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ABSTRACT

Most speech enhancement algorithms need an estimate of the noise
power spectral density (PSD) to work. In this paper, we introduce
a model-based framework for doing noise PSD estimation. The
proposed framework allows us to include prior spectral information
about the speech and noise sources, can be configured to have zero
tracking delay, and does not depend on estimated speech presence
probabilities. This is in contrast to other noise PSD estimators which
often have a too large tracking delay to give good results in non-
stationary situations and offer no consistent way of including prior
information about the speech or the noise type. The results show that
the proposed method outperforms state-of-the-art noise PSD estima-
tors in terms of tracking speed and estimation accuracy.

Index Terms— Noise PSD estimation, speech enhancement,
noise statistics.

1. INTRODUCTION

The healthy human auditory system has a remarkable ability to ex-
tract the desirable information from a noisy speech signal. Even in
situations such as a cocktail party where the background noise is
non-stationary and the signal-to-noise ratio (SNR) is very low, nor-
mal hearing people are not only able to cope with the situation, but
able to enjoy it. For people with a hearing defect, however, noisy sit-
uations such as a cocktail party are often mentally fatiguing and very
challenging to deal with. These hearing impaired people often rely
on a hearing aid for the speech enhancement, but the performance
of the current hearing aid technology is far from enabling its users
to thrive in difficult situations such as a cocktail party. Speech en-
hancement is not only important to the hearing impaired person in a
cocktail party situation, but in any situation where the desired speech
is observed in noise. Moreover, not only humans benefit from speech
enhancement since, e.g., speaker identification and speech recogni-
tion algorithms are often designed for a clean speech signal [1].

Any speech enhancement algorithm must incorporate some prior
knowledge in order to successfully separate the desired speech from
the unwanted background noise. For example, the popular Wiener
filter and many other speech enhancement algorithms such as maxi-
mum SNR, MVDR, and LCMV [1] (see also [2] for a comparison)
assume that the second-order statistics of the speech and/or noise
are known somehow. In practice, however, the statistics is often un-
known and time-varying. Therefore, the prior knowledge must be
represented in an alternative way so that the statistics can be esti-
mated directly from the noisy speech. In this paper, we make contri-
butions to the solution of exactly this problem.

The work was partly sponsored by Innovation Fund Denmark (Grant No.
99-2014-1).

Many people have been analysing the problem of estimating
the noise power spectral density (PSD) or, equivalently, the second-
order noise statistics, from a noisy speech signal. The most basic
approach to estimating the noise PSD has been to use a voice activ-
ity detector (VAD) to inform the estimation algorithm about when
speech is absent so that the noise PSD can be estimated. Unfortu-
nately, such VADs are often difficult to tune in low SNRs, and they
do not work well when the noise is non-stationary [3, 4]. More-
over, they are inefficient since they typically disable the noise PSD
estimator across the entire frequency range, even if speech is only
present in a few frequency bands. This has motivated the use of a
soft VAD in each frequency band. A prominent example of this is
the minimum statistics (MS) method [3, 5]. The algorithm is built
on the assumption that the noise PSD is slowly varying with time
and that the power of the noisy signal frequently goes down to the
noise power level. Although the MS principle is simple, a lot of
heuristics go into estimating a very important smoothing parameter
and to correct the negative bias of the estimator. In fact, a full jour-
nal paper has been published on the latter issue [6]. Other problems
with the principle are that the variance of the estimated noise PSD
is bigger than for other methods [3, 4] and that very long tracking
delays can occur, in particular when the noise power is increasing.
Precisely these two issues were addresses in the MCRA [7–9] and
later in the improved MCRA (IMCRA) [4] methods. Unfortunately,
however, there might still be a considerable tracking delay in IM-
CRA if the noise power is increasing [10] and a lot of hand-crafting
is still involved in tuning the algorithm and in doing bias correction.
In [10, 11], the MS principle was abandoned in favour of MMSE
estimators. These MMSE estimators were demonstrated to have a
much better tracking speed than the MS and IMCRA methods and
can be considered to be the best noise tracker currently [12]. One of
the disadvantages of the MMSE estimators is that the first five time
frames are assumed to be noise only to initialise the tracker. Another
disadvantage is that it is not clear what prior information is actually
built into the MMSE estimators about the speech and the noise, be-
sides that the speech and noise spectral coefficients are modelled as
independent and normally distributed random variables. This model
assumption is very common in noise PSD estimation, but does not by
itself enable us to separate a mixture into its components. Additional
prior information is, therefore, necessary to find a unique solution to
the problem, but the current noise trackers often rely on heuristic
tricks for making the problem solvable rather than explicitly stating
the model assumptions. Approaches based on, e.g., vector Taylor se-
ries [13] or nonnegative matrix factorisations (NMF) [14] give such
model based estimates of the noise statistics via a separate training
step. The clear advantage of these approaches is that it is much eas-
ier to understand the applicability and limitations of the model and,
consequently, the noise PSD estimator. Moreover, we do not have
to compensate for artefacts such as an unwanted bias, and we can
change the built-in prior information via the model. For example, a



hearing aid user often communicate with the same people, but such
information cannot be built into current noise PSD trackers.

In this paper, we propose a new noise PSD estimator which has
some resemblance to both the NMF approach and the MMSE es-
timators. However, we derive our estimator directly in a flexible
statistical framework which can be used in situations where we have
specific prior information, but also in situations where we do not. By
virtue of being model-based, we can in principle also use the pro-
posed framework for noise PSD estimation with no tracking delay,
even if speech is continuously present.

2. THE ESTIMATION PROBLEM AND THE MODEL

We assume that we observe N samples from the noisy speech signal

y = s+ e (1)

where y ∈ RN×1, s ∈ RN×1, and e ∈ RN×1 are the noisy speech,
the clean speech, and the noise, respectively. Given y, we seek to
estimate the noise PSD which is typically defined as [15, p. 7]

φe(ω) = lim
N→∞

1

N
E
[
|E(ω)|2|y

]
(2)

where E is the expectation operator and E(ω) = fH(ω)e is the
DFT of the noise with f(ω) = {exp(jωn)}n=0,...,N−1. The
conditional expectation in (2) is the second moment of the density
p(E(ω)|y). However, it can also be written in terms of the density
p(e|y) as

E
[
|E(ω)|2|y

]
= fH(ω)

[∫
RN×1

eeT p(e|y)de
]
f(ω) . (3)

The problem of estimating the noise PSD is, therefore, essentially
that of computing the second moment of the posterior p(e|y).

To compute the posterior p(e|y), we elicit several statistical
models {Mk}Kk=1 for how the data vector y was generated. Such
models can easily be included in (3) as

E
[
|E(ω)|2

∣∣y] = K∑
k=1

p(Mk|y)E
[
|E(ω)|2

∣∣y,Mk

]
. (4)

Thus, we obtain a model averaged noise PSD estimator if we insert
(4) in (2). The model probabilities {p(Mk|y)}Kk=1 ensure that those
models which explain the data well will contribute with a larger
weight than those models which do not explain the data well. In
principle, there are no limits on which models can be used. From a
practical perspective, however, it is advantageous to use models that
lead to tractable algorithms while still being a sufficiently accurate
representation of how the speech and the noise were generated. In
this paper, we will use autoregressive processes to model the speech
and the noise, i.e.,

p(s|σ2
s,k,Mk) = N (0, σ2

s,kRs(ak)) (5)

p(e|σ2
e,k,Mk) = N (0, σ2

e,kRe(bk)) (6)

where σ2
s,k, σ2

e,k, Rs(ak), Re(bk), ak, and bk are the excitation
noise variances, the normalised covariance matrices, and the AR-
parameters of the speech and the noise, respectively. We assume that
the AR-processes are periodic in N since the normalised covariance
matrices then are diagonalised by the DFT matrix F . That is,

Rs(ak) = N−1FDs(ak)F
H (7)

[F ]nl = exp(j2π(n− 1)(l − 1)/N) , n, l = 1, . . . , N (8)

Ds(ak) =
(
ΛH

s (ak)Λs(ak)
)−1

(9)

Λs(ak) = diag(FH [aT
k 0

]T
) (10)

with similar definitions for Re(bk). Although it might seem un-
founded to assume periodicity in N , this assumption is actually im-
plicitly made when using the asymptotic covariance matrix of an
AR-process for finite length signals as in [16] or when interpret-
ing the Itakura-Saito (IS) distortion measure [17, 18] as the maxi-
mum likelihood estimator of short-time speech spectra. Precisely
the IS distortion measure has been very popular in the speech com-
munity for decades, partly due to it also being a perceptually mean-
ingful distortion measure [19], and has lately also been used suc-
cessfully as a distortion measure for nonnegative matrix factorisa-
tion (NMF) [20]. Moreover, the above model actually has the signal
model used in [10, 11] as a special case. Specifically, if we select
K = 1 and set the AR-orders to N − 1, then the speech and noise
spectral coefficients are modelled as independent and normally dis-
tributed random variables and the noise PSD estimator in (2) is the
foundation of the MMSE-estimators in [10, 11]. As discussed in the
introduction, however, this frequency domain model does not by it-
self allow us to separate the noisy mixture into its components.

2.1. Prior Information

Inspired by the work in [16, 21], the AR-parameters are here as-
sumed known for a given model. Thus, a model in our framework
corresponds to one combination of so-called codebook entries in the
framework of [16, 21]. That is, if we have a speech and a noise
codebook consisting of Ks and Ke trained AR-vectors, respectively,
we have a total of K = KsKe models1. At first glance, it might
seem a disadvantage that these codebooks have to be trained, but
they actually offer an excellent way of including prior spectral in-
formation. For example, if the noise PSD estimator has to oper-
ate in a particular noise environment such as a car cabin or mainly
process speech from a single person such as in mobile telephony,
we can use codebooks with typical normalised AR-spectra for these
sources. Conversely, in the absence of any specific information about
the speaker(s) and the noise environment(s), we can use classified
codebooks [16] where we first classify the speaker/noise type and
then use the corresponding codebooks which have been trained on
different speakers and noise types. Moreover, the noise PSD esti-
mate from any noise tracker can also be included as a noise code-
book vector. This also means that the proposed framework can be
used to combine existing noise trackers in a consistent fashion. A
potential problem of the model-based approach is that the number of
models grows with the product of the codebook sizes, and this might
lead to an intractable computational complexity. This is also one of
the reasons why we use models whose covariance matrices can be
diagonalised by the DFT matrix.

The excitation noise variances are not pre-trained, but are treated
as unknown random variables with the prior

p(σ2
s,k|Mk) = Inv-G(αs,k, βs,k) (11)

p(σ2
e,k|Mk) = Inv-G(αe,k, βe,k) (12)

where Inv-G(·, ·) denotes the inverse Gamma density. Similarly, we
also have a prior mass function p(Mk) for the models. Speech is
normally processed frame-by-frame, often with some overlap. Con-
sequently, values for the excitation noise variances and models that
work well in one frame, should also work reasonably well in the

1Note that a codebook is not restricted to only include AR-spectra, but
can in principle include any type of spectrum as in NMF. We here focus on
a parametric representation of the spectra in terms of AR-parameters since
this leads to codebooks with a small memory footprint, can be used for short
segment sizes, and allows us to train the codebooks using standard vector
quantisation techniques developed for speech coding [22].



next frame, and the priors are an excellent tool for using previous
information in the current frame. In a completely stationary envi-
ronment, for example, the posterior distribution of one frame should
be the prior distribution in the next frame. The more non-stationary
the signals are, the broader the prior of the current frame should be
compared to the posterior of the previous frame. In the limit, no
information is carried over from one frame to the next, and we use
uninformative priors with α·,k = β·,k → 0 and p(Mk) = K−1. In
this paper, we focus on exactly this limiting case in the simulations.
Besides not having enough space here to give a complete descrip-
tion of a general frame transition model, this choice is motivated by
that 1) babble noise is typically very non-stationary, and 2) we wish
to demonstrate that the proposed model-based approach works well,
even without any smoothing between frames. This is in contrast to
current state-of-the-art noise trackers which at best have a tracking
delay of a few hundred milliseconds [10]. Before going to the sim-
ulations, however, we first describe how the noise PSD is estimated
from the model and the data.

3. INFERENCE

To estimate the noise PSD, we have to compute the posterior model
probabilities p(Mk|y) as well as the second moment of the poste-
rior p(e|y,Mk) (see (4)) by combining the information in the data
with the prior information. Unfortunately, neither of these posteriors
exist in closed-form, and we, therefore, have to content ourselves
with either analytical or stochastic approximations. For our infer-
ence problem, the variational Bayesian (BS) framework [23,24] pro-
duces a simple analytical approximation if we assume that the full
joint posterior factorises as

p(e, σ2
s,k, σ

2
e,k|y,Mk)p(Mk|y) ≈
q(e|y,Mk)q(σ

2
s,k, σ

2
e,k|y,Mk)q(Mk|y) . (13)

Unfortunately, the derivation of the three factors in the approxima-
tion is lengthy so we only state the results here and refer the in-
terested reader to a supplementary document for a detailed deriva-
tion (available at http://tinyurl.com/jknvbn). From the
derivation, we obtain that the posterior factor q(e|y,Mk) is given
by

q(e|y,Mk) = N (êk, Σ̂k) (14)

where

Σ̂k =

[
as,k

bs,k
R−1

s (ak) +
ae,k

be,k
R−1

e (bk)

]−1

(15)

êk =
as,k

bs,k
Σ̂kR

−1
s (ak)y . (16)

The scalars as,k, bs,k, ae,k, and be,k are obtained from the factor
q(σ2

s,k, σ
2
e,k|y,Mk) which is given by

q(σ2
s,k, σ

2
e,k|y,Mk) = Inv-G(as,k, bs,k)Inv-G(ae,k, be,k) (17)

where

as,k = αs,k +N/2 (18)

bs,k = βs,k +
[
ŝT
k R
−1
s (ak)ŝk + tr

(
R−1

s (ak)Σ̂k

)]
/2 (19)

ae,k = αe,k +N/2 (20)

be,k = βe,k +
[
êT
k R
−1
e (bk)êk + tr

(
R−1

e (bk)Σ̂k

)]
/2 (21)

ŝk = y − êk . (22)
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Fig. 1. Estimates of the noise variance for modulated white Gaussian
noise. The displayed results are averaged over frequency.

The above solution is not a closed-form solution for the parame-
ters of the posterior factors. Instead, these are computed iteratively,
and the VB framework guarantees that the algorithm converges to
a mode. Since the normalised covariance matrices are diagonalised
with the DFT matrix, we can easily evaluate the matrix inverses and
the traces above. An interesting observation is that the VB algo-
rithm essentially performs Wiener filtering in (16). Convergence of
the VB algorithm can be monitored via the variational lower bound
Lk which is related to the posterior model factor as

q(Mk|y) ∝ exp(Lk)p(Mk) . (23)

Unfortunately, the variational lower bound consists of many terms
so we refer the interested reader to the supplementary document for
the full expression.

Since the posterior factor q(e|y,Mk) is a normal distribution,
its second moment is

E[eeT |y,Mk] = êkê
T
k + Σ̂k . (24)

Inserting this and the posterior model factor in (4) and (2) gives

φe(ω) ≈
1

N

K∑
k=1

q(Mk|y)
[
|fH(ω)êk|2 + fH(ω)Σ̂kf(ω)

]
where we have ignored the limit operator. This PSD estimator is es-
sentially a model-averaged version of the MMSE estimators in [10,
11]. However, the proposed estimator does not depend on thresh-
old parameters to avoid stagnation, on bias compensation, or on un-
known parameters which have to be estimated by computing speech
presence probabilities. Moreover, the proposed estimator has a con-
sistent way of including prior spectral information in the form of
codebooks, and it works for a single data frame, even for uninfor-
mative prior distributions on all the excitation noise variances.

4. EVALUTATION

This paper has focused on motivating and deriving the proposed
noise PSD estimator. Therefore, there is only a limited space left
to provide evidence for that the fundamental principle works, but
we have a more thorough evaluation in [25]. Here, we consider
two different experiments. First, we demonstrate that the proposed
noise PSD estimator works with zero tracking delay. Second, we
apply the proposed noise PSD estimator to the difficult problem of
estimating the PSD of babble noise from a noisy mixture. In both
experiments, the speech codebook consisted of 64 AR vectors of
order 14. It was trained using a variation of the LBG-algorithm

http://tinyurl.com/jknvbn
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Fig. 2. The spectrogram of the babble noise PSD (top) compared
to the noise PSD estimates of the proposed (middle) and MMSE
methods (bottom).

method [26] on both male and female speech from the EUROM En-
glish database [27]. A noise codebook consisting of 12 AR vector of
order 14 was trained on different noise types from the NOIZEUS
database [28]. These noise types included restaurant, exhibition,
street, and station noise. Thus, we did not train the codebook on
babble noise which we are using for testing in the second exper-
iment. As alluded to in Sec. 2.1, we used non-informative priors
corresponding to no smoothing between frames. The codebooks as
well as the MATLAB code for generating the presented results are
available at http://tinyurl.com/jknvbn.

4.1. Tracking speed

The first experiment assessed the tracking speed of the estimator and
is very similar to the first experiment in [10]. Thus, we estimated the
noise power of modulated white Gaussian noise where the noise vari-
ance was time-varying with a frequency of 2 Hz. We compared the
proposed method for three different noise codebooks to the MMSE
method [10] and the MS method [3]. For the proposed method, the
three different noise codebooks were a) a codebook consisting of
only one entry modelling a flat spectrum; b) the noise codebook de-
scribed above; and c) a combination of a) and b). Fig. 1 shows the
results for the various noise PSD estimates averaged over frequency.
As in [10], it is observed that MS tracked the noise variance poorly
and that the MMSE method tracked much better, but with a delay
of a few hundred milliseconds. On the other hand, the proposed
method with noise codebook a) and c) had no tracking delay and
produced visually identical results. The latter observation suggests
that the algorithm assigned all weight to the true model and used
that for estimating the noise PSD. Finally, the proposed method with
noise codebook b) underestimated the noise variance and had a much
larger variance. This illustrates that we get a degraded performance
if we use incorrect prior information in the codebook.
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Fig. 3. The IS distance and LSD between the babble noise spectro-
gram and estimated noise PSDs for various methods.

4.2. Babble noise PSD estimation

In the second experiment, we estimated the babble noise PSD from
a mixture of speech and babble noise at different SNRs in steps of
2 dB from -10 dB to 10 dB. The babble noise was taken from the
NOIZEUS database [28] and the speech signal was taken from the
CHiME database [29]. Thus, neither of these signals were used for
training the codebooks. For every SNR, we measured the average
Itakura-Saito (IS) distance and the average log-spectral distortion
(LSD) between the babble noise spectrogram and the estimated noise
PSD for four different methods using the default MMSE method
settings of 32 ms windows with a 50 % overlap. Aside from the
proposed, the MMSE, and the MS methods, we also used the spec-
trogram of the observed mixture as a reference method. The results
are shown in Fig. 2 and Fig. 3. In Fig. 2, we have plotted the bab-
ble noise spectrogram (top), the proposed noise PSD estimate (mid-
dle), and the MMSE PSD estimate (bottom) for an SNR of 0 dB.
Clearly, the proposed PSD estimate contains many more details than
the MMSE PSD estimate. For example, there is a short burst in the
babble noise at around 2.3 s which was captured by the proposed
method, but smoothed out by the MMSE method. In Fig. 3, the per-
formance of the different estimators are quantified in terms of the IS
distance and the LSD. The proposed method outperformed the other
methods, except for the IS distance for an SNR above 3 dB where the
proposed method and the MMSE method have similar performance.

5. CONCLUSION

In this paper, we have developed a framework for doing noise PSD
estimation using parametric models. These models offer a way of
including prior information into the estimator to obtain a better es-
timation accuracy. More concretely, we proposed a class of models
based on pre-training codebooks. These codebooks contained typi-
cal spectra for the speech and the noise, but could in principle also
include the PSD estimates from other estimators. The developed
framework also contained model comparison to ensure that models
which explain the data well have a larger weight in the model aver-
aged noise PSD estimate. Via two experiments, we demonstrated the
potential applicability and improvements in the tracking speed and
estimation accuracy over two state-of-the-art methods.

http://tinyurl.com/jknvbn
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