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Using Session Types for Reasoning About Boundedness in the

π-Calculus

Hans Hüttel∗

Department of Computer Science, Aalborg University, Denmark

The classes of depth-bounded and name-bounded processes are fragments of the π-calculus for which

some of the decision problems that are undecidable for the full calculus become decidable. P is

depth-bounded at level k if every reduction sequence for P contains successor processes with at most

k active nested restrictions. P is name-bounded at level k if every reduction sequence for P contains

successor processes with at most k active bound names. Membership of these classes of processes is

undecidable. In this paper we use binary session types to decise two type systems that give a sound

characterization of the properties: If a process is well-typed in our first system, it is depth-bounded.

If a process is well-typed in our second, more restrictive type system, it will also be name-bounded.

1 Introduction

In the π-calculus, the notion of name restriction is particularly important. The study of properties of name

binding is a testbed for studying properties of bindable entities and notions of scoping in programming

languages. In a restriction process (νx)P the name x has P as its scope and it is customary to think of x

as a new name, known only to P. It is the interplay between restriction and replication (or recursion) that

leads to the π-calculus being Turing-powerful. Without either of these two constructs, this is no longer

the case [9].

With full Turing power comes undecidability of commonly encountered decision problems such as

the termination problem “Given process P, will P terminate?” and the coverability problem “Given

process P and process Q, is there a computation of P that will eventually reach a process that has Q as

a subprocess?”. Several classes of processes have been identified for which (some of) these problems

remain decidable. Examples are the finitary processes without replication or recursion, the finite-control

processes [3] in which every process has a uniform bound on the number of parallel components in

any computation, the bounded processes [2] for which there are only finitely many successors of any

reduction up to a special notion of structural congruence with permutation over a finite set of names, and

processes with unique receiver and bounded input [1].

More recently, there has been work in this area that studies limitations on the use of restriction that

will ensure decidability. The notion of depth-bounded processes was introduced by Meyer in [11]. A

process P is depth-bounded at level k if there is an upper bound k, such that any reduction sequence for P

will only lead to successor processes that have at most k active nested restrictions – that is, restrictions not

occurring underneath some prefix. Termination and coverability are both decidable for depth-bounded

processes. The class of depth-bounded processes is expressive and contains a variety of other decidable

subsets of the π-calculus. Moreover, for any fixed k it is decidable if a process P is depth-bounded at

level k; however, it is undecidable if there exists a k for which P is depth-bounded [11].

∗E-mail: hans@cs.aau.dk

http://dx.doi.org/10.4204/EPTCS.255.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


68 Using Session Types for Reasoning About Boundedness in the π-Calculus

In a more recent paper [4], D’Osualdo and Ong have introduced a type system that gives a sound

characterization of depth-boundedness: If P is well-typed, then P is depth-bounded. The underlying idea

of this type system is to analyze properties of the hierarchy of restrictions within a process.

Another class of π-calculus processes is that of name-bounded processes, introduced by Hüchting

et al. [8]. A process P is name-bounded at level k if any reduction sequence for P will only lead to

successor processes with at most k active bound names.

The goal of this paper is to use binary session types [7] to give sound characterizations of depth-

boundedness, respectively name-boundedness in the π-calculus: If a process is well-typed, we know

that it is depth-bounded, respectively name-bounded. The advantages of this approach are the following:

Firstly, unlike the type system proposed by D’Osualdo and Ong [4] we can directly keep track of how

names are used and where they appear in a process, since this is central to session type disciplines.

The linear nature of session names ensures that every name of this kind will always, when used, occur in

precisely two parallel components. Secondly, the session type disciplines are resource-conscious; we can

therefore ensure that new bound names are only introduced whenever existing bound names can no longer

be used. Both type systems use finite session types to achieve this for recursive processes. Informally, a

new recursive call can only occur once all sessions involving the bound names of the current recursive

call have been used up. In the proof of the soundness of the system for characterizing name-boundedness

system, we make use of the fact that it is a more restrictive version of that for depth-boundedness.

The rest of our paper is organized as follows. Section 2 describes the π-calculus that we will consider;

section 3 introduces the notions of boundedness. Section 4 presents a type system for depth-bounded

processes, which is analyzed in sections 5 and 6. Section 7 presents a type system for name-bounded

processes. Section 8 discusses the relationship with other classes of processes.

2 A typed π-calculus with recursion

We follow Meyer [11] and use a π-calculus with recursion instead of replication. The reason behind this

choice of syntax is that we would like infinite behaviours to make use of bound names in a non-trivial

manner that guarantees boundedness properties. In general, the combination of restriction and replication

in !(νx)P will result in a process that fails to be name-bounded.

2.1 Syntax

We assume the existence of a countably infinite set of names, N , and let a,b, . . . and x,y, . . . range over

N . Moreover, we assume a countably infinite set of recursion variables, R, and let X ,Y, . . . range over

R.

2.1.1 Processes

Following [5] we will use a version of the π-calculus with polarized names in order to ensure that the

endpoints of a channel will not end up in the same parallel component. We assume polarities ranged

over by p,q . . .. The polarities + and − are dual; we define + =− and − = +. The empty polarity ε is

self-dual and used for names used as channels that are not session channels and to tag name occurrences

in the binding constructs of input and restriction. We call the set of polarized names Npol.
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The formation rules of processes are given by

P ::= xp(y).P1 | xp〈yq〉.P1 | P1 | P2 | (νx : T )P1 | µ X .P1 | X | 0

p ::= + | − | ε

As usual, xp(y).P1 denotes a process that inputs a name on channel x and continues as P1; the unpolarized

name y is bound in P1. xp〈yq〉.P1 is a process that outputs the polarized name yq on channel x and

continues as P1. P1 | P2 is the parallel execution of P1 and P2. µX .P1 is a recursive process with body P1.

We assume that every such recursive process is guarded; every occurrence of a recursion variable must

be found underneath an input or an output prefix. In µX .P1 the µX is called a binding occurrence of X .

A process P is recursion-closed if every recursion variable X in P has a binding occurrence for some

subprocess µX .P1 and if all recursion variables are distinct. We employ a notion of typed restriction,

which we will now explain.

2.1.2 Typed restrictions

In the restriction (νx : T )P1 the unpolarized name x is bound in P1 and annotated with type T . Our set

of types T is a non-recursive version of the binary session types introduced by Gay and Hole [5] and

defined by the formation rules

T ::= S | Ch(T )

S ::= (S1,S2) |!T.S |?T.S | end

A type T can be a linear endpoint type S or pair of endpoints (S1,S2), or an unlimited channel type

Ch(T ). An endpoint type S of the form !T.S denotes that a channel of this type can output a name of type

T ; afterwards, the channel will have type S. An endpoint type of the form ?T.S denotes that a channel

of this type can input a name of type T ; afterwards, the channel will have type S. The special endpoint

type end is the type of an endpoint that allows no further communication. If T = (!T1.S2,?T ′
1 .S

′
2) we let

T ↓= (S2,S
′
2); this denotes the successor of a pair of endpoint types. If T = Ch(T1), then T ↓= T .

We use the type annotation of restrictions to keep track of the subject name that led to a reduction

and of how the types of bound names evolve.

The sets of free and bound names of a process, fn(P) and bn(P), are defined as usual. To simplify the

presentation, we assume all free and bound names distinct. We let P{y/x} denote the capture-avoiding

substitution that replaces all free occurrences of x in P by y. A name n ∈ bn(P) is active if it does not

appear underneath a prefix.

2.1.3 Structural congruence

Structural congruence is the least congruence relation for the process constructs that is closed under the

axioms in Table 1.

Following Meyer [11], we sometimes consider processes in restricted form. A process is in inner

normal form, if every restriction (νx : T ) only encloses parallel components that contain x. A process is

in outer normal form if every restriction not underneath a prefix appears at the outermost level.

Definition 1 (Normal forms). Let P be a process.

• P is in inner normal form if for every subprocess (νx : T )(P1 | · · · | Pk) where none of the Pi are

parallel compositions of processes, we have x ∈ fn(Pi) for all 1 ≤ i ≤ k.
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(NEW-1) (νx : T )(νy : T ′)P ≡ (νy : T ′)(νx : T )P (NIL-1) P | 0 ≡ P

(NEW-2) (νx : T )P | Q ≡ (νx : T )(P | Q) if x /∈ fn(Q) (NIL-2) (νx : T )0 ≡ 0

(PAR-1) P | Q ≡ Q | P

(PAR-2) (P | Q) | R ≡ P | (Q | R)

Table 1: Structural congruence: Axioms and rules

(COM-ANNOT) ap(x).P1 | ap〈yq〉.P2
{a}
−−→ P1{

yq

/x} | P2

(PAR-ANNOT)
P

α
−→ P′

P | Q
α
−→ P′ | Q

(NEW-ANNOT)
P

α
−→ P′

(νx : T )P
α
−→ (νx : T ′)P′

where
T = T ′ if x /∈ α

T ′ = T ↓ if x ∈ α

(UNFOLD-ANNOT)
P > Q Q

α
−→ P′

P
{rec}∪α
−−−−−→ P′

(STRUCT-ANNOT)
P ≡ Q Q

α
−→ Q′ Q′ ≡ P′

P
α
−→ P′

Table 2: Annotated reduction rules

• P is in outer normal form if P = (νx1) . . . (νxk)P1 such that xi ∈ fn(P1) for all 1 ≤ i ≤ k and such

that all restrictions in P1 appear underneath prefixes.

Proposition 1. For every process P we can construct a process P1 ≡ P in inner normal form and a

process P2 ≡ P in outer normal form.

2.2 An annotated reduction semantics

We define the behaviour of processes by an annotated reduction semantics that keeps track of when

recursive unfoldings are necessary. Reductions are of the form P
α
−→ P′ where either α = {a},a ∈ N or

α = {rec,a} for a ∈ N . The latter annotation indicates that recursive unfolding was necessary to obtain

the reduction. We define n({a}) = a and n({rec,a}) = a. The reduction rules are found in Table 2. Note

that in the rule (NEW-ANNOT) the type associated with the bound name x evolves, if x if x is responsible

for the communication and T is a session type.

If P reduces to P′ in zero or more reduction steps, we write P →∗ P′.

Recursion is described by an unfolding relation which we define in Table 3. In the definition, we use

the notion of unfolding contexts. An unfolding context C[ ] is an incomplete process terms whose hole

indicates where a prefix that participates in a reduction step appears as the direct result of unfolding a
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recursive process.

Definition 2 (Unfolding contexts). The set of unfolding contexts is given by the formation rules

C ::= [ ] |P | (νx : T )C

(UNFOLD) µX .P > P[µX .P/X ] (CONTEXT)
P > P′

C[P]>C[P′]

Table 3: The rules for unfolding

Example 1. We can write the process

P
def
= (νc : T )µX .a(x).x〈x〉.X | µY.(νb : U)a〈b〉.x(y).Y

as

C1[µX .a(x).x〈x〉.X ] where C1 = [(νc : T )[] | µY.(νb : U)a〈b〉.x(y).Y ]

or

C2[µY.(νb : U)a〈b〉.x(y).Y ] where C2 = (νc : T )µX .a(x).x〈b〉.X | [].

3 Notions of boundedness

Meyer introduces three notions of boundedness [11] for the π-calculus, and we now introduce them.

Depth-bounded processes A process P is depth-bounded if every configuration reachable from it can

be rewritten so as to have no more than k nested restrictions. To define this, we first introduce a function

nest(P) that counts the maximal number of active nested restrictions. A restriction is active if it does not

occur underneath a prefix – this is similar to [4].

Definition 3. The nest function is defined by the clauses

nest(0) = 0 nest(X) = 0

nest((νx : T )P) = 1+nest(P) nest(P1 | P2) = max(nest(P1),nest(P2))

nest(µX .P1) = nest(P1) nest(xp(y).P1) = nest(xp〈yq〉.P1) = 0

The restriction depth of a process is then the minimal nesting depth up to structural congruence.

Definition 4. The depth of a process P is given by

depth(P) = min{nest(Q) | Q ≡ P}.

We define a normalization ordering ≻ on processes that removes bound names not found in a process.

It is generated by the axiom

(νx)P ≻ P if x 6∈ fn(P)

and closed under structural congruence. A process P is normalized if it has no superfluous bound names,

that is, if P 6≻; we write P Q if P ≻∗ Q and Q is normalized. 1

Definition 5 (Depth-bounded process). A process P is depth-bounded if there is a k ∈ N such that for

every P′ where P →∗ P′ we have that for some P′′ with P′′ ≡ P′ we have depth(P′)≤ k.

1Note that (νx : T )P ≡ P if x 6∈ fn(P) is a derived identity if we include the axiom (νx)0 ≡ 0.
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Name-boundedness A process P is name-bounded if there exists a constant k ∈N such that whenever

P →∗ P′ and P′
 P′′, then P′′ has at most k restrictions. It is obvious that every name-bounded process

is also depth-bounded.

Example 2. The term

P1 = µX .(νr1)(r
+
1 〈a〉.X | r−1 (x).X)

is depth-bounded with depth(P1) = 1. The term

P2 = µX .(νr1)(νr2)(r
+
1 〈r2〉.X | r−1 (x).X | r+2 〈r1〉 | r−2 (x))

is depth-bounded with depth(P2) = 2. Neither P1 nor P2 is name-bounded.

Width-boundedness A third notion of boundedness is that of width-boundedness. A process P is

width-bounded if there exists a constant k ∈ N such that whenever P →∗ P′ we have that every bound

name in P′ occurs in at most k parallel components. This coincides with the notion of fencing recently

used by Lange et al. [10] introduced in their analysis of Go programs.

4 Using session types for depth-boundedness

We now present a session type system that gives a sound characterization of depth-boundedness. Our

account of binary session types similar to that used by Gay and Hole [5].

4.1 Types and type environments

Our type judgements are of the form Γ,∆ ⊢ P, where Γ contains the type bindings of the free polarized

names in P. A type judgment is to be read as stating that P is well-behaved using the type information

found in the type environment Γ and the recursion environment ∆ (explained in Section 4.2).

Definition 6. A type environment Γ is a partial function Γ : Npol ⇀ T with finite support.

• Γ is unlimited if for every x ∈ dom(Γ) we have Γ(x) = Ch(T ) for some T or Γ(x) = end

• Γ is linear if for every x ∈ dom(Γ) we have that Γ(x) 6= Ch(T ) for all T . We let Γlin denote the

largest sub-environment of Γ that is linear.

• If for every x ∈ dom(Γ) we have that Γ(x) = end or Γ(x) = (end,end), we say that Γ is terminal.

We define duality of endpoint types in the usual way (note that duality is not defined for base types).

Definition 7 (Duality of endpoint types). Duality of endpoint types is defined inductively by

!T.S =?T.S ?T.S =!T.S end= end

A type T = (S1,S2) is balanced if S1 = S2. A type environment Γ is balanced if for all x ∈ dom(Γ)
we have that Γ(x) is a balanced type or a base type B.

Definition 8 (Depth of types). The depth of an endpoint type S is denoted d(S) and is defined inductively

by

d(!T.S) = 1+d(S) d(?T.S) = 1+d(S) d(end) = 0

For a type T = (S1,S2) we let d(T ) = max(S1,S2). For all other T , we define d(T ) = 0.

Definition 9 (Addition of type environments). Let Γ1 and Γ2 be type environments such that dom(Γ1)∩
dom(Γ2) = /0. Then Γ1 +Γ2 is the type environment Γ that satisfies

Γ(x) =

{

Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)

Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)
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4.2 Recursion and recursion environments

In our type system, recursion variables are typed with type environments. A recursion environment ∆ is a

function that to each recursion variable X assigns a type environment Γ. The idea is that Γ will represent

the names and associated types needed to type a process µX .P.

Definition 10. A recursion environment ∆ is a partial function ∆ : R ⇀ (Npol ⇀ T ) with finite support.

We let ∆ /0 denote the empty recursion environment.

Definition 11. Let ∆1 and ∆2 be recursion environments where for all X ∈ dom(∆1)∩dom(∆2) we have

∆1(X) = ∆2(X). ∆1 +∆2 is the recursion environment ∆ satisfying

∆(X) =











∆1(X) if X ∈ dom(∆1)\dom(∆2)

∆2(X) if X ∈ dom(∆2)\dom(∆1)

∆1(X) otherwise

4.3 Type rules

The set of valid type judgments is defined by the rules in Table 4. The type rules differ from the rules

from standard session type systems in their treatment of recursion in two ways.

The rule (VAR) ensures that a recursion variable X can only be well-typed for Γ and ∆ if the type

environment Γ1 associated with X mentions all the names in Γ. Moreover, the rule requires that the linear

part of the type environment must be terminal and that the linear names present when a recursion variable

X is reached include the ones found in the type environment used to type the process µX .P. Therefore,

when a recursion variable is reached and a recursive call is made, the restricted names in the unfolding

will be new: the existing sessions have been “used up”.

The rule (CHAN) ensures that channels that are not session channels can only be bound within a

non-recursive process, as the recursion environment present must be ∆ /0. Therefore, names that are not

session names cannot accumulate because of recursive calls and lead to an unbounded restriction depth.

The need for private names to be linear inside a recursive process arises because an unlimited channel

can be exploited by a recursive process to introduce unbounded nesting, as the following example from

[4] illustrates.

Example 3. Consider the following process that cannot be typed; we therefore leave out type annotations

and polarities in its description. Let

P = (νs)(νn)(νv)(νa)(s〈a〉 | µS.(s(x).(νb)((v〈b〉.n〈x〉 | s〈b〉) | S)))

The process can evolve as follows.

P →∗ (νs)(νn)(νv)(νa)(P1 | (νb)(νb′)((v〈b〉.n〈a〉 | v〈b′〉.n〈b〉 | s〈b′〉))

where P1 = µS.(s(x).(νb)((v〈b〉.n〈x〉 | s〈b〉) | S)) can introduce further nesting since the channel s will,

when used together with recursion, be used with an arbitrary number of new names that cannot be

eliminated.

Note that the (PAR) rule implies that a process P that can be typed in a linear environment must be

width-bounded with bound 2, since every name can then occur in either precisely one or precisely two

parallel components.

Delegation of session names is handled by (OUT-1); session channels are linear, so the name yp

cannot appear in the continuation P. A special feature of our type system is that endpoint channels that

are no longer usable cannot be delegated. Thus, in the rules (IN-1), (IN-2), and (OUT-1), the object type

T1 must be different from end.
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(IN-1)
Γ,xp : T2,y : T1,∆ ⊢ P

Γ,xp :?T1.T2,∆ ⊢ xp(y).P
(IN-2)

Γ,xp : Ch(T1),y : T1,∆ ⊢ P

Γ,xp : Ch(T1),∆ ⊢ x(y).P

where T1 6= end where T1 6= end

(OUT-1)
Γ,xp : T2,∆ ⊢ P

Γ,xp :!T1.T2,yq : T1,∆ ⊢ xp〈yq〉.P
(PAR)

Γ1,∆1 ⊢ P1 Γ2,∆2 ⊢ P2

Γ1 +Γ2,∆1 +∆2 ⊢ P1 | P2

T1 6= end

(OUT-2)
Γ,x : Ch(T2),y

q : T2,∆ ⊢ P

Γ,x : Ch(T2),yq : T2,∆ ⊢ x〈yq〉.P
(SESSION)

Γ,x+ : S,x− : S,∆ ⊢ P

Γ,∆ ⊢ (νx : (S,S))P

where T2 unlimited

(NIL) Γ,∆ ⊢ 0 Γ unlimited (VAR) Γ,∆ ⊢ X

∆(X) = Γ1

dom(Γ)⊆ dom(Γ1)
Γlin is terminal

(REC)
Γ,∆,X : Γ ⊢ P

Γ,∆ ⊢ µX .P (CHAN)
Γ,x : Ch(T ),∆ /0 ⊢ P

Γ,∆ /0 ⊢ (νx : Ch(T ))P

Table 4: Type rules for depth-boundedness

5 A subject reduction property

To show our characterization of depth-boundedness, we state a type preservation property: For any well-

typed process P, the type of the channel that gives rise to a reduction of P will evolve according to its

session type.

Since this channel may be a restricted channel, we must also describe how the session types of

restricted channels evolve. Every process in which all bound names are pairwise distinct gives rise

to an internal type environment (Definition 12) that collects the types of the bound names; this is an

overapproximation of the types of the active names in the process. This environment is defined as follows.

Definition 12. Let P be a process whose bound names are pairwise distinct. ΓP denotes the internal type

environment of P; it is defined by the following clauses (where π denotes a prefix).

ΓP1|P2
= ΓP1

,ΓP2
Γ(νx:T )P = x : T,ΓP

ΓµX .P = ΓP Γπ.P = ΓP

ΓX = /0

The following substitution lemma for variables tells us about the annotated reductions of open pro-

cess terms.

Lemma 1 (Substitution of variables in reductions). If P[µX .P/X ]
{x}
−−→ P′ then P

{x}
−−→ P′′, with P′ =

P′′[µX .P/X ].

Proof. Induction in the structure of P.
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Lemma 2 (Substitution of variables in typings of recursion). Suppose Γ,∆ ⊢ µX .P and Γ,∆ ⊢ Q. Then

Γ,∆ ⊢ Q[µX .P/X ].

Proof. Induction in the structure of Q.

Q = 0: Trivial.

Q = X : Immediate, since Q[µX .P/X ] = µX .P.

Q = Y (with Y 6= X ): Immediate.

Q = Q1 | Q2: We must then have concluded Γ,∆ ⊢ Q using (PAR) with premises Γ1,∆ ⊢ Q1 and Γ2,∆ ⊢
Q2. By induction hypothesis we then have

Γ1,∆ ⊢ Q1[µX .P/X ]

Γ2,∆ ⊢ Q2[µX .P/X ]

We now use the (PAR) rule and get

Γ,∆ ⊢ Q1[µX .P/X ] | Q2[µX .P/X ]

The result now follows by the distributive property of substitution.

Q = (νx : T )P1: We must have conclude Γ,∆ ⊢ Q using (SESSION) with premise Γ,x : S,∆ ⊢ P1. By

induction hypothesis we have that Γ,x : S,∆ ⊢ P1[µX .P/X ]. But then by the (SESSION) rule we

get that Γ,∆ ⊢ (νx : T )P1[µX .P/X ], and we conclude that Γ,∆ ⊢ Q[µX .P/X ].

Q = µY.Q1: We must have concluded Γ,∆ ⊢ Q using (REC) with premise Γ,∆ ⊢ Q1. By induction

hypothesis we have

Γ,∆ ⊢ Q1[µX .P/X ]

We can now apply (REC) to get the desired result.

Q = a(x).Q1: We must have concluded Γ,∆ ⊢ Q using (IN) with premise Γ1,a : T2,x : T1,∆ ⊢ Q1 and

assuming that Γ = Γ1,a :?T1.T2. By applying the induction hypothesis, we get that

Γ1,a : T2,x : T1,∆ ⊢ Q1[µX .P/X ]

An application of (IN) and the properties of substitution now gives us the result.

Q = a〈x〉.Q1: Similar to the previous case.

We also need a substitution lemma for names.

Lemma 3 (Substitution of names). If Γ,x : T,∆ ⊢ P and y /∈ n(P) then Γ,y : T,∆ ⊢ P{y/x}.

Proof. Induction in the type rules.
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5.1 A fidelity theorem

For a binary session type system, subject reduction takes the form of fidelity: the communications in a

well-typed process proceed according to the protocol specified by the channels involved.

Lemma 4 (Subject congruence and normalization). Suppose Γ,∆ ⊢ P. Then

• If P ≡ Q, then also Γ,∆ ⊢ Q

• If P ≻ Q, then also Γ,∆ ⊢ Q

Proof. Induction in the rules defining ≡ and ≻.

The fidelity theorem is a type preservation result: It states that the endpoint types evolve according

to the reduction performed. If the name x giving rise to the reduction is free, the annotation of x in the

type environment changes. If x is bound, its annotation in the restriction (νx : T ) changes to (νx : T ′),
where T ′ = T ↓.

Theorem 5 (Fidelity). Let Γ be a balanced type environment and let P be recursion-closed. If Γ,∆ /0 ⊢ P

and P
α
−→ P′ where x = n(α) then

• if x ∈ fn(P) and Γ = Γ′′,x : T , then Γ′,∆ /0 ⊢ P′ where Γ′ is balanced and Γ′ = Γ′′,x : T ↓

• if x /∈ fn(P), then Γ,∆ /0 ⊢ P′ and if ΓP = Γ′′,x : T then ΓP′ = Γ′′,x : T ↓ and ΓP′ is balanced.

Proof. Induction in the reduction rules.

Com-Annot Here, only the first case is relevant. We know that P= ap(x).P1 | ap〈yq〉.P2. Since Γ,∆ /0 ⊢P,

we must have that Γ = Γ1 +Γ2 where

Γ1,∆ /0 ⊢ ap(x).P1 (1)

and

Γ2,∆ /0 ⊢ ap〈yq〉.P2. (2)

We must have used (IN) to conclude (1), so we have Γ1(a
p)=?T1.S and, letting Γ1 =Γ′

1+ap :?T1.S,

we have

Γ′
1,a

p : S,x : T1,∆ /0 ⊢ P1. (3)

Similarly, we must have used (OUT) to conclude (2). Since Γ is balanced, we have Γ2(a
p) =!T1.S.

By the substitution lemma Lemma 3 and (3), we have Γ′
1,a

p : S,yq : T1,∆ /0 ⊢ P1{
y/x}. Similarly,

letting Γ2 = Γ′
2,a

p :!T1.S,y
q : T1, we get Γ′

2,a
p : S,∆ /0 ⊢ P2. An application of (PAR) now gives us

that

Γ′
1 +Γ′

2 +ap : S,ap : S,y : T1,∆ /0 ⊢ P1{
y/x} | P2

The type environment Γ′
1 +Γ′

2 +ap : S,ap : S,y : T1 is balanced, since Γ′
1 and Γ′

2 are balanced and

since y must appear with polarity q in one of these (because Γ is balanced).

Par-Annot Since Γ,∆ /0 ⊢ P | Q, we have that Γ1,∆ /0 ⊢ P where Γ = Γ1 +Γ2. The result now follows

easily by an application of the induction hypothesis to the reduction P
a
−→ P′ and subsequent use of

the (PAR) rule.

New-Annot There are two cases here: whether x = a or x 6= a. In both cases, the result follows imme-

diately by the induction hypothesis and use of the (SESSION) rule.

Unfold-Annot Follows from Lemma 4 and a direct application of the induction hypothesis.

Struct-Annot Follows from Lemma 4 and a direct application of the induction hypothesis.
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6 Soundness of the type system for depth-boundedness

In the following we will consider the correctness properties of the type system for depth boundedness.

6.1 Properties of unfolding and nesting

We first establish a collection of properties that hold for arbitrary processes. Next we show that there are

further properties guaranteed by well-typed processes.

The following lemma describes how reductions occur. Reductions can happen directly or may need

unfoldings.

Lemma 6. Let P be an arbitrary recursion-closed process.

1. If P
{x}
−−→ P′, then there exists an unfolding context C and a process Q such that P ≡ C[Q] and

P′ ≡C[Q′], and Q
{x}
−−→ Q′ is an instance of (COM-ANNOT).

2. If P
{rec,x}
−−−−→ P′ then there exists an unfolding context C and either P ≡C[µX .Q1] for some Q1 where

Q1[µX .Q1/X ]
{x}
−−→ Q′

1 and P′ ≡ C[Q′
1] or P ≡ C[(µX .Q1) | Q2] where Q1[µX .Q1/X ] | Q2

{rec,x}
−−−−→

Q′
1 | Q′

2 is an instance of (COM-ANNOT) and P′ ≡C[Q′
1 | Q′

2].

Proof. By induction in the annotated reduction rules. The proof of Case 2 uses Case 1.

6.2 Nesting properties of well-typed processes

We now restrict our attention to well-typed processes. The only potential source of unbounded restriction

depth is the presence of recursion, and we now show how our type system controls the introduction of

new bound names in the presence of recursion.

The first lemma tells us that bound names introduced by an unfolding do not interfere with names in

its surrounding process that represent terminated channels.

Lemma 7. If Γ,∆ ⊢ (νc : (end,end))P then c 6∈ fn(P).

The following lemma tells us that names that appear in an unfolding context will not reappear free in

the result of unfolding a recursive process.

Definition 13 (Known bound names). The set of known bound names in an unfolding context is defined

by

kn([] | P) = /0 kn((νx : T )C) = {x}∪kn(C)

Lemma 8. Suppose we have Γ,∆ ⊢ C[X ] where C[X ] is recursion-closed and X occurs in µX .P. Then

we also have Γ,∆ ⊢C[µX .P] and kn(C)∩ fn(µX .P) = /0.

Theorem 9. Let P be recursion-closed. Suppose Γ,∆ /0 ⊢ P. Then P is depth-bounded.

Outline. The session types provide a bound on the nesting depth of a well-typed process. Suppose

Γ,∆ /0 ⊢ P. Let d(Γ,P) denote the sum of the depths of the session types in Γ and in ΓP, i.e.

d(Γ,P) = ∑
x:T∈Γ or x:T∈ΓP

d(T )

In a process P with k bound names, we know from Theorem 5 that there can be at most (d(Γ+ΓP)/2)−k

reduction steps before an unfolding has to take place, since every reduction step will decrease the depth
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of one of the session types in ran(Γ)∪ ran(ΓP). Whenever unfoldings occur, the bound names in the

unfolding are distinct from those already known and will all be names of session channels. Moreover,

when the unfolding is reached, the channel used in the reduction will no longer be available. As a

consequence we see that the nesting depth will therefore not increase.

7 A type system for name-boundedness

We now show to modify our previous type system such that every well-typed process will be name-

bounded. The challenge is again one of controlling recursion. As before, the crucial observation is that

if private channels are linear, then all the channels that have been used when a recursion unfolding takes

place, can then be discarded.

In the case of name-boundedness, extra care must be taken, since recursion may now accumulate an

unbounded number of finite components that each contain pairwise distinct bound names.

Example 4. The untyped process

P2 = µX .(νr1)(νr2)(r1〈a〉.X | r1(x).X | r2〈a〉 | r2(x))

shows two problems that must be dealt with. Firstly, unfolding a recursion may introduce more parallel

recursive components that each have their own bound names. In this case, every communication on r1

will introduce two new parallel copies of the recursive process. Secondly, unfolding may introduce finite

(non-recursive) components which contain bound names that persist – in this case, we get new copies of

(νr2)(r2〈a〉 | r2(x)) for every unfolding.

The type language is

Slin ::=?Tlin .Slin |!Tlin .Slin | end Sun ::= Ch(Sun )

Tlin ::= (Slin ,Sun ) | (Slin ,Slin ) T ::= Tlin | Sun

Note that names of unlimited type Sun can only be used to delegate channels of unlimited type.

The type rules are as in the original type system, but we now modify the notions of addition for type

environments and for recursion environments. We add pairs (Γ1,∆1) and (Γ2,∆2) as follows.

Definition 14. Let Γ1,Γ2 be type environments and let ∆1,∆2 be recursion environments where at least

one of ∆1,∆2 is ∆ /0. We define (Γ1,∆1)+ (Γ2,∆2) = (Γ1 +Γ2,∆1 +∆2) where Γ1 is unlimited if ∆1 = ∆ /0

and Γ2 is linear if ∆2 6= ∆ /0.

The intention is that an empty recursion environment must now go together with an unlimited type

environment. In other words: Non-recursive subprocesses can only contain unlimited names.

We say that a type environment Γ is limited if for every x ∈ dom(Γ) we have that Γ(x) = (Tlin ,Tlin )
for some Tlin . That is, the environment is balanced, and no name has an unlimited type.

A type environment Γ is skew if Γ = Γ1 +Γ2 with dom(Γ1)∩ dom(Γ2) = /0, Γ1 is linear and for all

x ∈ dom(Γ2) we have that Γ(x) = (Tlin ,Tun ) for some Tlin ,Tun .

7.1 Fidelity

As in the case of the previous type system, we need a fidelity result.

Theorem 10 (Fidelity). Let Γ be a type environment. If Γ,∆ /0 ⊢ P and P
x
−→ P′ then

• if x ∈ fn(P) and Γ = Γ′′,x : T , then Γ′,∆ /0 ⊢ P′ where Γ′ is balanced and Γ′ = Γ′′,x : T ↓

• if x /∈ fn(P), then Γ,∆ /0 ⊢ P′ and if ΓP = Γ′′,x : T then ΓP′ = Γ′′,x : T ↓ and ΓP′ is balanced.

Since the new type system specialized the previous one, this result is easily established.
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7.2 Soundness for name-boundedness

We will show that if a process is well-typed in a limited environment, then it is name-bounded.

To show that a well-typed process P is name-bounded, we will show that

• For some k, whenever P →∗ P′, then P′ has at most k recursion instances in P′

• For some m, whenever P→∗ P′, every recursive subprocess of P′ contains at most m distinct bound

names

• There are only free names in the non-recursive part of P

Since every well-typed process is known to be depth-bounded, the result will then follow.

Our first lemma gives a characterization of well-typed recursive processes: They can contain at most

one instance of each recursion variable.

Lemma 11. Let µX .P be a process for which all binding occurrences of recursion variables are distinct.

If Γ,∆ ⊢ µX .P, there is at most one occurrence of X in P.

Proof. Suppose to the contrary that there is more than one occurrence of X in P. We then have that

µX .P = µX .(ν~n)(C1[X ] | C2[X ] | P′) where n is a set of names (possibly empty), and C1 and C2 are

process contexts.

The derivation of the type judgement Γ,∆ ⊢ µX .(ν~n)(C1[X ] |C2[X ] | P′) must have used the (REC)

type rule in its final step, having premise Γ,∆,X : Γ ⊢ (ν~n)(C1[X ] |C2[X ] | P′. But the derivation of this

judgement must have used the (SESSION) rule a number of times, preceded by an application of (PAR)

with premises Γ1,∆,X : Γ ⊢ C1[X ] and Γ2,∆ /0 ⊢ C2[X ] where Γ2 is unlimited. However, there can be

no derivation of the latter, since this would require the rule (VAR) in which it is assumed that the type

environment is linear.

We therefore conclude that our initial assumption was wrong; there can be at most one occurrence of

X in P.

This lemma tells us that there can be no finite, non-recursive subprocesses of a recursive process

with their own bound names; any bound name found in a non-recursive subprocess will also appear in

the recursive part of the process.

Lemma 12. If Γ,∆ ⊢ µX .(C[X ] | P) where µX .(C[X ] | P) is in inner normal form and C[X ] is a process

context, then for every n ∈ bn(P) we have that n ∈ bn(C[X ]).

Proof. Consider a name n ∈ bn(P). Suppose n /∈ bn(C[X ]). Since µX .(C[X ] | P) is in inner normal form,

we would then have a subprocess (νn : T )P′ of P that would be typed using the (SESSION) rule. But for

this rule to be applicable, a recursion variable must be present in the type environment. This cannot be

the case, as P is non-recursive.

We now show that the number of recursive subprocesses that will appear in any reduction sequence

for a well-typed process is bounded. Let recs(P) denote the number of simultaneous recursion instances

in P and let recv(P) denote the multiset of recursion variable occurrences in P.

Together, the following two lemmas give an upper bound on the number of recursion instances in

any reduction sequence of a well-typed process.

Lemma 13. Suppose Γ,∆ ⊢ P and P
α
−→ P′ was proved without using instances of (UNFOLD-ANNOT) .

Then recs(P)≥ recs(P′).
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Lemma 14. Suppose Γ,∆ ⊢ P where dom(∆)∩ recv(P) = /0 and P > P1. Then recs(P)≥ recs(P1).

The following normal form theorem is crucial.

Theorem 15. If Γ,∆ ⊢ P, then there exists a k ≥ 0 such that whenever P →∗ P′, we have P ≡ P1 | P2

where recs(P1)≤ k, recs(P2) = 0 and P2 contains no restrictions.

Proof. We show that for all n ≥ 0, if P →n P′, then we have P ≡ P1 | P2 where recs(P1)≤ k, recs(P2) = 0

and P2 contains no restrictions. The proof of this proceeds by induction in n.

n = 0: Here we let k = recs(P) and proceed by induction in the type derivation of Γ,∆ ⊢ P. We consider

each rule in turn.

(IN-1), (IN-2), (OUT-1) and (OUT-2): None of these rules could have been used, since P would

then have no reductions.

(PAR): Here we can use the commutativity and associativity axioms for structural congruence to

rewrite P in the desired form.

(VAR): Cannot apply, since we assume that Γ,∆ ⊢ P.

(REC), (NIL), (SESSION): These are immediate.

Assume for n, prove for n+1: This is a straightforward induction in the type rules.

Theorem 16. If Γ,∆ ⊢ P, then P is name-bounded.

Proof. There is a k ≥ 0 such that if Γ,∆⊢P, whenever P→∗ P′, there are at most k recursive subprocesses

of P′. Since the new type system is a subsystem of the type system for depth-boundedness, there exists a

d such that the recursion depth of P′ is at most d for any such P′.

Every bound name in a non-recursive subterm of a recursive subprocess occurs in the recursion part

as well. Now consider an outer normal form P′′ of P′. We have P′′ = (νx1) . . . (νxd)P
(3) for some P(3)

that does not contain restrictions at the outermost level. Moreover, for some k′ ≤ k we have P(3) ≡
P
(3)
1 | · · ·P

(3)
k′

| P
(3)
k′+1 where P

(3)
1 , . . . ,P

(3)
k′

contain recursion instances and P
(3)
k′+1 is a process not containing

recursion instances. We know that for some d there are at most d · k bound names in P′.

8 The relation to other classes of processes

Because of the use of binary session types, typable process in our systems will be width-bounded with

name width 2. On the other hand, both type systems allow us to type processes that are not finitary. The

classes of typable processes differ from those already studied. The process P1
def
= (µX .(νa)a(x).X | a〈b〉 |

b〈c〉) is not a finite-control process, since the reduction sequence P →k P1 | b〈c〉 | · · · | b〈b〉 that results

in k−1 parallel components, each being a simple output, shows that the number of parallel components

along a computation can be unbounded for a well-typed process. This means that P1 is neither a finite-

control process [3] nor a bounded process in the sense of [2]. On the other hand, P1 is depth-bounded, and

in fact also width-bounded as every bound name occurs in precisely two parallel components. Moreover,

the typable processes are incomparable with the processes studied in [1] since these do not allow for

delegation of input capabilities.
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9 Conclusions and ideas for further work

In this paper we have presented two session type systems for a π-calculus with recursion. One guarantees

depth-boundedness, and the other system, which is a subsystem of it, guarantees name-boundedness.

Both systems assume that names are always used in finite-length sessions before a recursive call is

initiated.

In the paper by D’Osualdo and Ong [4] a type inference algorithm is proposed that makes it pos-

sible to provide a safe bound on the restriction depth for depth-bounded processes. A further topic of

investigation is to adapt the type inference algorithm proposed in [6] to the setting of the type systems

of the present paper. We conjecture that this is straightforward. The type systems presented in this paper

are simpler than many other session type systems, in that they do not involve recursive types; the sole

difference is that of the presence of recursion instead of replication in the π-calculus.

In both systems, the number of parallel components in a well-typed system can be unbounded, and

well-typed processes need not be finite-control. Conversely, finite-control processes need not be well-

typed in the present systems, since finite-control processes are not necessarily width-bounded with width

2.

Another important question to be answered is that of the exact relationshop between our type system

for depth-boundedness and the type system due to D’Osualdo and Ong [4].
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