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Abstrat. Forming operation are subjet to external disturbanes and hanging operating

onditions e.g. new material bath, inreasing tool temperature due to plasti work, material

properties and lubriation is sensitive to tool temperature. It is generally aepted that forming

operations are not stable over time and it is not unommon to adjust the proess parameters

during the �rst half hour prodution, indiating that proess instability is gradually developing

over time. Thus, in-proess feedbak ontrol sheme might not-be neessary to stabilize the

proess and an alternative approah is to apply an iterative learning algorithm, whih an learn

from previously produed parts i.e. a self learning system whih gradually redues error based

on historial proess information. What is proposed in the paper is a simple algorithm whih

an be applied to a wide range of sheet-metal forming proesses. The input to the algorithm

is the �nal �ange edge geometry and the basi idea is to redue the least-square error between

the urrent �ange geometry and a referene geometry using a non-linear least square algorithm.

The ILC sheme is applied to a square deep-drawing and the Numisheet'08 S-rail benhmark

problem, the numerial tests shows that the proposed ontrol sheme is able ontrol and stabilise

both proesses.

1. Introdution

It is generally aepted that deep drawing and stamping operations are non-stati over time i.e.

hanges in the material parameters, frition and lubriation, tool and press de�etion, et. all

in�uene the proess stability [1, 2℄.

A signi�ant numbers of proess ontrol system has been proposed in the literature, lassial

PID regulators, meta models, expert systems, databases, optimal ontrol, iterative learning

ontrol, Allwood et al gives a omprehensive review, overing the last two deades development

within the �eld [3℄. Endelt and Volk [4℄ identi�ed two major obstales whih needs to be addressed

before an industrial implementation is possible:

• The proposed ontrol algorithms are often limited by the ability to sample proess data with

both su�ient auray and robustness - this lak of robust sampling tehnologies is one of

the main barriers preventing suessful industrial implementation.

• Limitation in the urrent press designs; many of the presses urrently used in industry only

o�er limited opportunities to hange the blank-holder fore during the punh stroke. Even

if, the press o�ers the opportunity to hange the blank-holder fore the reation speed may

be insu�ient ompared with the prodution rate in an industrial appliation.

http://creativecommons.org/licenses/by/3.0
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Endelt and Volk proposed an alternative ontrol system, where the proess parameters were

updated based on historial proess data, the algorithm were tested numerially and the ontrol

system suessfully stabilised the proess. However, the ontrol system were design for a square

deep-drawing proess and the approah an not be diretly adopted to a new tool geometry.

This problem is addressed in the present work, where a general algorithm is proposed, enabling

proess ontrol of stamping and deep-drawing proesses, using post proess sampling of the

�ange geometry. The proposed algorithm was tested numerially using both a square up and

the Numisheet'08 S-rail benhmark problem.

2. Iterative learning ontrol Algorithm

The iterative learning algorithm is based on the Non-linear least square methods were the �ange

�tting problem is solved through the de�nition of an objetive funtion f(x):

f(xk) =
1

2
rTk rk (1)

Where xk and r(xk) represent the adjustable proess parameters and the residual vetor,

respetively. The residual vetor represents the error between the urrent �ange geometry yk

and an referene �ange geometry yref

rk = yk − yref

where k is the iteration ounter.

The objetive funtion is approximated by a quadrati funtion de�ned as:

f(xk + sk) = f(xk) +∇f(xk)
T sk +

1

2
skHsTk (2)

∇f(xk) = J(xk)
T r(xk) (3)

H ≈ J(xk)
TJ(xk) (4)

Where ∇f(xk) and H represent the gradient and the Hessian respetively, a Gauss-Newton

formulation is used to approximate the Hessian matrix using only �rst order information from

the Jaobian matrix J(xk).
If the minimization problem is assumed to be positive de�nite the step sk an be alulated

as:

sk = −α
∇f(x)

H
and xk+1 = xk + sk

This is known as a line searh problem where α is a salar parameter ontrolling the step size

i.e. saling the hange in the proess parameters x, for the urrent appliation a �xed a value is

applied.

2.1. Iterative learning sheme

The above algorithm is a lassial formulation of a non-linear urve �tting problem, where the

Jaobian matrix is alulated for eah iteration k, using either an analytial representation or a

�nite di�erene approximation.

The non-linear optimization algorithm, an be reformulated to an iterative learning ontrol

sheme. If the �ange �tting problem is assumed to be onvex and lose to linear, in a su�ient

region surrounding the optimal proess parameters x∗
whih also de�nes the optimal �ange

geometry. Under these assumptions, it is only neessary to alulate the Jaobian representation

at the point x∗
. Thus, only one Jaobian matrix is de�ned J(x∗), whih will govern the

optimization problem, for any set of parameters xk and any residual vetor rk whih are su�ient
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lose to x∗
. The Jaobian is am×nmatrix, where n represents in this ase represents the number

of proess parameters x and m represents the number of sample points y. The j-th olumn of

the Jaobian matrix gives the sensitivity of the �ange draw-in error r with respet to the proess

parameter xj . The vetors ∂r/∂xj represents the sensitivity of eah sample point i with respet

to proess parameters xj .

1: Choose the "optimal" proess parameters x∗
and the step size salar α and smax,

load or sample the referene �ange geometry yref
. Initialize the ounter k = 1,

kmax and set xk = x∗
.

2: Load the Jaobian matrix J(x∗) and alulate the Hessian matrix using the

Gauss-Newton approximation H∗
≈ J(x∗)TJ(x∗)

3: while (k < kmax) do

4: Update the �ange geometry yk, the residual vetor and the gradient aording

to:

5: Residual vetor: rk = yk − yref

6: Gradient: ∇f(xk) = J(x∗)T r(xk)

7: dk = −
∇f(xk)

H∗

8: Calulating maximum step size aording to:

9: if (smax > 0) then

10: αmax = min

(

α, smax

max(max(dk),-min(dk))

)

11: else

12: αmax = α
13: end if

14: Update the proess parameters xk+1 aording to:

xk+1 = xk − αmax
∇f(xk)

H∗

15: k = k + 1
16: end while

17: End

Fig. 1: Flange �tting iterative learning ontrol algorithm based on a non-linear least square

formulation. The Jaobian matrix is approximated using �nite di�erene and it is only alulated

for the referene point x∗
.

3. Numerial models

The stability and performane of proposed ILC algorithm are tested numerially. Furthermore,

diversity of the appliation areas are tested applying the ILC algorithm on two very di�erent

sheet metal forming proesses:

• A square deep-drawing enabling full ontrol of the �ange draw-in using a speial designed

shimming system, where the blank-holder is loally deformed using hydrauli pressure. The

de�etion of the blank-holder is ontrolled by four avities loated on eah side of the square

up, giving a total of �ve proess parameters, inluding the blank-holder fore, whih an be

individual adjusted, see �gure 2(a). 32 sample points were olleted along the �ange edge,

see �gure 2(b).

• The S-rail Benhmark 2 from Numisheet 2008 were used as a seond example and the

model were developed aording to the benhmark desription [5℄. Additionally, the die is

supported by 10 individual ontrolled hydrauli punhes (hydrauli ushion system), evenly

distributed along eah side of the S-rail, positioned just before the sheet metal enters the

draw beads, see �gure 3(a). 23 points were sampled from eah �ange edge (a total of 46

sample points), see �gure 3(b)
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Deformed area
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Blank−holder force
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Draw−in
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Shimming plate

Shimming   by  fluid 
pressure  in  cavity

(a) Illustration of the shimming sheme [6℄.
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(b) Referene edge - represented by 32
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Fig. 2: Square deep-drawing input and referene �ange geometry.

(a) Naming onvention and loation of the ushion

punhes.
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(b) Referene edge - 23 sample points on eah side.

Fig. 3: S-rail input and referene �ange geometry.

4. ILC on�guration

The main omponent in the proposed ILC algorithm is the Jaobian matrix J(x∗) and step size

saling parameter α. The framework was developed using the �nite element ode LS-Dyna and

a suessful ILC algorithm should be able to

• In the ase where only proess parameters has been manipulated - the system should return

to the referene parameters x∗
.

• The system should only reat on repetitive errors (new material bath, inreased tool

temperature et.), thus the system should be onservative with respet hanging proess

parameters (ontrolled by α).

• J(x∗) is only alulated for the referene x* and to avoid shooting proess parameters due

to inaurate between the proess model and the urrent state of the proess, a limiting step

size regulation were implemented, see �gure 1.

4.1. Square deep drawing

Referene proess parameters x∗
, disturbanes and perturbations used for the forward di�erene

approximation of the Jaobian matrix are listed in table 1.
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Table 1: Cavity pressure and blank-holder fore applied during system evaluation, see �gure

2(a). The Jaobian matrix is estimated using forward di�erene approximation using the

perturbation ∆x.

P1 P2 P3 P4 FBH

Referene x∗
15MPa 15MPa 15MPa 15MPa 250kN

Disturbane 5MPa 25MPa 5MPa 25MPa 350kN

Perturbation ∆x 0.015MPa 0.015MPa 0.015MPa 0.015MPa 0.250kN

There was a lear orrelation between the step size α and the system response. Furthermore,

unstable behaviour an be provoked for α ≥ 0.75, see �gure 4, the instability is due to non-

linearities i.e. large deviation between the true J(x0) and J(x∗) the algorithm an be stabilised

using α ≤ 0.5 or onstraining the maximum step size smax, see line 9-13 �gure 1. Based on the

system responses �gure 4 α = 0.5 and smax = 100kN (maximum allowed hange in Fbh in one

iteration) represent a reasonable trade-o� between the ontroller response and system damping.
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Fig. 4: Square deep-drawing system response for various α values. Note, the overshot for high

α values and the unstable system behaviour for α ≥ 0.75. Further, large hanges in the input

parameters an be avoided by onstraining the maximum step size - in the ase the blank-holder

input is onstrained (smax = 50 and 100kN).
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4.2. S-rail Numisheet'2008 benhmark

The referene ushion punh fores is listed in table 2 again the system is fores out of balane

and the ability to retrieve the referene input values and the rate of onvergene are tested for

di�erent α values, see �gure 5.

Table 2: Cushion punh fores applied for the system evaluation (total blank-holder fore is

820kN), see �gure 3(a). The Jaobian matrix is estimated using forward di�erene approximation

using the perturbation ∆x.

F11 and F25 F12 and F24 F13 and F23 F14 and F22 F15 and F21

Referene x∗
110kN 60kN 80kN 60kN 100kN

Disturbane F11 − F15 175kN 110kN 30kN 10kN 150kN

Disturbane F21 − F25 35kN 10kN 30kN 10kN 150kN

Perturbation ∆x 2kN 2kN 2kN 2kN 2kN
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Fig. 5: System response for various α values. Note, the overshot for high α values.

There was a lear orrelation between the step size sale fator α and the system response.

The best performane is ahieved using α = 0.5 i.e. onverges x∗
, limited overshoot and a

relative fast redution of the least square error, see �gure 5.

5. Numerial performane test

The ILC system tested by substituting the referene material with a new material whih has

signi�ant di�erent material properties.

5.1. Square deep drawing using α = 1

2
and smax = 100kN

For square deep-drawing a new blank material with an uneven thikness distribution mm (0.95

to 1.05mm left to right) and hanges in the material parameters, see �gure 9.
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(a) Referene part (material

parameters: K=550MPa and

n=0.25) thikness range 0.68-

1.16mm

(b) ILC part �rst iteration.

Thikness range 0.26-1.21mm

() ILC part after 20 itera-

tion. Thikness range 0.67-

1.19mm.

(d) ILC blank, initial thik-

ness range 0.95-1.05mm, Ma-

terial parameters K=450 and

n=0.23

Fig. 6: The proposed ILC algorithm has a remarkable in�uene on the proess stability. Not

only is the error �ange draw-in error minimised but also the severe thinning observed in the �rst

iteration (b) is gradually eliminated by the ILC sheme ().
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Fig. 7: Proess variables as a funtion of ILC iterations

5.2. S-rail using α = 1

2
and smax = 100kN

The referene �ange geometry for the S-rail was produed using material 1 (HC260LAD) and a

new material is introdued using material 2 (Al170), see table 3.

Table 3: Ghosh hardening parameters for the two materials spei�ed in the S-rail Numisheet'08

benhmark.

A ǫ0 C n R00 R45 R90

Material 1 (HC260LAD) 1068.8 0.009 433.1 0.097 1.12 0.86 1.5

Material 2 (A-170) 872.8 0.017 479.8 0.1 0.67 0.45 0.62
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(a) Referene part using material

1 HC260LAD thikness range 0.82-

1.01mm

(b) ILC part �rst iteration using ma-

terial 2 A-170 material parameters.

Thikness range 0.07-1.0mm

() ILC part after 20 iteration using

material 2 A-170. Thikness range

0.78-1.04mm.

Fig. 8: Not only is the error �ange draw-in error minimised but also the severe thinning

observed in the �rst iteration (b) is gradually eliminated by the ILC sheme ().
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Fig. 9: The ILC algorithm onverge to a stable proess on�guration, using 10 to 15 iteration,

�owing the material hange. The total ushion fore onverge to 335kN.

6. Conlusion

The proposed ILC algorithm proved very e�ient for both the square deep-drawing and S-rail

benhmark. In both ases the proess instability was eliminated after only 5-10 iteration following

the hange of material properties. Furthermore, there are urrently no indiation that the system

will enounter long term instability. However, further numerial tests and eventual experimental

testing is need, to evaluate the long term performane of the system. The system only relay on

post proess data, thus data an be sampled after the tool is opened using, e.g. laser sanners,

image proessing. Furthermore, the sampling rate is independent of the prodution rate i.e. if

the proess is running stable the sample rate an be dereased and if the proess is drifting or a

new material bath are introdued the sample rate an be inreased.
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