" # gkg;, i.e. the relative horizontal position of the upper
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and lower indices of the tensor components is important spedify the sequence of covariant
and contravariant base vector in the dyads of the tensor bassor bases with dyads of mixed
Cartesian and curvilinear base vectors may also be intemiudowever, in what follows only
the mixed curvilinear dyads in (1-38) will be considered. eTibllowing identities may be
derived from (1-35) and (1-38) by the use of (1-24):

T="T"%gg = TV gg" = Tg"ge ) (1% = g1,

? k ll k ll ] k = ll (1_39)
T=Tgeg'sg =T,a8" =T1.9;8'g T = guT'y,
T=Tpg's" =T/'g'g = T)'gug's" ( Tk = gu T’

Use of (1-23) and (1-39) provides the following represeaatet of the mixed components in
terms of covariant and contravariant tensor components:

Tk:] = gji Tk:l )
T_k: = g le:
o (1-40)
T J = g ﬂj
jﬂjk’ — gk’l jﬂjl )

It follows from (1-40) that if77" = T* thenT" = T,” andTy;, = Tj;. A second order tensor
for which the covariant components fulfill the indicated syetry property is denoted sym-
metric tensor

Let 7% denote the covariant components of a second order téhsdFhe related so-called
transposed tensdF? is defined as the tensor with the covariant componéfitsi.e.:

T = Tk g8k (1-41)

A symmetric tensois defined by the symmetry of componefits’ = T/ for which reason
T7 = T.

Theidentity tensois defined as the tensor with the covariant and contravac@mponentg’*
andg;;. Use of (1-23) and (1-24) provides:

g =g gz = 9’8" = 0F &gy (1-42)
The mixed components @ffollows from (1-23) and (1-40):

k kl k

9% = 99" = 0;

ljc J lk Zc } (1-43)
9, = 959 = 53‘

Hence, the mixed components are equal to the Kroneckets, aehich explains the last state-

ment for the mixed representation in (1-42). The designatentity tensor stems from the fact

thatg maps any vectov onto itself. Actually:
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g-v=g%gg  ug = ¢ug o =g ug =g =v (1-44)

The length of a vectov is determined from:

|V|2 =V -V=V-g-V = gjk'Uj'Uk = gjk;'UjUk (1_45)

Because of its relationship to the length of a vector thetitietensor is also designated the
metric tensoior thefundamental tensor-or an ordinary Riemann spagés positive definite,
so|v|? is always positive. In relativity theory the metric tensiridefinite, so the left hand side
in Eqg. (1-45) may be negative. A manifold related with an fimd&e metric tensor is referred to
as apseudo-Riemann space

The incrementix of the position vectok with Cartesian componentk&’ and covariant com-
ponentsié’ is given as, cf. (1-25):
dx = di’i; = d¥’ g; (1-46)

Then, the lengtlls = v/dx - dx of the incremental position vector becomes, cf. (1-45):

ds? = dildz; = g;,d6’do" (1-47)

Theinverse tensofl ! related to the tensdr is defined from the equation:

T!'.T=T-T'!=g (1-48)

Let Tﬁl denote the contravariant componentdof', and7™* the covariant components @F.
Then, cf. (1-42):

g=0iglg, =T T="T;"g'g" - T gng = T;'T"™s,, &g =T;;'T" g/gr, =
T = o (1-49)

In matrix notation this means that thé-dimensional matrix, which stores the components

ij, is the inverse of the matrix, which stores the compon@hts Similarly, the covariant
componentg7 1)/ of T-! and the contravariant componefitg of T are stored in inverse
matrices. In contrast, the matrices which store the coatramt component:’z.?j;1 andTy;, will

not be mutual inverse. From (1-15) follows that:

g T-gh=g  (I"ggn) g =1 =1" =
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Similarly:

T =g - T-g)

TF =g, - T gk
o (1-51)
Tjk =g - T g

T = ij - T - iy

J

A fourth order tensolC can be expanded in any tensor base with tetrads made up obamy ¢
bination of linear independent vectors of the Cartesiamctivariant or the contravariant vector
bases as follows:

\

C = C"gigigign = O gigigign = ¢V gt g = 7" gi8ig'gm
= M, gigrgg™ = C"g'g"gigm = ;" g'gig'gm = O}, g'aigig™

= V" g8 glen = V), 88" gg™ = O, gieig's” = OV, 88t 8'e"
= Clnglmge” = Ol g'g'eeg™ = Oy ¢'8'g'en = Ciumg’g'g's"

= CM™ i, )

(1-52)

Formally, the relations between the various mixed tensorgmnents can be derived by raising
and lowering indices by means of the covariant compongfitand the contravariant compo-
nentsy;;, of the identity tensog, cf. (1-40). As an example:

Cjklm = GirGms C«jkzrs (1_53)

1.3 Gradient, covariant and contravariant derivatives

Consider a scalar functiom = a(z') = a(#) of the Cartesian or curvilinear coordinates.
The gradientof a, denoted a®&a, is a vector with the following Cartesian and contravariant
representations:

oa da .
— 1. = o) —
T o T o0 B (=59
Let A9* denote the covariant components of the incremental coeali coordinate vector
AB = AG* g;.. The corresponding incremenis of the scalar is determined by:

Va

0& . aa .

ey k - J _

207 8 AG" g, 207 Ab (1-55)
Thegradient of a vector functiom = v(z!) = v(¢'), denoted a¥ v, is a second order tensor,
which in complete analogy to (1-55) associates to any inergai curvilinear coordinate vector

Aa = Va-AO =
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AB = AG* g, a corresponding incremety = Vv - AQ = % AW’ of the vectorv. Vv has
the following representations:

((Ov , (7 ;) , o,
—1 = J 1 = —151
oxk F T T ogk KT ggk TR
A (v g;) 4 _ o’ j 08\ &
Vv=qa:® T o & T \oer® TV apr ) 8 (1-56)
ov (v, g’ ov; og’
|78 = (afc)k L - (aei g+, ek)gk

At the derivation of the Cartesian representation it hashesed that the base vectiris
constant as a function af . In contrast, the curvilinear base vectors depend on thelioear
coordinates, which accounts for the second term within Hremtheses in (1-56). Clearlgg

and% are vectors, which may hence be decomposed in the covandrmaamtravariant vector

bases as follows:

8gj_ l
0%~ {j k} ®

ogl J !
0% {z k} 8

{,'.} signify the covariant components gg% and—{, } is the contravariant components

of g%. {,'.} is denoted theChristoffel symbol This is related to the co- and contravariant

components of the identity tensor as:

! _ 1 im aggm agkm . 8gjk ~
{j k} - 27 (aek t 20 T agm (1-58)

(1-57) and (1-58) have been proved in Box 1.1. From (1-22) 4s&8) follows that the Christof-
fel symbols fulfill the symmetry condition:

L34

From (1-8) follows that:

(1-57)

og; = 0%x ’x  Ogy

o0k~ 00190k 90%00i 00

(1-60)

Alternatively, the symmetry property (1-59) may be provgdrisertion of (1-57) in (1-60).
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Box 1.1: Proof of (1-57) and (1-58)

Consider the first relation (1-57) as a definition of the Gbffsl symbol, and prove that
this implies the second relation (1-57).

From (1-15) and the first relation (1-57) follows:

o 0 , ogm og’
95 _ 9 Lo} = YBm g -
o0e0m = gr (8n &) = Zgr 8+ 8u G

og’ ! i l ; j J L

. m = — . = — (5‘7 = — = — (5 =

agx 8 {m k:} 818 {m k} l {m k} {z g om
—{l]k} gl'gm =

08 [l ).,
(8«9k+{l k}g) g, =0 (1-61)

Since (1-61) is valid for any of th&/ linear independent covariant base vecigys the
term within the bracket must be equal@oThis proves the validity of the second relatio
(1-57).

I
U

From (1-22) and the first relation (1-57) follows:

Ogjm  O(gj-8m) _ Ogj 0gm [ n n
T A T A PV L P EE

From (1-62) follows:
09jm  O9km  Ogjx

00k 007 oom

where the symmetry property (1-59) has been used. Next8)Idlows from (1-63)
upon pre-multiplication on both sides witfi* and use of (1-23).
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Insertion of (1-57) in (1-56) provides the following repeesations ofVv:

Vv =1, g;ig" = v g'g" (1-64)

where:

: o’ '
J_ J !
Tk T 09k+{k z}v

L B O
a0k G kS

Hence,v{k specifies the mixed co-and contravariant componentsyapgpecifies the con-
travariant components & v.

(1-65)

By the use of (1-57) the partial derivative of the vector fiimev(6') may be written as:

o(vig;) O 0g;

ov oo~ ogrs gt = Ve o ee
9% | o(vg’) _ v, Og J
o~ apr® T ogrt T e

Hence, alternativelyjj;k andv,.;, may be interpreted as the covariant components and the con-
travariant components of the vectdl. For this reason)j;k is referred to as theovariant

derivative andv;,;, as thecontravariate derivativef the components’ andv;, respective. In
the applied notation these derivatives will always be iathd by a semicolon.

Further, by the use of (1-57) the following results for theives of the dyads entering the
covariant, mixed and contravariant tensor bases become:

0 0g; g )
w(gjgk) = a—6jgk +gja—9]; = {jml} 8m8k + {k:ml} 8i8m
0 0g; 0g’“ m k m
@(gjg’f) = a—efg’“rgjw = {j z} gng" — {m z} g
o . Ogl 0 ' ,
w(gjgk) = %gk +gj—agelf = - {mj l} g"gr+ {kml} g'8m

(1-67)

9, . og’ OgF j k -

 (olaky — T8 Gk jZe J m_k__ J oM

518'8) = 508 +8' 55 mof &8 EE
Finally, the covariant and contravariant components ofiifferential increment/v of the vec-

tor v due to the differential incremental vectd® = do* g, of the curvilinear coordinates
becomes:
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dv = Vv-do =/, g;ig" - di'g = vy g'g" - di'g
dv =17, do* g; = v;y, do* g’ (1-68)

The gradient of a second order tensor functidh= T(6'), denoted a&% T, is athird order

tensorwith the following representations:

((O(T" g, oT7*
( a@gljgk) I _ ( - g]gk+Tjk
a(Tj g'gk) l
T L ael gig' + T
T ggn) | T
oo & = 69! g'gr +
Ty g’g")
UL 891
o1k
(ael +ka{mj z}+ij{ }) BIBkE
o1, j
Tm
<891 o k{m l}
VT =
| Kk
(3or ) () e
m m
T
(Gt e ) e
where
aTjk . ) k )
Jk o _ mk J Tim
=g 1 {m z}+ {m z}
o1’ .
7 — k m J oy m
P = g +1 k{m z} T’”{k z}
oT .k k
k J k m m
Ia = gr —1m {j z} 4 {m z}
0Ty, m m
=) el

(1-57) has been used in the last statements of (1-69).

0
%lg + Tk g

r

g l
jW g

ogk .
"8 | 8

k]gk

d !
&0 | &

RLLA
S 0!
b= Tjk;l g]gkgl

= T, g;8"g

T, g'gig’

Tir, g'g"g
(1-69)

(1-70)
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Then, the partial derivative of the tensor functiBfd™) may be described as any of the follow-
ing second order tensor representations, cf. (1-66):

oT , , .

o =T agige =Ty 8" = T g'e’ (1-71)
Partial differentiation of both sides of (1-44) provides:

ov _0g L, 0v _ 08 ovo

ok — aor Y T8 gk ~ agr Y T ook

0

8—; v =0 (1-72)
Sincev is arbitrary, (1-72) implies that:

og

= 0 (1-73)

In turn this means thafg = ael g! = 0. Then, from (1-69) follows thag’* 1 = ik =0, S0
the components of the identity tensor vanish under coviaiadh contravariant differentiation.

1.4 Riemann-Christoffel tensor

The gradienVv of a vectorv with components in Cartesian and curvilinear tensor bages h
been indicated by (1-56). The gradient of this second oetesdr is given as, cf. (1-69):

(9 fov .\, 9 [0, . 82
ot \ oz ¥ )N T o \ T opk ) = Jrkgn Gkl
o [ ov o ([ ov . -
V(Vv) =14 a0 (W gk) g = 20! ((W * {k:jm} ’ )gjgk> g =v'g8'g

o [(0v .\ | 0 v, m Jok Vol — o glgk gl
w(wg)g 90 ((W {j k}vm)gg g —UingEg8

(1-74)
where the following tensor components have been introduced
: : 0*vd j | o™ j | o™ m | Ov
I () _ - - - _
Vi = Wi = Gargg T {k m} ool * {z m} a6+ {k z} J6m
n J m . J —
T R s A T Ca T LA 479

R O
1) oo™

o
} (1-76)

&
S N A RIL
R PR
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From (1-75) and (1-76) follow that the indicésand/ can be interchanged in the first five terms
on the right hand sides without changing the value of this plathe expressions, whereas this
is not the case for the last two terms. This implies that tlggieece in which the covariant
differentiations is performed is significant, i.e. in gealer;.,; # v;,. In order to investigate
this further consider the quantity:

R <{jnl} {nmk} - {]nk} {nml} " % {jml} B % {ymk}> e

R™ ;. Um (1-77)

where:

m _ [ n m | _fn m O fm| 9 [m -
R Gkl = {j l} {n k} {] k} {n l} + 00k {j l} 06! {j k} (=78)

R™;,, signifies the mixed components of the so-callRemann-Christoffel tensoR, i.e.
R = R™y, g.g’grg!. The components aR, and hence the right hand side of (1-77), are
not vanishing due to the curvature of the Riemann space.

Obviously,
ijkl = —ijzk (1-79)
Further, the following socalleBianchi’s first identityapplies:

(1-80) follows by insertion of (1-78) and use of the symmeitrgperty (1-59) of the Christoffel
symbol.

In an EuclideanV-dimensional space, i.e. a space spanned by a constansi@anector basis,
the Cartesian componentsRBffollow from (1-74):
y 0*vd 0*v’
Riktm 5 = — =0 =
! Oxkox!  Oxtoxk
Riktm — (1-81)

Hence, it can be concluded tHat= 0 in an Euclidean space. In turn this means that the curvi-
linear components (1-78) must also vanish in this space.agespvhere everywhei® = 0 is
calledflat. Reversely, a non-vanishing curvature tensor indicates\aed space. In a flat space
R™ =0, with the implication thav,.;; = v,.,. The three-dimensional Euclidian space is flat,
and any plane in this space forms a flat two-dimensional saadesgn contrast, a curved surface
in the Euclidian space is not a flat subspace. An example of\edufour-dimensional space
is the time-space manifold used at the formulation of theegartheory of relativity, where the
indices correspondingly range ovee 1,2, 3, 4.
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Because of the relations (1-79), (1-80) mgi%;[\f?(]\f2 — 1) of the tensor components™;,, are
independent and non-trivial, (Spain, 1965). Hence, forathimensional Riemann space mere-
ly one independent component exists, which can be chos&h.as In the three-dimensional
case six independent and non-trivial components existiwiniay be chosen a',,,, R',;3,
Ry, Rlg13, R' 553 and % .

Example 1.1: Covariant base vectors, identity tensor, Christoffel symbols and Riemann-
Christoffel tensor in spherical coordinates

By the use of (1-10) the first equation (1-57) becomes:

8(63-”im)786;-”. B l _
W_Wlm_ ]k Cl 1y, =

i ¢ -
0% \j k|

The Cartesian component§ of the covariant base vectgy; is stored in the column matrigj = [c}!]. Then,
(1-82) may be written in the following matrix form:

9g ; l 1 2 3
=1 — = + + 1-83

The spherical coordinate system defined by (1-1) is consildn this case the column matrices attain the form,
cf. (1-8):

0 cos ' cos 62 — 62 sin 6 sin 62 sin @' cos 62
9,= 62 cos 0! sin 6> S 63 sin 6" cos 6* s g, = | sin 6! sin 6> (1-84)
—6%sin ' 0 cos 0

The covariant components of the identity tensor is givenb®%) asg;r, = g; - gx = 2:;21@' where the last
statement is obtained by evaluating the scalar product ite€lan coordinates. The covariant and contravariant
components of the identity tensor are conveniently stanadatrices. Using (1-84) these becomes:

1
3\2
(%) 0 0 g 0 0
o 3y2 i 2 g1 k] — 1 1-85
0 0 1 0 0 1

The result for the contravariant components follows fror28). Next, (1-83) and (1-84) will be used to determine
the Christoffel. The following results are obtained:
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o

5 [ —6° sin 8" cos 62 {1 1} =0
%: —0sin@'sin¢® | =0-g +0-g,-0%-9g, = (L= 0
| —6%cosh! { =
11
- 1 -
dg —6? cos 0! sin 62 1 {1 2}_ . 1
I 3 el ened2| —0. N, . 21 =
802 = 9 cos@ Cobe —O gl tan91 g2+0 gg = {1 2}_ ta,n91
L 0 {"=0
1
99 cos 0" cos 02 . {113}: 93
1 _ <ol i g2 _ . . . —
205 = cos B sin 6 =5 g,+0-9g,+0-g, = {123} =0
—gin@?! _
| —sin {133}— 0
- ! =
dg —6? cos 0! sin 62 1 {2 1}_ ! 1
22 _ 3 1 2| _ 0. - . . 21—
201 = g cosf” cosf”| =0 £1+tan91 9,109, = {2 1}_ tan 01
3] _
L {2 1} =0
- 1 i
dg —63sin 0! cos 6> 1 {212} - —55111(291)
ﬁé = | —sinf'sing? | = b sin(20") "9, t0-9,- 6% sin” 0" 95 = {222} =0
I 0 {232} _ —9381112 91
— ' =
9g — sin 6! sin 62 1 {2 3} B 01
Jo . . —-0. —_. . =
W_ 811191C0592 =0 g1+93 g2+0 Q3 = {223}_ ﬁ
I 0 { 3 }: O
2 3
1
99 cos 0" cos §? . {311} E
=3 _ - o - . . =
201 = 00591151n92 = 9,+0-9,+0-g, = {321} =0
o 9 3 o
[ —sin {,’=0
- ! =
dg — sin A" sin 62 1 {3 2} B 01
=3 _ : 1 <02 —0- . . —
W_ sin 6" cosf =0 21+93 g2+0 g{)’ = {322}_ ﬁ
L 0 {,2)=0
dg ro {313} =0
ﬁg: 0 =0-9g,+0-9,+0-g, = {323}: 0
Lo =
{3 3} =0

(1-86)
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The non-trivial components of the Riemann-Christoffek@mfollow from (1-77) and (1-86):

o LI S 2

1 1 11
—§sin(291)-0+0-0—93sin291-9—3+0-0+m-§sin(291)—0-0—cos(291)—o:o

o™ {2n3} {nll} i {2n1} {n13} “37 {213} - {211}

1 1 1 1
0:0+—=-040-=-0-————-0-0-0+0-0=0

63 3 93 tandl

)R 1)

11 1 1
O-O—9—3-§sin(291)+0-0+§sin(291)-9—3—0-0+93sin291-0+0—0:0

mo 1) [ n 1l o1l o[ (=87
B3 3 e 1 31 \n 3 00 \3 3] 96 \3 1]

11 1 1
0:0+0-040: 5 = 75 75 =0-0-0-0+ 7557 =0

™ {3n3} {n12} i {3n2} {n13} * 57 {313} - {312}

1 1
0:0-0:2sin(20") +0:0-0: 75 —0-0-0-0+0-0=0

R AR CARAEARAES

1 11 1
0 7500 g5 g5 =00+ 04 5 =0

e+ 0040

As expected all components of the Riemann-Christoffeldenanish as a consequence of the flatness of the three-
dimensional Euclidean space.

1.5 Geodesics

In Euclidean 3-dimensional space the shortest distaneeleattwo pointsA and B is a straight
line. On a surface embedded in the Euclidian 3-dimensigredes, where both principal cur-
vatures everywhere are either positive or negative, theeowith the shortest distance between
the points is indicated by an inflexible string stretchedueein the points. Especially, on a
sphere the curve makes up a part of a great circle. In thigogetttis principle is carried over
to a general Riemann space in terms of a socgemtlesicswhich is defined as the curve with
the minimum length connecting two points in the Riemann speith the length measured by
the fundamental tensor of the space. A geodesics joiningpdie A and B must fulfill the
following variational principle:
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B
5 / ds = 0 (1-88)
A

whereds is a differential length element along an arbitrary curvererting the pointst and
B given as:

ds? = dx-dx = drlda* g; - g, = g1, da’da” (1-89)

dx’ indicates the covariant components of the differentialéneent o of the position vectok
tangential to the arc length increment. Further, (1-22)dees used in the last statement.

The geodesics turns out to be given by the following nondirdifferential equation:

d?z’ i\ dfdat
) 1-90
ds? * {kz l} ds ds ( )

wherez’ indicates the coordinates in a given referential curvdineoordinate system in the
N-dimensional Riemann space of a running point along theggodEg. (1-90) is solved with
the initial valan and the unit tangential vectoﬁ; = % specified at a given point point on
the geodesics. A proof of (1-90) is given in Box 1.2.

Consider a pointd on a differential surface embedded in the three-dimensignelidian s-
pace. At an arbitrary poind on the surface two linear independent tangential vettoasdt,
may be defined, which span the tangent plané.athe tangent plane is a two-dimensional flat
space Euclidian subspace, in contrast to the underlyirigrdiftial surface. As a consequence
the Riemann tensor vanish in the tangential subspace. lolibe/ing this observation is gen-
eralized from a two-dimensional to an arbitraviydimensional curved Riemann space.

Consider theV linear independent unit tangential vectdrs j = 1,..., N, indicating the
direction of the geodesics drawn out from an arbitrary poiim the Riemann space. The
vectors may be organized to form a local arc length vectosbamwn as thékiemann vector
basis which span a tangential manifold to the Riemann spacé. athe related fundamental
tensorg’ has the contravariant components, cf. (1-22):

gir = tj -ty (1-91)

Let 2’7 denote the covariant components in the local Riemann véeisis of a position vector
along a geodesic curve. The differential equation of thelgsiz in Riemann coordinates reads:

d*z' j " da'* da'!
= 1-92
ds? i {kz l} ds ds . ( )

Where{kjl}' indicates the Christoffel symbol evaluated by the co- amtrewariant compo-
nents of the fundamental tenggr
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Consider a geodesic curve at the poindefined by the covariant componetitén the Riemann
vector basis with origin atl, and letP be a neighbouring point placed on the geodesics defined
by the unit tangent’ a small arc length from A. Then, the covariant coordinates of the point
P is approximately given as:

2~ st (1-93)

(1-93) holds asymptotically as— 0. Insertion of (1-93) into (1-92) provides in the limit:

/
J Pk
7t =0 1-94
{k l} ( )

The unit tangential vector with the curvilinear componefitin (1-94) has been arbitrarily

selected. Hence, this equation must be fulfilled forMalunit tangential vectors related to the
geodesics drawn out of poiat. This can only hold, if the Christoffel symbol vanishes & th
origin of the Riemann coordinate system at the running pdinte.:

i
{k l} - (1-95)

As consequence of (1-93he covariant derivatives with respecttti becomes equal to partial
derivatives cf. (1-65).

Further, from (1-62) follows that:

a9,
7 ;/k =0 (1-96)
Finally, in a Riemannian coordinate system we have, cf.§)t-7
& m ) 0° m
R™ = . S— 1-97
JkEn T ggrn Gtk {j l} ox'™ Jx'! {j k} ( )

Bianchi’s second identityeads:

R™., +R™, .+ R" . =0 (1-98)

Jjkim jln; Jnk;l

(1-98) is proved in a Riemannian coordinate system by thefige97). Then, being valid in
one coordinate system it is also valid in any curvilinearrdatate system.
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Box 1.2: Proof of (1-90)

A
Fig. 1-3: Family of curves connecting poindsand B.

Consider a family of curves connecting two poihtind B specified by the
parametrization:

v = 27(u,v) (1-99)

The parameter characterizes a certain curve in the family, and [a4, up| is a
parameter defining a certain point on the curve specified lisspeciallyu may be
chosen as the length parametelong the curve. Then the lengthof the curve defined
by v is given as:

L :/ w? du (1-100)
uA

wherew is given as, cf. (1-89):
w = g, " (1-101)
and#’ signifies the quantity:

e

= — 1-102
o ( )

Henceuw is a function of the independent variablesandt’.

d L denotes the variation of the length of the curve defined by#rametergu, v) due
to a variationyv of v for fixed u. Then (1-88) attains the form:

By uB s us [ Owz Oxd  Owz OF
5L—5/u wdu-/u apévdu-/m <8xjﬁv+8tj%>5vdu_0

A A
(1-103)

From (1-102) follows:

ot d Ox?
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Insertion of (1-104) in (1-103) and followed by integratioy part provides:

8@0% oz’ e vB 8@0% d 8@0% .
_ _ J — —
o1 m] i /UA <8xj du ov ) oxtdu =0 (1-105)

uA

0L =

wheredz! = %ijév has been introduced.

2’ (uy) and z7(ug) are common for all curve, and hence independent.of Then,
0z (u ) _ 0z (up)

e 5, = 0, so the boundary terms in (1-105) vanish.

In the integrandiz’ can be varied independently for anye]u 4, up[. This leads to the
following Euler conditionnecessary for stationarity:

Ow? _d Ow?
ori  du Ot

(1-106) may be rewritten on the form:
d Ow ow 1 dw ow

=0 (1-106)

— - = — — 1-107
du OtI O’ 2w du Ot (1-107)
Especially, let: be chosen as the arc-lengtlalong the geodesic, so that:
- dad , d
u=s |, tjzi, w:gjkt]tkzlﬁ—wzo (1-108)
ds du

Now, #/ indicates the covariant components of the unit tangentéaitor along the
geodesic. Insertion of (1-108) in (1-107) provides:

dow Ow _ N
ds Ot oxJ
d Ogr
d?z* 5 dat da 1 dz® dz!
o A dgjr da* dx Ogw da” dx’ 0 (1-109)

ds? orl ds ds 2 0x ds ds

where it has been used thgi = g;x(2'), sod% = %‘]ij C;—“;l. Further, due to the sym-
metry property (1-22) of the components of the metric tetsotlows by interchanging
the name of the dummy indicésand k that’zs detde® _ 1( %9k 4 9911y datdo' Then

; Ozl ds ds Oxl Oxk /) ds ds”
(1-109) may be written:

2k . . F dat
N (aggk . 991 8%1) detdr_ (1-110)

9ik ds? + 2 \ ozl oxF O ds ds

Finally, Eqg. (1-90) follows by pre-multiplication and coattion on both sides of (1-110)
with ¢"/, and use of (1-43) and (1-58).




1.6 Exercises 31

1.6 Exercises

1.1 Given the following vectora, b, c andd. Prove the following vector identities

(@)ax(bxc)=(a-c)b—(a-b)c
(b.) (axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)
(c) (axb)-c=(bxc)-a=(cxa)-b

1.2 Prove thes — § relation (1-19).

1.3 Given the vectora, b, c andd with the Cartesian components

1 3 1 3
@] = 2| , [Pl=12| ., [@=|-2 ., [#]=]|-2
3 1 3 3

Calculate the dyadic scalar produats: cd andab - cd.
1.4 Prove the relations (1-37) and (1-40).

1.5 Given the Cartesian componerdts*** of the fourth order tensof. Calculate the mixed
curvilinear components’;”;,™.

1.6 Prove the last three relations in (1-67).

1.7 Prove (1-73) by applying (1-69) to the mixed representagjon 5;?’ g’g,. of the identity
tensor.

1.8 Determine the geodesics on a cylindrical surface in thestdnmensional Euclidean space
with arbitrary directrix.

1.9 Prove (1-97).
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CHAPTER 2
Differential Theory of Surfaces

2.1 Differential geometry of surfaces, first fundamen-
tal form

0 2!
a 0! a2 I

Fig. 2-1 a) Parameter space. b) Surface space.

The following section concerns surfaces in the three dimo@as Euclidean space.

Let the sphericah?® coordinate be fixed at the val@ = r. Then, the mapping (1-1) of the
spherical coordinates onto the Cartesian coordinates takeform:

! rsin 0 cos 62
z?| = | rsin @' sin #? (2-1)
2 rcos O

(z!, 2% 2?) denotes the Cartesian components of the position vectora given point of the
surface. Obviously(z!')? + (z%)? + (2*)? = r?. Hence, with the zenith angle varied in the
intervalg! € [0, 7], and the azimuth angle varied in the inter#ak]0, 2], (2-1) represents the
parametric description of a sphere with the radiasd the center dt:*, 2%, 2%) = (0,0,0). In
what follows it is assumed that the parametric descriptioallacconsidered surfaces is defined
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by a constant value of the curvilinear coordindte= c in the mapping (1-2). Then, a given
surfacef? is given as, cf. (1-5):

) = (0,602, ¢) = f1(6) (2-2)

In the last statement of (2-2) the explicit dependence ocdhstant is ignored, as will also be
the case in the following. Let the mapping (2-2) be definedhiwia domainw in the parameter
space. For each poipte w determined by the parameters , 0%), a given pointP is defined
on 2 with Cartesian coordinates given by (2-2).

Assume that a curve throughis specified by the parametric descriptiftt(t), 6%(¢)), where

t is the free parameter. Then, this curve is mapped onto a sueves(t) throughP on ) as
shown on Fig. 2-1. Especially, if the curvilinear coordmét is fixed, whereag' is varied in-
dependently a curve' throughP is defined orf). Similarly, a curves? on the surface through
P is obtained, if9! is fixed andd? is varied. The positive direction af ands? are defined, so
positive increments of* correspond to positive increments©f. Then, these curves define a
local two-dimensional arch length coordinate systams?) throughP.

Assume thatv is a rectangular domaifu', a?] x [b',b*] with sides parallel to th&® ax-
es as shown on Fig. 2-la. As an example this is the case for #pping (2-1), where
w = [0,7]x]0,27]. In such cases the surfa€ewill be bounded by the arc length coordinate
curves given by the parameter descriptiofis= f7(a',0%), 27 = f/(a?,6?), 27 = fI(6,b')
andz’ = f7(0',1?), see Fig. 2-1b.

Fig. 2-2 Covariant and contravariant base vectors and surface hamtaector.

Similar to (1-8) a covariant vector baée , a;) may be defined at each point of the surface via

the relation:

_ Ox
o0’

Obviously,a, are tangential to the arch length curvesfatsee Fig. 2-1b. Thera, may be

interpreted as a local two-dimensional covariant vecteebawhich spans the tangent plane at
the pointP, see Fig. 2-2.

a=1,2 (2-3)

Aa
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At the point P theunit normal vectom to the surface and the tangent plane is defined as:

o 1 92y a; X as _l _
n-n(@,@)—7|alxa2|—Aa1><a2 (2-4)

A denotes the area of the parallelogram spannesl landa,, and given as:
A = |a; X ay| = |aj]|ag|sine (2-5)

The related contravariant base vectors follows from (1-If6)he presentcasé = A-1 = A.
Then:

1 1 1

al = J A X0 = 5 as X (a1 x @) = A2 (\a2\2a1 B (a1~a2)a2) (2-6)
1 1 1

a’ = anal = Vel (a; x ag) x a; = ﬁ(\alﬁaz_(al‘az)al)

The last statements in (2-6) follow from the vector identity (b x c) = (a-c)b—(b-a)c,
cf. Exercise 1.1.

It is easily shown that the covariant the contravariant hastors in the tangent plane as given
by (2-6) fulfill the orthonormality relation:

a,-a’ = ¢o° (2-7)
whered? indicates the Kronecker's delta in two dimensions.

A surface vector functiov = v(#',60%) is a vector field, which everywhere (i.e. for any
parametergd’, %)) is tangential to the surface. Themmay be represented by the following
Cartesian, covariant and contravariant representatibngl-20):

—o e

v = 1%, = vYa, = v, a” (2-8)

i, = i* indicates a Cartesian vector base in the tangential plank;’av® andv, denote the
Cartesian, the covariant and the contravariant compoioérts

The Cartesian and the covariant components are relatetl é5,25):

7 =20, &= i*-ag
) 8 8 (2-9)

v* =d3v’ , df =ig-a
where the orthogonality conditionis - i’ = 67 anda, - a’ = §° have been used.

Similarly, the covariant and contravariant componentgelaed by the following relations:

Vo = Qg ¥’
(2-10)
v = a® vy
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3 = a4 - A
’ i (2-11)
a®? = a*-a’

Both a, anda® are surface vectors. Then, these can be expanded in twasiomal con-
travariant and covariant vector bases as follows, cf. (t-24

Ay = Qup aﬁ
(2-12)

a® = q*f ag

(2-12) is proved by scalar multiplication with, anda” on both sides of the equation and use
of (2-7) and (2-11).

Scalar multiplication on both sides of the first equatiodZ-witha” and use of (2-7) provides:
apa” = 8] (2-13)

In analogy to (1-27) aurface second order tens defined as a second order tensor, which
everywhere maps a surface vectaonto another surface vectarby means of a scalar product.
A second order surface tens@radmits the following Cartesian, covariant, contravarizmd
mixed representations, cf. (1-35):

T = T iip, = T8 a,as = Tyop a“a’ = % a,a’ = Taﬁ a%ag (2-14)

T°%, T,g, T% andT,” denotes the covariant, the contravariant and the mixedriemtzand
contravariant components of the surface tensor. Thesekted as, cf. (1-39), (1-40):

Taﬁ = CI,CWCLB(S T’YCS 5 Taﬁ = CLa’Y TA/g
T = a®a® T, | T.) = a0 T (2-15)
Taﬁ = aav T’YB 5 Taﬁ = CLa’Y Tvﬁ

The relations in (2-15) follows by insertion of the expamsi¢2-12) in (2-14).

Thesurface identity tensai is defined as a second order tensor with the covariant compone
a®?, the contravariant componentss, and the mixed componend§, corresponding to the
following representations, cf. (1-42):

a = aaaz = a.paa’ = 6 a%ay (2-16)
The tenson maps any surface vector onto itself, i.e.:
a-v=v (2-17)

(2-17) is proved in the same way as (1-44), using the reptasen (2-16).
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Let dr be a differential increment of the position vectatue to an incremenit) of the param-
eters. Obviouslyjr is a surface vector with the covariant coordinaiés, cf. (2-3). The length
ds of the incremental vector becomes:

ds® = dr-dr = dr-a-dr = df”a, -agdl’® = a,zdo~do” (2-18)

The surface identity tensardetermines the length of any surface vector, for which nedise
alternative namingurface metric tensas used. The quadratic form in the last statement of
(2-18) is called thdirst fundamental fornof the surface.

Letas; = a® = n. Then, the partial derivatives of the covariant and comtriant base vectors
are unchanged given by (1-57):

Oa; l B B 3
a6 {ja}al - {j a}aﬁ+{j a}n
o [ Lo ) s |
00> {l a} a = {ﬁ a} a {3 a} .

n is orthogonal to botla; anda”, son - ag = 0 andn - a® = 0. Then, scalar multiplication of
the first equation in (2-19) with provides:

n o2 [
o0« e
oa’ j
e 00~ — {3 a}
Usinga; = a® = n, the left hand sides of (2-20) are identical fore= 3. However, the right

hand sides have opposite signs. This can only be truth ifigiwe lhand sides vanish, leading to
the following result for the Christoffel symbol:

(2-19)

(2-20)

{ 3 } —0 (2-21)
3 «
In turn, (2-20) reduces to:
on
i 2-22
n- o =0 (2-22)

(2-22) indicates tha{a"(,% is orthogonal to the surface normal and hence must be a surface
vector.

Obviously, the differential increment vectd® = d6” a; with the covariant component#”

is a surface vector. The gradieRtv of a surface vector function = v(6?) is a surface
second order tensor, which associates differential inergmmectord@ to a surface differential
increment vectotiv = Vv-d@ = (.;972 do“ of the vectowv. The gradient tensor has the following
curvilinear representations, which merely follow by regtey the Latin indices in (1-64), (1-65)

with Greek indices:
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Vv = 1% a.a" = v,pa%a’ (2-23)

where:

v —%%— @ Ly
;5_895 B~

Ve :%— Ty
o8 998 a g7

“5 andv,,; are referred to as thsurface contravariant derivativand surface covariant
derlvatlveof the components, andv®.

(2-24)

Correspondingly, the gradieNI'T of a surface second order tensor functibn= T(07) is a
surface third order tensor with the following curvilineapresentations, cf. (1-69), (1-70):

VT = TO‘BW asaga’ = T a,a’a’ = Taﬁw a“aga’ = T,5,a%"a" (2-25)
where:
ore? B
Taﬁ, — T6B Ta5
" o {5 ’Y} " 5
are, o 5
T, = T°
= s 7} {ﬁ )
5 ’ (2-26)
Th = IT, _Th B
o o0 ¥ \a v J v

aTOcB 0
Tasr = g _TM{a 7} e {B 7} )

The gradient of the gradient of a surface vector is a thir@osdrface tensor with the following
representations, cf. (1-74), (1-75), (1-76):

V(Vv) = %, a,a’a’ = v,,a%’a’ (2-27)

where:

(e _(a) — 62,Ua + « @4_ « %_ H @_'_

Uiy = Wl = esaer T\ uf 000 T \y uf 905\ 8 ~J o6v

AP EER S PN N L P

— vt + vt — vt 2-28

897{6u yv) B u vou) By ( )
= (Vo) = *vq )M 8”#_ H %_ H %_

Vospy = West)o = Bo5o07 ~ \a 8J 007 \a ~J 905 g ~J 00»

T A A S P R R AP :
A A Al e e P A PR e
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The surface Riemann-Christoffel tensisrdenotedB = B(0',6%) = B’ ; asa®a’a” to dis-
tinguish it from the equivalent tenst in the three-dimensional Riemann space. The mixed
covariant and contravariant components are given as, -Gf8)1

D A TER R A KRB KR

In analogy to (1-77), (1-79) the tensor componeﬁ‘@m fulfill:
B(Soz = _Béa
) By VB } (2-31)
B afy Vs = Va;By — Vayyp

Further, Bianchi’s identities in (1-80), (1-98) attain floem:

B”a + B* ot B* 0B = 0
) By 61 yap ) } (2_32)
B afy;é + B ayd;B + B adfy 0

From (1-78) and (2-32) follow that the components in the tmngplaneRfsam of the Riemann-
Christoffel tensor in the three-dimensional space is eeldab the corresponding components
B’ of the surface Riemann-Christoffel tensor as follows:

3 0 3 )
o=t (2L

Since, the three-dimensional Euclidian space is flat, we Ieaerywherd%‘;aﬁ,y = 0. Then, the
following simplified representation for tensor componerﬁfggﬁV is obtained from (2-33):

Basr = {agﬁ} {357} B {agv} {356} (39

Finally, contraction of the indices andJ in (2-34) provides:
=0 (2-35)

Due to the symmetry condition in (2-31) and the first Biangifentity (2-32) only one inde-
pendent and non-trivial tensor component exists, whicakisr asB',,,.

2.2 Principal curvatures, second fundamental form

An arbitrary curves(t) on the surfacé) is defined by the parametric description= r(t) =
r(6*(t),0%(t)), wheret is a free parameter as explained subsequent to (23nd( denote
two neighboring points on the curve defined by the positiariafsr andr + dr, corresponding

to the parameter valugsandt + dt, respectively. The incremewir with the lengthds is a
surface vector placed in the tangent planéd’atand specified by the covariant representation
dr = df#* a,. Hence, the unit tangential vector to the curvé’as given as:
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a) b)

tangent plane

Fig. 2-3 a) Unit tangent vector of a curve. b) Radius of curvature aie.

dr o~
b= = T-a, (2-36)
The unit tangential vector iy deviates infinitesimally front, and may be written as+ dt.
Given, that the length unchanged is equal to 1, the increatemtust fulfill:

l=(t+dt)- (b+dbt) =t-t+2dt-t+dt-dt = 1+2dt-t =
dt -t =0 (2-37)

where the second order texih- dt is ignored. (2-37) shows that the incremétiis orthogonal
tot. Let p denote the unit normal vector co-directionalfto Then, the following identity may
be defined:

dt
— =KPp (2-38)
ds

(2-38) is referred to aBrenet’s formula % andp are called theurvature vectoand theprinci-
pal normal vectoiwof the curve, respectively, and the proportionality factis referred to as the
curvature Generally, this is always assumed to be positive, so (2s3#3fining the orientation
of p.

In Fig. 2-3b lines orthogonal te have been drawn through and(@ in the plane spanned by
t andp, which intersect each other at thervature cente) under the anglda as shown on
Fig. 2-3b. The position o relative tos is defined by the orientation @f. Then the following
geometrical relation prevails:

_ds

— 2
do 7 (2-39)

whereR = OP = O() denoteghe radius of curvaturat P.
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From the similar triangles in Fig. 2-3b follows thdtx = rds. Then, (1-39) provides the
following geometrical interpretation of the curvature:
1

= (2-40)

Fig. 2—4 Definition of principal curvature, normal curvature;,, and geodesic curvaturg,.

Still another unit vectog, placed in the tangential plane and orthogonal| toay be considered,
see Fig. 2-4. The unit vectors p andg are all placed in a plane orthogonalttoandn andg
are orthogonal to each other. Henegy may be represented as a linear combination ahd
g:

KP = KpnN+ Ky g (2-41)

The expansion components, and x, are known as th@ormal curvatureand thegeodesic
curvatureof the curve. Usingh - g = 0, it follows from (2-38) and (2-41) that these may be
expressed in terms of the principal curvature as:

dt
Rn :n'pKJZCOSQO/{:n d_
5 (2-42)
, dt
Kg = PR =SINYK = - —
g =8P @ 8

wherey indicates the angle betwearandg, see Fig. 2-4.

From (2-19) and (2-36) follows that the curvature vet%‘s'ohas the following covariant repre-
sentation:

@ B d297 - Oa, df“ d@ﬁ
ds ds? 008 ds ds

0 S AN
PR a B ds ds
vy

20 do° dg” 3\ doe do®
dom dv” 24
<d52+{aﬂ} ds ds)a’y+{a5} ds ds (2-43)
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If the surface curve is a geodesic in the two-dimension Rienmspace made up of the consid-
ered surface, the first term in the last statement of (2-48istealong the curve, cf. (1-90).

Sincen - g = 0 it follows from (2-42) and (2-43) follows that the geodesimeature of a
geodesic curve becomes:

3 ) do>de”

In turn, this means that the surface normahnd the principal normal vectgr of a geodesic
are coincident sea = k,, cf. (1-41).

Sincen - a, = 0, it follows from (2-42) and (2-43) that the normal curvatafean arbitrary
curve on the surface can be written as:

dt 3 ) do~do® do> do”
=00 = {a 5} O ds s ds (2-45)
where the following indexed quantity has been introduced:
3
bap = { } = bga (2—46)
a f

Two neighbouring pointg? and @ on the curves are given by the position vectorgs) and
r(s+ds) = r(s) + dr. By the use of (2-36) the incremedit may be represented by the Taylor
expansion:
dr 1d* 5 1dt 5

dr = r(s+ds)—r(s) = £ds+§@ds +0(ds®) = td$+§£ds +0(ds®) (2-47)
The distanceln from @ to the tangent plane is given by the projection/eon the surface unit
normal vectom at P:

1 dt 1

1
dn =n-dr = —n-—ds* = ~k,ds® = = by df*dd’ (2-48)
27 ds 2 2

where (2-42) and (2-45) have been used.

The larger the distancén, the larger is the normal curvaturg of the curve atP. In (2-48)
this quantity is partly determined by the componéntsand partly by the parameter increments
df“. As follows from (2-46) the componenis; are entirely determined from properties related
to the surface, and independent of the specific directiohettrves. In contrast this direction

is determined by the incrementg of the curvilinear coordinates.

The quadratic fornb,; d0“d6° entering (2-48) is called theecond fundamental forof the
surface. In what follows$,s is considered the contravariant components of a surfacendec
order tensob = b, a*a”, which is called theurvature tensopof the surface.
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Usingn - az = n-a” = 0, it follows from (2-19) that:

n-%— 3 =b =
s e ) op

 da,  0O(anya?) . Dagy dar ~y
bop = n-w = n.W =n-a 507 + Aoy N+ == = —Qgy {3 ﬂ} (2-49)

where the last relation in (2-19) has been used. Then, useI8) provides:

{30‘5} = —a by = —b% (2-50)

Insertion of (2-46) and (2-50) into (2-34) provides the daling alternative representation of
the components of the surface Riemann-Christoffel tensor:

4
B afy
B(Saﬁ’y - —baﬁb(h + ba—yb(m (2—51)

= —bagh’, +barb’y =

where the transformation rules (2-15) of covariant and rematiant tensor components have
been used in the final statement. (2-51) provides the foligiorm for the selected independent
tensor componenB;,;s:

Bigta = —byibia + byobyy = det [bag] = b (2-52)

whereb denotes the determinant formed by the contravariant coemsrof the curvature ten-
sorb.

(2-52) is calledGauss’s equationf Bjs1o = 0, all other contravariant components of the tensor
will vanish as well, so it may be concluded tHat= 0. Then, a surface is flat (i.e. a plane), if
b = 0 everywhere. Noticed that if the determinant of the contriavea components vanish, the
determinant of the components of any other representatibnvanishes as well.

From (2-18) and (2-45) follows that the normal curvature afuave on the surface with a
direction determined by the incremettt* may be written as:

 bag doodo’

— e 2
T g d9Od0P (2-53)

(2-53) may be interpreted asayleigh quotientelated to the following generalized eigenvalue
problem, (Nielsen, 2006):

(baﬁ — Kn, Cl,ag) t’ =0 (2-54)

th = % represent the covariant components of a unit vectert” a; placed in the tangential
plane to the surface d?, which is an eigenvector to (2-54). In tensor format the eigéue
problem reads:
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(b—r,a)-t=0 (2-55)

(2-55) is fulfilled for two linear independent eigenvectorsindt, related to the eigenvalues
andx,. The directions on the surface by the eigenvectore denoted therincipal curvature
directions and the related eigenvalues are calbeshcipal curvatures The unit eigenvectors
fulfill the orthogonality conditions, (Nielsen, 2006):

0, 5

t-a-ty — e (2-56)
1, =9
0 5

P tha (2-57)
Ky , 7=20

In (2-56) it has been used thais an identity tensor, sty - a - t(,) = t(,) - t(,) = 1.

Let the principal curvatures be ordered, rsodenotes the smallest and the largest eigen-
value. As follows from the well-known bounds on the Raylegglotient the normal curvature
k, Of an arbitrary curve passing through will be bounded by the principal curvatures as,
(Nielsen, 2006):

K1 < Ky, < Ko (2-58)

Using the mixed representatioas= 65 a,a’ andb = b% a,a’ the component form of (2-55)
attains the form:

(0% — knd5) t7 =0 (2-59)

Formally, (2-59) may be obtained by contraction of (2-54Yhwi”* and use of (2-13),
(2-15). Solutiong? # 0 of the homogeneous system of linear equations (1-157) deéneidl,

if the determinant of the coefficient matrix vanishes. Thisyides the followingcharacteristic

equationfor the determination of the principal curvatures:

det [b% — £ 65] = Ko — (b + b%)kn + (b',0% — b70'y) =0 =
K2 — b K+ g =0 (2-60)

In the last statement it has been used that[b’,] = 2, wherea = det [a,,] denotes the
determinant of the matrix formed by the contravariant congus of the surface identity tensor.
This relation follows from the identities:

baﬁ = Uay bﬁyﬁ =
det [bos] = det [an,] det [b7,] =

det [b7y] = = (2-61)
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The solutions to (2-60) may be written as:

K
: } — Hy VA - K (2-62)
K2
where:
1 1.,
H = 5(/4,1“—/{2) = §ba (2—63)
b 1312 2 11
K:m/@:E:blbz—blb2 (2-64)

H is called themean curvatureof the surface, ands is the Gaussian curvature As seenk’
is equal to the determinant of the matrix formed by the mimnhponentiﬂﬁ of the curvature
tensor, an@H is equal to the trace of this matrix.

It follows from that K = 0, if eitherx; = 0 or k, = 0. A surface, where the Gaussian curvature
vanishes everywhere is developable, i.e. the surface caorstructed by transforming a plane
without distortion. Conical and cylindrical surfaces aeselopable, whereas a spherical surface
in not. From (2-52) and (2-64) follows:

Bioip = aK (2-65)

As follows from (2-56)t:-a-t, = t;-t, = 0. This means that the principal curvature directions
through P areorthogonal to each otherlt is then possible to construct dg', s?) arc-length
coordinate system at each point on the surface, which evayahas the principal curvature
unit eigenvectors; andt, as tangents. This so-callgdincipal curvature coordinate systeis
specific in the sense that bdth,s] and|[b, ;] become diagonal, i@ = by» = 0.

The principal curvatures in this specific coordinate sysaeengiven as:
b o)l
Kp = @) (2—66)
Aa)(e)
In the following some relations are described, which inedlve partial derivative of the surface
unit normal vectom. Partial differentiation of the equation - a, = 0 and use of (2-19)
provides:

on 0a, 0
o5 2T Bgp -
on da, 3 B

n is a unit vector, sm - n = 1. Then, partial differentiation provides an alternativeiektion
of (2-22):

on
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Hence,% is orthogonal ton, and accordingly can be decomposed in the covariant surface

vector basey; as follows:

On
0«

Scalar multiplication of both sides witl, and use of (2-15) and (2-67) provides the following
solution for the components:

on
2 e

— I’ a, (2-69)

= —by =1%a, -az = azll =

I = —a" b,y = 17, (2-70)

Then, insertion into (2-69) provides the following altetina representations:

on

% — —bﬁaaﬁ = —b'ya CLB’Y ag = _baﬁ aﬁ = _{ s } aB (2_71)

a p
where (2-12), (2-15) and (2-46) have been used.

Similarly, (2-19) and (2-46) provide the following relatidor the partial derivatives of the
surface covariant base vectors:

aaa . y
A (2-72)

(2-71) is calledzauss’s formulanot to be confused with Gauss’s equation given by Eq. (2-52)

eqs ande® indicatetwo-dimensional permutation symbalefined as:

0 1] )
e
- ) (2-73)
1 0
L 4 )
As seerie®”] = [eqs] " = [eaa]” = —[eas]
Define:
ap = |ay| = (a1 '31)1/2 = Van )
ay = |ay| = (ag-ay)"? = /ap > (2-74)
. 2
Ccos _ A _ G = singp = 4/1— 012

|ay |[az] \/ A114/ 022 a1iQg2 )
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where the angle is defined in Fig. 2-2. Further, (2-11) has been used.

Then, (2-5) may be written as:

A = \Jan/ay sing = \Janas — (a12)? = Va (2-75)

wherea = det[a,s]. By the use of (2-73) and (2-75) the vector products in (2a8) loe written
in the following compact forms:

nxa, = ae,pa’
(2-76)
a, xag = Vaeypn
Further, the following component identities may be derived

(op = G Cqy a® €ss )

1
a®? = = a; e

¢ (2-77)
€aB = 1 Aoy e asp

a

é

e = aa™ es, a® )

The first relation in (2-77) follows from the matrix idenés:
-1 T
ay ap| all g2 ., a?? —ql2 . 0 1 all g2 0 1
Aoy Qoo a2l 22 —q2! all 1 0 a2l 22 1 0
(2-78)

where it has been used thitt[a*’] = 1/ det[a.s] = 2. The proof of the remaining relations
in (2-77), which is left an exercise, may be carried out bypermatrix operations similar to
(2-78).

Next, a three-dimensional vector field= v(#',6?) is considered, defined on the parameter
domain(6',6?) € w. Hence, a vector is connected to each point of the sufaceince,
v3 = v3 # 0, v is not a surface vector. The following representationsaitev

v =0v%a, +v°n = v,a® +vsn (2-79)

Since,2%; = 0, the gradient becomes, cf. (1-56), (1-64), (1-65):

1963 —

Vv = %aﬁ = ’Uj;ﬁ a;a’ = v;z;a’a’ (2-80)
Similarly, (1-66) becomes:
ov j N 3
997~ Vs T Viplat U0
Iy (2-81)

. J — ed
= Ujp =Ugpa + Uzp N

208
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v“:%%— R TLEE v?’\
4 008 B v B 3
= 5 {3}” {3}3
V3 = aom t v+ ()

068 3

B v B (2-82)

vy = o _ L7 3 1,
R a B a B ’
v _ O 51,
T 008 35 38 °

The right hand sides of (2-81) both consist of a surface veatd a vector in the normal di-
rection. The surface and normal vectors of these represamtanust pair-wise be equal corre-
sponding to:

v 580 = Vaypa®
5 =

v ’611 — 1)3’61’1

0% = a"" Uyp

Vs~ = Gy Vg (2-83)

U3;8 = US;B

i 23 3 _ i 3 _ 3 _ 3
Usingvs = v* andv®; = vy it follows from (2-82) that{,’ } = {,°,} = —{,°,} =

*,} = 0. Furtherp,s = { °,}, cf. (2-46). Then, withdrawal of the second equation in 3-8
from the fourth equation prowdes the following relations the components of the curvature
tensor:

3
} {375} “e {5 7} V= b -

(2-84)
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2.3 Codazzi's equations

From (2-67), (2-71) and (2-72) follows:
Obasg O < Bn) _ Oda, On 0*n

o0 — oo \™ 907 ) T “oov 00F ~  dmows
) A 0’n 5 9’n
({a ,Y} a5—|—bayn) 'bﬁga —aa'm = bﬁg {a ’Y}—aa'm (2—85)
Interchange of the indicesand~ in (2-85) provides:
by 5 9’n
pum— _— - —_— 2_
997 mﬂ{a 5} Ao D500 (2-86)
Withdrawal of (2-86) from (2-85) gives the relation:
86&5 0 o aba'y 0
00 b5 {a 7} 08 by {a 5} (2-87)

(2-87) is trivially fulfilled for 5 = ~. Further, the index combinatiotis, 5,~) = (1, 1,2) and
(v, B,7y) = (1,2,1), as well as the index combinatiofs, 5,v) = (2,1,2) and(«, 5,7) =
(2,2,1), both lead to the same relation. Hence, merely two nonalramd independent rela-
tions exist, which are taken corresponding to the index éoatlons(«, 8,+v) = (1, 1,2) and
(e, B,7y) = (2,2, 1), leading to the following relations:

LAV S QU U ERD
002 Y1 2f 90t P11

Oy f 8L _ O [ 5

a0r 2 1f 92 M2 2
The relations (2-88) are callg@iodazzi’'s equationdt can be shown that arbitrary component
functionsa,.s = anp(0',6%) andb,s = bas(6',6%) of the curvilinear parameter® and 62
uniquely determine a surface (saved an arbitrary rigid boatyslation and rotation), which has

aqp d0“d0” andb,s d9*d6” as its first and second fundamental form, if and only if thesa-c
ponents fulfill the Codazzi's equations (2-88) and the Gauwsguation (2-52), (Spain, 1965).

(2-88)

In a principal curvature coordinate system we have= ay; = 0 andb;s = by; = 0. In this
case the Codazzi’s equations reduce to:

d (ar\ 1 0w
ﬁ(ﬁ)‘ﬁzw
0 (ay\ 1 day
@(ﬁj_ﬁw

wherea, anda, are given by (2-74), an&, and R, are the principal curvature radii . A proof
of (2-89) has been given in Box 1.2.

(2-89)
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Box 2.1: Proof of (2-89)

Sinceb;s = by = 0 in the principal curvature coordinate system, (2-88) cancokeiced

to:
Obyy 1 2
00> 611{1 2} 622{1 1}
Obyy 2 1
00" 622{2 1}_6”{2 2}

Next, the Christoffel symbols in (2-90) are expressed im&of the covariant and con-
travariant components of the identity tensor as given byl#fming equation (1-58). Due
to the principal curvature coordinates these componentsrbea,; = a*® = 0 for

a # fanda(®@ = ﬁ Then:

1 . 1 1 8@11 o 11 0&11 )
{1 2}_2a (092“) 0) = 2 ap, 062
20 _ 1 » _Oan 11 dan
{1 1} 3¢ (0*‘0 892) T T2 0P
2\ _ 1 »(dam 0\ 11 Oax
{2 1}_2a <891+0 0)_ 2 ag 00!
1
2

b -

Further, from (2-66) follows thalt;; = (1/R1)a;; andbey = (1/Rs)ass. Then, insertion
of (2-91) in (2-90) provides:

0 fan) L1 1Y da
0”2 \R, ) Ry Ry) 00?

O fam) _ 11 1) Oun
00 \ Ry ) R,  Ry/) 00!

(2-90)

(2-91)

(2-92)
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Introduction of(a;)? = ay; and(as)? = ag, provides the identities:

O (o _ 0 ( a) @ On 0 (a1 )
0° \ R, ) ~ 92 \""R, ) T~ R0z " “oe2 \ R,

O (o= _ 0 ( 6 _@dn 0 (4
00' \ Ry, )] — 00' \"*R,)  R,00" " 200" \ R,

(2-93)
dan = 2a %

002 062

Oax _ 94,0%

001 o0 )

Finally, (2-89) is obtained by insertion of the results ir92) into (2-92).

Example 2.1: Identity tensor, curvature tensor, Riemann-Christoffel tensor and principal
curvatures on a spherical surface

A spherical coordinate system is used, and-let 2 denote the radius of the sphere. Then it follows from (1-85)
that the contravariant components of the surface idemitgdr becomes:

2

[Gas] = [ 0 ] (2-94)

0 72sin?6?

The contravariant components of the curvature tensonfdiiom (1-86) and (2-46):

[bas] = l_r ’ ] (2-95)

0 —rsin?6?

Since botha.s and[b,s] are diagonal, it is concluded that the spherical coordisydtem is a principal curvature
coordinate system. The principal curvatures and relatiedtipal curvature radii follow from (2-40), (2-66):
1

K1 = Rg = —— =
r

Rl = R2 = —-T (2—96)

k1 andky are negative, because unit surface normal vector is ddentey from the curvature center, which in
this case is identical to the origin of the Cartesian coatirsystem.

The selected independent component of the Riemann-Clfielstensor becomes, cf. (2-52):
31212 = 7”2 sin2 6‘1 (2—97)

Using the calculated Christoffel symbols in Eq. (1-86) ildas that the left and right hand sides of the first
Codazzi equation in (2-90) vanish. The second Codazzi eguptovides the result-2r cos(6*) sin(f') on the
left and right hand sides.
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2.4 Surface area elements

In structural analysis of shells it may be of interest to kribe/relation corresponding element
areas on the upper and lower surface. This problem is stunlibds section.

Fig. 2-5 Area elements in parallel surfaces.

Fig. 2-5 shows two surfacés and(),, described by the same paramet&randf?. The points
P and P, denotes the mapping points for the same parameters, spdwyfibe position vectors
x = x(0',0%) andx; = x, (0", 6?), respectively. Further, the unit surface normal vectdeteed
to the two surfaces at the said points are assumed to beddeatid equal tam. Further, it is
assumed that the distance between any such correspondimg p@nd P, on the surfaces are
equal tot. On the surfaces arc length coordinate coordinate systems’) and (s!, s?) are
introduced with origin at” and P;. The related surface covariant base vectors are demagted
anda, ,, respectively. Then, the position vectors are related lks/fe:

X, = X+tn (2-98)

dA denotes a differential area element of shape as a parateogith sides of the lengtiis!
andds? parallel toa; anda,, see Fig. 2-5. The length of the sides follows from (2-19):

ds' = \Jay; do*
5 (2-99)
d52 = /022 d92
Let ¢ denote the angle betwean anda,. Then, cf. (2-5), (2-74):
dA = ds'ds*sinp = \/a11\/as sinpdf'do?* = \/a11a22 — (a12)2d0*do* =
Vadotde? (2-100)

The surface covariant base vectars, follows from (2-3), (2-69), (2-70):

0% ox Oaz
e = Foa T Pga ti 9ga AT t0 a5 = (0o —t0%,) as (2-101)

Then, the contravariant components,; of the surface identity tensay of €2; becomes:
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Ulop = Qg 15 = (52 — tb‘;a) (5g — tb’yﬁ) as-a, = (52 — tb‘;a) (5g — tb’yﬁ) a5y =

a" (@ — tby) (455 — tbss) = @™ (o — t bary) (a5 — tbgs) (2-102)
The differential area elemeritd; on (2, corresponding tdA on (2 is given as:

dA; = \/a; d9*db? (2-103)

wherea; = det[a; 4] follows from (2-102):

a; = det [a”’ﬂ det [aav — tbcw} det [agg - tbﬁg] = é(det [aag - tbaBDZ =

2
et fan ot [53 - ) = L) (e 5y ) -
b N2 2
a (1 — t2> _q (1 _OHt+ Kt2> (2-104)

where (2-60) and (2-61) have been used. Further, the meaatate H and the Gaussian
curvaturek” as given by (2-63) and (2-64) have been introduced. Thenati lbetween the
differential area elements becomes:

dA, @ )
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2.5 EXxercises

2.1 Prove that the surface Riemann ten@égﬁ7 merely contains one independent component.

a) b)
(92

1
VV

Fig. 2-6 a) Parameter domain. b) Shell surface.

2.2 The mid-surface of a shell structure is defined by the panacradscription:

! a6
2| = a 0?
3 4f6'6?

where the parameter domainhas been indicated on Fig. 2-6a.and f/ are parameters
defining the length and the height of the shell structure asslon Fig. 2-6b.

(a.) Calculate the covariant and contravariant base vegfaasdg’ in terms of the Carte-
sian base vectors.

(b.) Calculate the contravariant components of the surfacetitgeensor and the cur-
vature tensor, and determine principal curvature, the noceiavature, the Gaussian
curvature and the principal curvature directions.

(c.) Formulate Codazzi’s equations for the surface in terms efsitlected curvilinear
coordinates.

2.3 Consider a shell structure with the thickneéssand let(), denote the so-callethiddle
surface and(2; and{2_, the upper and lower surfaces.

(a.) Calculate the fractiog'l;;“—j1 of corresponding differential area elemedits, andd A_;
on the upper and lower surfaces expressed by the mean a@yhand the Gaussian
curvatureK’ of the middle surface.




CHAPTER 3
Dynamics

3.1 Equation of motion of a mass patrticle

A particle with the mass: is moving in the three-dimensional Euclidian space undeirifiu-
ence of a time-dependent force vecf¢t). The position along the trajectory of the particle is
given by the position vecto(¢) with covariant curvilinear coordinatés.

The increment of the position vectéx (t) = x(t + dt) —x(t) during the time interval, ¢ + dt]
is given as, cf. (1-8):

ox(t , .

dx(t) = 5 g(j) e’ (t) = g;(0'(t)) do’(t) (3-1)
The velocity vectorof the particle is given as(t) = d’;—it). The coordinate expansion in the
curvilinear vector base follows from (3-1):

db’ (t
vit) = g (00) (-2

Hence, the covariant components of the velocity vector vese’ (1) = %t(t)

Theacceleration vectois given asa(t) = dvdf) . Differentiation of (3-2) provides the following

representation of the acceleration vector in the covavieator basis:

a*97 g (0(t)) do* dafl
at) = g;00) o + g @ -

(d;tij + {kjl} dd;f 62_9;) g;(0(t)) (3-3)

In (3-3) the dummy inde) has been changed tan the last part of the second statement. Fur-
ther, the relatiorf& = { ’ }g; has been used in the last statement, cf. (1-57).

The equation of motion is given dyewton’s 2nd law of motian
mal(t) = f(t) (3-4)
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The components in the curvilinear covariant basis becomé€33):

a0k () do* o' |
m(dﬁ +{k l}ﬁ%) g = ['(t)g; =
@206 5\ dotdoty
) = ¢ _
m(dt2+{kl} dt dt) ) (3-9)

Assume that the particle is moving without any external Jaad f(¢) = 0. Then,a(t) = 0,
and the velocity vector becomest) = v,. The position vectok(¢) becomes:

X(t) = Xg + Vg (t — to) (3—6)

wherex, = x(t¢). (3-6) indicates the parametrization of s straight linejolhis a geodesic in
the three dimensional Euclidian space. Hence, the partioles along a geodesic, whenever
a = 0. The constant speed of the particle is givenvpy= /v, - vg.

Next, assume that the motion of the particle is constraingdke place on a surface. Further
the curvilinear coordinaté® is assumed to be in the normal direction. Then, the positiothe
surface is given by the position vecta(t,, 0;), cf. (2-2). The surface covariant vector base
a, (01, 0) is defined by (2-3), and the unit normal vecigp,, 6, ) is given by (2-4).

Due to the constrain to the surface the motion of the paritictee normal direction is zero, i.e.
62 = 0. Then, (3-5) becomes:

4200 o ) do? do .
m(dt2 *{5 V}EE)_JC@) =12

3\ do~ do’ o o
m{a 5}?? =0 ., j=3

(3-7)

In the first equation (3-7) it has been used lﬁétz 0.

f3(t) in the second equation (3-8) may be writtenfdsét) = f3(¢t) + f3(t) wheref3(t) and
f2(t) indicate the covariant components of the reaction forcéovefoom the surface and the
external force vector on the particle in the direction of thét normal vector, respectively.
Using (2-46) the following relation is obtained f@g (¢):

FA) = mbasg —— —— — f2(t) (3-8)

The first term on the right-hand side of (3-8) indicates th&riigal load due to the curvature
of the surface.

If the surface is smoothf?(¢) will not induce any friction force against the motion of the
particle. However for non-smooth surfaces, a friction éorgf3(¢) is acting in the negative
direction of the velocity vectow(¢) of the particle, where: indicates a friction coefficient.
Then, f(t) is given as:
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ve(t)

v (@)l

where f(t) andv®(t) = d(’;t(t) signify the covariant components of the external force wect

and the velocity vector in the surface covariant base.

Fo) = fot) — nfi(@) (3-9)

3.2 Nonlinear multi-degree-of-freedom systems

The motion of amulti-degree-of-freedom systamdescribed by amv-dimensional displace-
ment vector®(t). In mechanics, the covariant curvilinear coordinateare referred to as the
degrees of freedowr thegeneralized displacemeri$the system. These are typically made up
of nodal displacements and rotations of a finite element trad@decontinuous media. The set of
all possible positions with due consideration to possibtetnatic and mathematics constraints
form a subset of thé/-dimensional Riemann space known asc¢bafiguration space

Thekinetic energyof a discrete dynamic system is given as:
() = % o(t) - M(6(1)) - (1) (3-10)

wheref(t) = £6(t) is the velocity vector, and the symmetric tenddf0(t)) = M’ (8(t)) is
known as thenass tensorThe mass tensor is independent¢f) for linear systems.

The contravariant components of the mass tedd®(¢)) are denoted as/;;, and the co-
variant components of the inverse mass terfebr' (6(t)) are denoted ad/—'J*. Hence,
MMM, = 6k,

The load vectoif(¢) work conjugated ta@(t) may be decomposed intoanservative force
vectorf,(t) = f.(0(t)) and anon-conservative force vectéir.(t) = f.. (¢, 6(t), 6(t)), i.e.:

f(t) = () + fuc(t) (3-11)

The contravariant componenfs,,,(t) of the conservative load vector are determined as the
negative gradient of a relatgubtential energy functioih’(e(t)):
vV (0(t))

o (3-12)

fc,m (t) =

As seen the gradient is taken with respect to the covariaptatiement coordinat®’ (¢), which
is the work conjugated degree of freedom to contravariad tomponenf. ,,,(¢).

TheLagrangianL (6(t), 8(t)) of the system is defined as:

L(6(1),0(t)) = T(0(1),0(t)) — V(0(1)) (3-13)
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Then, the equations of motion in contravariant coordiné&egiven by theEuler-Lagrange
stationarity conditiorof the so-called action integral, (Pars, 1964):

d [ 0L oL
pr <8ém) = Bgm = foem(t) . m=1,...,N (3-14)
By the use of (3-10), (3-12), (3-13), Eq. (3-14) may be wnitte
i oL _ oL 6" + Mo @d_@l _ laMkl @d_@l + a_v —
dt \ gom ogm — TR g 00U dt dt 2 00% dt dt ' oo™
d?6* 1 (OM,. oM, oM\ do* dpt
MmkW + 5 < 09l + 89"3 - 09m> dt E - fc,m(t) - fnc,m(t) (3_15)

where the symmetry property;, = My, has been used.

By pre-multiplication with)/—!:7™ and contraction over the index, (3-15) may be written on
the compact form:

4207 j do* do! Cim .

where the symbof’ l}M is defined as:

j Lo im (OMye | OMyy  OMy
_ _ 3-17
{k: z}M > ( o6 ogk  agm (3-17)

As follows of (1-58), {,jl}M indicates the Christoffel symbol, when the contravariaoe
ponentsg,; of the fundamental tens@ is replaced by the contravariant componehig of

the mass tensor, and the covariant componefitss replaced with the covariant components
M~—1Jm of the inverse mass tensor. This does not nieka fundamental tensor for the present
problem. Actuallyg -0 = 8, whereasM - @ 6. Further,A/ 9™ is different from the covari-
ant component8/’™ = ¢/*¢g™ M, of the mass tensor. The specific definition of the Christoffel
symbol has been marked by a subschipt

The terms invoIving{,jl}M in (3-16) represents gyroscopic centripetal and Corialéds on
the system.

Example 3.1: Non-linear two-degree-of-freedom mathemathical pendulum with moving
support

Fig. 3.1 shows a mass partiele, moving on a horizontal smooth plane. The motion from thecbéquilibrium
position is described by the displacement degree of freetigm. The mass particle is supported by a nonlinear
spring with the spring stiffness(¢!) and a nonlinear viscous damper with the damping coefficight), and is
exposed to an external fordg () acting co-directional t@*(¢).

The other end of the point mass is connected via a frictieridsge to a mathematical pendulum consisting of a
rigid massless bar of the lengthwith a point massn, attached at the free end. The position of the pendulum is
described by the anti-clockwise rotati6f(t) measured from a vertical line positioned at the displacéaltpoass
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1(1 = cos(6?)) ]‘---j—/i mo 1

my g

Fig. 3—1 Mathemathical pendulum with moving support.

my. The pendulum is exposed to an external moni@iit) acting co-directional t¢(¢), and to the gravity force
mog, Whereg signifies the acceleration of gravity.

The spring stiffness and the damping coefficient are given as
B(O") = ko (1+2(0")?) (3-18)

c(0') = co (— 1+ (%)2) (3-19)

(3-18) indicates the spring stiffness obauffing oscillator and (3-19) is the damping coefficient ofzan der Pol
oscillator. ko, €, cp andf are given constants. defines the strength of the non-linearity of the spring rstiffs,
andf, determines the magnitude of the stationary limit cycle ef\thn der Pol oscillator.
The kinetic energy becomes, see Fig. 3-1:

7(0,6) = %ml (91)2 + %mg ((6’1 + 162 005(92))2 + (162 sin(@z))z) =

5 (matma) (67 + mal cos(6?) 86% + 3 ms (14%)° (3-20)

The potential energy becomes:
01

V(o) = /0 kE(u)udu + ma gl (1 - COS(QQ)) =

1 2, 1 14 2
5 ko ((9 ) —1—55(9 ) ) —i—mggl(l—cos(H )) (3-21)
The contravariant components of the non-conservativefeector becomes:
01\ ,
Fi(t) —c| —1+(— 0t =1
fuesty = 4 0 T ( <90) > ’ (3-22)
Fy (t) ) .7 =2

Then, (3-15) attains the form:

m1 + ma mo [ cos (92) 61 B mol (92)2 sin (92) n
|2 lcos (62) ma 12 02 ma 10162 sin (62)
_ N2y
co(—l—i— (Z—O) )91 + ko (1—!—5(91)2) ot _ Fi(2) (3-23)
i ma gl sin(6?) Fa(t
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As follows from (3-23), the contravariant components;, (6%) of M(6?) and the covariant components
M~17%(92) of M~1(6?) are given as:

[M;(02)] = my+ma  mglcos (6?) (3-24)
! mo [ cos (92) mo 12
1 1 mo 12 —malcos (6?)
M-Likp2)] = 3-25
[ ( )] (ml + mo sin2(92)) ma [? l— ms [ cos (92) my + meo ( )

3.3 Exercises
3.1 Derive the equation of motion of a mass particle in polar dottes.
3.2 Derive the equation of motion of a mass particle moving on agimsphere.

3.3 Derive the Christoffel symbol§,’ } for the system in Example 3.1.
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distributive rules of tensor products, 13
double contraction, 13

dual vector base, 10

Duffing oscillator, 59

dyad, 13
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principal normal vector, 40
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Riemann space, 11
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second fundamental form, 42
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singular point, 7, 8

speed of moving mass particle, 56
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summation convention, 8

surface contravariant derivative, 38
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surface metric tensor, 37

surface Riemann-Christoffel tensor, 39, 43
surface second order tensor, 36, 37
surface vector, 35

symmetric tensor, 15
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tensor product, 13

tetrad, 13

third order tensor, 21, 38
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unit normal vector, 35, 45, 56
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van der Pol oscillator, 59
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