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Abstract

Background: Definition and elimination of outliers is a 
key element for medical laboratories establishing or veri-
fying reference intervals (RIs). Especially as inclusion 
of just a few outlying observations may seriously affect 
the determination of the reference limits. Many methods 
have been developed for definition of outliers. Several 
of these methods are developed for the normal distribu-
tion and often data require transformation before outlier 
elimination.
Methods: We have developed a non-parametric transfor-
mation independent outlier definition. The new method 
relies on drawing reproducible histograms. This is done 
by using defined bin sizes above and below the median. 
The method is compared to the method recommended 
by CLSI/IFCC, which uses Box-Cox transformation (BCT) 
and Tukey’s fences for outlier definition. The comparison 
is done on eight simulated distributions and an indirect 
clinical datasets.
Results: The comparison on simulated distributions shows 
that without outliers added the recommended method in 
general defines fewer outliers. However, when outliers are 
added on one side the proposed method often produces 
better results. With outliers on both sides the methods are 
equally good. Furthermore, it is found that the presence 
of outliers affects the BCT, and subsequently affects the 
determined limits of current recommended methods. This 
is especially seen in skewed distributions. The proposed 
outlier definition reproduced current RI limits on clinical 
data containing outliers.
Conclusions: We find our simple transformation inde-
pendent outlier detection method as good as or better 
than the currently recommended methods.

Keywords: binning; non-parametric; outlier; reference 
interval; transformation independent; Tukey’s fences.

Introduction

Outliers and reference intervals

Medical laboratories establishing or verifying reference 
intervals (RI) are facing the challenge of detecting errone-
ous values in the datasets. These outlying observations can 
be caused by experimental error or measurement variabil-
ity. If a possible experimental error affecting an observa-
tion cannot be identified, medical laboratories often rely on 
a variation of statistical methods to identify these outliers. 
Definition and elimination of outliers is crucial in all sorts 
of distributions in clinical biochemistry, as the inclusion 
of outliers affects the determination of limits. Most promi-
nent this is seen in skewed distributions where inclusion 
of just a few outlying observations can have huge impact 
on the determination of the reference limits. An ideal algo-
rithm for outlier detection should identify any number of 
observations distant from other observations regardless of 
probability distribution [1]. A diverse range of methods has 
been developed for identifying outlying observations. In 
contrast to an ideal algorithm, these methods often rely on 
assumptions about the underlying distributions.

Present methods

Several methods assumes that the data originates from a 
normal distribution. In clinical biochemistry, these methods 
include Dixon’s Q test and Grubbs’s test [2, 3], which are both 
essentially designed to detect only one outlier. Other used 
methods are elimination of extremes; e.g. values which fall 
outside mean ± 3 or 4 standard deviations (SD) [4–8].

Tukey’s fences are also a very popular way of defining 
outliers [9]. It relies on the central part of the distribution 
by using the interquartile range (IQR) defined as the third 
quartile minus the first quartile. Based on this the outlier 
limits are defined by Lower limit = first quartile – 1.5 * IQR 
and Upper limit = third quartile + 1.5 * IQR. This procedure 
is reproducible but highly sensitive to skewness, and the 
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method is only recommended for symmetrical distribu-
tions. Furthermore, the outcome of outlier removal using 
Tukey’s fences is dependent on sample size, as also the 
estimation of the population quantiles are dependent on 
sample size [10, 11]. These methods can also be used on 
skewed distributions if the non-normal data are trans-
formed to normality before use of the test. However, for 
applications in clinical biochemistry Dixon’s Q test is con-
sidered reasonably insensitive to distribution type [12].

To facilitate use of Tukey’s fences in skewed distri-
butions it is used in conjunction with several different 
transformations, examples being the natural logarith-
mic transformation or the Box-Cox transformation (BCT) 
(equation 1) [13].
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Here, λ is a parameter that determines the shape of 
the transformation and c is a location constant. λ is esti-
mated using the maximum likelihood estimation in the 
original data [13].

Finally, one can use the more advanced methods like 
BCT followed by adjustment for remaining kurtosis [14]. 
After transformation, Tukey’s fences are applied to define 
outliers. Or the choice can be the yet more statistically 
complex robust estimator [15]. Despite the availability of 
advanced calculus programs, these procedures require 
knowledge and care in order to be used sensibly.

In practice, a histogram is often used to perform a 
visual assessment for outliers. Clearly, this method does 
not depend on assumptions regarding the distribution but 
it is not reproducible, as it depends on the calculus program 
used to draw the histogram. Selecting the bin size and 
anchor point for the histogram can have large effects on the 
visual outcome. However, it is probably still a widely used 
method amongst doctors in clinical biochemistry in the 
everyday work in the laboratory. Several different proposals 
for determining the optimal bin size have been developed. 
They all rely on assumptions on the underlying distribu-
tion, and most of them work best for normal distributions.

The Freedman-Diaconis rule suggests that using a bin 
size h defined as

	
3

2 IQR
n

h ∗=
		

	 (2).

This bin size minimizes the difference between the 
areas of the empirical and the theoretical probability distri-
bution functions. It only requires the mild assumption that 
the underlying distribution is not uniform. Furthermore, it 
is not very sensitive to outliers in the data, as it does not 

depend on the standard deviation or total range. Drawing 
a histogram with this bin size gives a rough sense of the 
density of the underlying distribution of the data and esti-
mates the probability density function [16].

Current recommendations

The current recommendations (EP28-A3C) published by 
the Clinical and Laboratory Standards Institute (CLSI) and 
the International Federation of Clinical Chemistry and 
Laboratory Medicine (IFCC) mention the following proce-
dures when determining RIs [17]:

First, it is recommended to do a visual examination 
of the frequency distribution. Secondly, one of the follow-
ing two procedures could be used for identifying outlying 
observations:
1.	 Dixon’s Q test. Using this procedure on the least 

extreme outlier as if it was the only outlier and sub-
sequently also remove more extreme outliers, allows 
for defining more than one outlier on the same side of 
the distribution, or

2.	 Box-Cox transformation in conjunction with Tukey’s 
fences (BCT). The BCT removes skewness. It is recom-
mended to repeat this method until no further outliers 
are detected.

Drawbacks for recommended methods

Dixon’s Q test is very simple to use, but it can fail to detect 
outliers when these are masked by spacing [18]. Espe-
cially, it can have problems when the distribution is not 
normal, as it is an underlying assumption. For the second 
method, the presence of outliers in the dataset has influ-
ence on the estimated λ-parameter, and thus influence the 
transformation.

Description of a proposed method

With very large sample sizes as is common in, e.g. engi-
neering sciences, outliers can be defined as data not con-
nected to the main probability distribution [19]. However, 
for applications like RIs in clinical biochemistry where 
limited number of data are available this method is not 
directly transferable. Additionally before evaluating the 
histogram, the skewness of clinical biochemistry data 
should be taken into account. This can be done in a histo-
gram by using two modified Freedman-Diaconis bin sizes, 
one on each side of the median.
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This ensures a greater precision of the estimated 
probability density function in each tail of the distribu-
tion, which is important for the outlier definition purpose. 
It also renders the median as a natural anchoring point 
for the histogram. Plotting the histogram with bin size h1 
below the median and h2 above the median allows for a 
new method for defining outliers. Extreme data larger or 
smaller than points where the probability density function 
becomes zero are not connected to the main part of the 
distribution, and could therefore be considered outliers.

As we find our outlier definition with this modified 
Freedman-Diaconis binning (FDB) method intuitive and 
simple we compared it to the BCT method which is the 
current recommendation of CLSI/IFCC [17]. We compared 
the outlier definition in simulations on eight different dis-
tributions with different methods of adding outliers and 
different sample sizes. Subsequently, we evaluated the 
methods on clinical data by using an indirect approach 
for evaluating RIs.

Materials and methods
Generation of random data

Calculations, statistical evaluations, graphical representations and 
data generation were made in Rstudio (Version 1.0.136 with R Version 
3.3.2). The following packages were installed (plyr, dplyr, ggplot2, 
forecast, gsubfn, LaplacesDemon). Rstudio with R and the installed 
R packages were used to simulate the following distributions:

Normal (mean = 10, SD = 1); half-normal; log-normal; χ2 (df 
[degrees of freedom] = 1, 4 and 8); and χ2 (df = 1, ncp [non-centrality 
parameter] = 10). Square root normal distributions were generated 
by squaring the simulated normal distributions (before and after 
addition of outliers to the normal distributions). For each distribu-
tion type we generated 1000 replicates of samples of sizes n = 30, 60 
and 120. All simulated values were rounded to the fourth decimal. 
To ensure strictly positive numbers in the distributions, the values 
rounded to 0 are replaced with 10−4.

Adding outliers on one side

Outliers were added using a method similar to previous published 
methods [1]. Each sample had one through six random values replace 
by outliers. Outliers were added as a uniform random variable on the 
upper side of the distribution in the probability range (0.35–0.005%) 
corresponding to mean + 2.7–3.9 SDs in the normal distribution. This 

gives on average <1 outlier in samples without outliers added for 
sample size n = 120.

Adding outliers on both sides

For distribution types: Normal; square root normal; χ2 (df = 8); 
χ2 (df = 1, ncp = 10) outliers were also added on both sides. The 
method was similar to the one-sided model, but c outliers were 
added in the same probability range with a random number of out-
liers p to the lower side and c−p added to the upper side of the 
distribution.

Clinical data: Patient results were extracted from the laboratory 
information system (LIS) using methods similar to our recently 
published method [20]. Included test results were all analyzed at 
Aalborg University Hospital in the period of (21.08.2017–24.09.2017). 
The following selection criteria were used: Each unique patient had 
only one request for biochemical testing in the regional LIS within 
1.5 years retrospective of an included sample and the retrieved data 
from the LIS are all from outpatients consulting general practitioners. 
In total just under 23,000 patient results were extracted. The results 
are distributed with approx. 54–2125 per stratification. Included tests 
were (alanine transaminase, albumin, pancreatic amylase, alkaline 
phosphatase, bilirubin, calcium, creatine kinase, creatinine, iron, 
γ-glutamyl-transferase, potassium, sodium and urate).

Statistical evaluation

Determination of RIs were done with the non-parametric method 
using the 2.5th and 97.5th percentiles for sample sizes n = 60 and 
120, and using the 5th and 95th percentiles for sample size n = 30. 
If the rank values are not integers, interpolation was done between 
rank values on each side [17]. Root mean squared error (RMSE) is 
calculated to the non-parametric limits of the distribution without 
outlier replacement.

For outlier elimination with the BCT method, the sample data 
was transformed using the BCT. Subsequently, Tukey’s fences 
were applied to define outliers. The sample data without outliers 
were then back transformed to the original scale and reference values 
were determined with the described non-parametric method.

For the FDB method, the bin sizes were calculated according to 
formulas (3) and (4) and rounded to five decimals. Frequency distri-
butions were the built from the median using h1 bin size below the 
median and h2 above the median. Starting from the median the lower 
outlier limit is defined as the first empty bin (frequency = 0) below the 
median. Similarly, the upper outlier limit is defined as the first empty 
bin above the median. Sample data outside the limits are defined as 
outliers and removed. This renders the sample data as one connected 
frequency distribution given the defined bin sizes.

Ethics

The study was a technical and quality investigation in accordance 
with the guidelines of the Northern Denmark Regional Science and 
Ethics Committee.
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Results
Results from simulation experiments shown here are all 
from (n = 120). Results from (n = 30 and 60) are shown in 
the Supplementary Data. Figure 1A shows a histogram of 
one simulated sample from the χ2 (df = 4) distribution con-
taining 5% outliers. The plot is rendered using the default 
settings, as it would be in Microsoft Excel® (number of 
bins defined by n√ ). The histogram has the first bin from 
0 to 0.1029 and thereafter a bin size of 2.48, which in this 
case gives a complete connected frequency distribution. 
Calculating the bin sizes as defined in equation (3) and (4) 
gives a bin size of 1.21 below the median and 1.88 above 
the median. Plotting the histogram using these bin sizes 
is shown in Figure 1B. The bin locations of the six random 
values which were replace by outliers are shown in light 
gray. The added outliers are located in the black bins. In 
this sample, the positions of the outlier fences with the 
BCT method are shown as arrows in the top of the histo-
gram. Near the lower limit, the BCT method excludes one 
non-outlier, and near the upper limit it includes one of the 
added outliers. Similarly, the positions of the FDB outlier 
fences are shown as arrows in the bottom of the histo-
gram. This method removes all six outliers and one non-
outlier near the upper limit and none near the lower limit.

Simulation experiments

Violin plots are used to show summaries of the simulation 
experiments. The violin plots show the probability density 

function of the non-parametric calculated RI limits. The 
average percentage of detected outliers is indicated in the 
plots.

Comparing the methods for outlier definition, the 
BCT method generally defines fewer outliers when none 
are added. When outliers are added on one side, the 
FDB method often results in limits closer to the theoreti-
cal limits. Especially, on the side where no outliers are 
added. Here the FDB method renders the limits unaffected 
whereas the BCT outlier definition affects the limit (Table 1 
and Supplementary Tables 1 and 2). Figure 2 shows violin 
plots of the normal (A) and the χ2 (df = 1, ncp = 10) (B) 
distribution, respectively. For these two distributions, 
the FDB method performs better without outliers added. 
The distributions of the calculated upper limits are very 
similar. In contrast to this, the lower limit has shifted 
when the BCT method is used whereas the FDB method 
shows no change here (Table 1 and Figure 2A and B).

In simulations where the outliers are distributed on 
both sides the BCT method gives limits closer to the theo-
retical limits for the normal and square root normal dis-
tributions. The FDB method estimates limits close to the 
theoretical limits for the distributions (χ2 [df = 8]; χ2 [df = 1, 
ncp = 10]) (Figure 2A and B, Table 1 and Supplementary 
Tables 3 and 4). In the χ2 (df = 1, ncp = 10) distribution the 
FDB method detects fewer outliers resulting in an under-
estimation of the lower limit (Figure 2B and Table 1).

In more skewed distributions such as the log-normal 
distribution both methods have problems defining outli-
ers. The violin plot (Figure 3A) shows that without outliers 
the use of the FDB method results in an underestimation 
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Figure 1: Histograms of a sample from χ2 (df = 4) distribution with 5% outliers.
Each histogram outlines the same sample (n = 120). The black line indicates the median. (A) Default histogram as Microsoft Excel® would 
produce it; (B) Histogram drawn using one FD bin size for each half of the diagram. Light gray boxes indicate locations of values, which 
were replaced by outliers (black boxes). The arrows in the top of the histogram indicates outlier fences as defined with the BCT method. The 
arrows in the bottom of the histogram indicate the first empty bin larger and smaller than the median. Defining the FDB outlier limits.
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of the upper limit (Table 1). However, in the presence of 
outliers, the use of the BCT method results in an overesti-
mation and a large RMSE of the upper limits, whereas the 
FDB method gives a result similar to the result obtained 
when outliers are not added. For the χ2 (df = 8) distribution 
(Figure 3B), the percentages of outliers eliminated when 
none are added are similar for both methods. When out-
liers are distributed on both sides, the determination of 
the upper limit for the FDB method has greater probability 
mass near the theoretical limit (Table 1). At the lower side, 
the BCT method eliminates more outliers, which results in 
a lower limit closer to the theoretical limit.

Adding more extreme outliers using the method 
described by Horn et  al. [18], leads to similar results. 
However, here the BCT estimation of the lower limits devi-
ates more from the distribution percentiles than with less 
extreme outliers (Supplementary Figures 1–3 and Sup-
plementary Tables 5 and 6). Adding outliers only on the 
lower side of skewed distributions shows that the BCT 
method estimates the lower limits slightly better than 
the FDB method. As seen for other distributions this then 

affects the estimation of the other limit, which then devi-
ates more from the distribution percentiles than the FDB 
method (Supplementary Figures 4 and 5 and Supplemen-
tary Tables 7 and 8).

Results of simulation experiments with lower sample 
sizes show essentially similar results. However, for the 
very small sample size (n = 30) it seems that the FDB 
method is better at estimating the limits when no outliers 
are added (Supplementary Tables 9–16).

Clinical data
A comparison of the FDB method with the BCT method 
on laboratory data is shown in Table 2. The BCT method 
detects between 0 and 5% outliers and the FDB method 
detects between 0 and 8% outliers. Clinically signifi-
cant differences are found for upper limits of alanine 
transaminase, creatine kinase and γ-glutamyltransferase. 
The largest difference is found for γ-glutamyltransferase 

Table 1: Mean and root mean squared error of 2.5th and 97.5th percentiles after outlier elimination (n = 120).

Distribution/percentiles No outliers 5% outliers

BCT FDB BCT FDB

Outliers on upper side
 Percentiles 2.5 97.5 2.5 97.5 2.5 97.5 2.5 97.5
 Normal (8.04; 11.96) Mean 8.055 11.947 8.005 11.99 8.193 13.025 8.014 13.044

RMSE 0.163 0.18 0.092 0.136 0.316 1.12 0.11 1.206
 Square root normal (64.642; 143.041) Mean 64.895 142.765 63.973 143.436 67.322 170.726 64.121 165.006

RMSE 2.54 4.374 1.227 4.072 5.156 29.087 1.669 26.924
 Half-normal (0.031; 2.241) Mean 0.032 2.284 0.031 2.243 0.04 3.507 0.032 2.975

RMSE 0.007 0.061 0 0.152 0.018 1.255 0.005 0.943
 Log-normal (0.141; 7.099) Mean 0.15 7.273 0.136 5.223 0.17 27.836 0.136 5.5

RMSE 0.024 1.424 0.004 3.502 0.046 22.752 0.011 3.284
 χ2 (df = 1) (0.001; 5.024) Mean 0.001 5.291 0.001 4.164 0.002 12.678 0.001 4.416

RMSE 0 0.29 0 1.702 0.002 7.613 0.001 1.64
 χ2 (df = 4) (0.484; 11.143) Mean 0.506 11.285 0.471 10.815 0.6 18.645 0.473 12.287

RMSE 0.085 0.886 0.005 1.642 0.188 7.814 0.046 3.274
 χ2 (df = 8) (2.18; 17.535) Mean 2.184 17.581 2.094 17.419 2.443 26.491 2.097 20.214

RMSE 0.216 1.036 0.01 1.365 0.489 9.456 0.11 5.173
 χ2 (df = 1, ncp = 10) (1.446; 26.237) Mean 1.556 26.055 1.38 25.963 1.955 36.899 1.389 31.681

RMSE 0.383 1.736 0.01 1.974 0.787 11.924 0.148 9.125
Outliers on both sides
 Normal (8.04; 11.96) Mean 8.049 11.943 8.003 11.988 7.74 12.218 7.443 12.513

RMSE 0.164 0.178 0.111 0.116 0.61 0.554 0.818 0.793
 Square root normal (64.642; 143.041) Mean 64.79 142.639 63.867 143.362 59.426 149.656 53.643 153.133

RMSE 2.531 4.38 0.97 3.775 10.255 14.287 13.554 16.901
 χ2 (df = 8) (2.18; 17.535) Mean 2.236 17.617 2.132 17.404 1.769 20.046 1.249 18.639

RMSE 0.248 1.066 0.015 1.499 0.822 4.605 1.09 3.327
 χ2 (df = 1, ncp = 10) (1.446; 26.237) Mean 1.502 26.296 1.336 26.154 1.077 29.178 0.46 28.508

RMSE 0.37 1.571 0.014 2.041 0.941 5.695 1.108 5.664

BCT, Box-Cox transformation; FDB, Freedman-Diaconis binning; RMSE, root mean squared error; ncp, non-centrality parameter.
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(male, >40) (Figure 4A). For this test, the BCT method 
does not detect any outliers whereas the FDB method 
detects six. The FDB method evaluates the limits numeri-
cally closer to Local and NORIP RIs. The evaluation of 
the transformation is shown in Supplementary Figure 6. 
In the case of creatine kinase (male, 18–60) and alanine 
transaminase the differences between the methods are 
found at the upper limit, where the FDB method evalu-
ates the limits numerically closer to the Local RIs. For all 
these RIs (except two γ-glutamyltransferase stratifica-
tions) outlier definition according to Dixon’s Q test leads 
to exclusion of fewer outliers than the BCT method (Data 
not show).

For tests like albumin (Figure 4B), pancreatic amylase, 
alkaline phosphatase, bilirubin, calcium, creatinine, iron, 
potassium, sodium and urate the methods does not lead 

to clinical significant differences in the evaluated limits. 
However, for some of the skewed distributions like alanine 
transaminase, pancreatic amylase, alkaline phosphates, 
creatine kinase, and Iron the outliers removed with the 
BCT method leads to a small increase in the level of the 
lower limits.

Repeated detection of outliers on the datasets results 
in removal of six (one round) and 66 (three rounds) addi-
tional outliers with the FDB and BCT methods, respec-
tively. Only γ-glutamyl-transferase (Female, >40) with the 
FDB method shows a clinically significant change (Sup-
plementary Tables 17 and 18).

General statistics of the datasets are found in (Supple-
mentary Table 19). This table outlines the skewedness of 
the datasets and the percentiles (2.5 and 97.5) represents 
the calculated RI if no outliers were defined.

14
No outliers 5% outliers one side 5% outliers both sides

12

10 0.8 0.3 2.6 1.2 3.7 1.6

0.8 0.5 3.3 3.4 3.3 2.1
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R
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Figure 2: Violin plots of the lower and upper RI limits determined with and without outliers removal.
Each plot shows the result with no added outliers to the left and with 5% outliers added on the upper side in the middle and 5% outliers distrib-
uted on both sides to the right. The gray areas (the violin) indicates the distribution and probability density of the determined limits (1000 sim-
ulations). The black horizontal lines throughout each panel indicates the theoretical limits (2.5th and 97.5th). The numbers in the middle of the 
plot indicates how many percent outliers each method on average has detected. (A) Normal distribution, and (B) χ2 (df = 1, ncp = 10).
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Figure 3: Violin plots of the limits determined with and without outlier removal.
Outline as in Figure 2. (A) Log-normal distribution outliers added above upper limit. Only upper limit shown; and (B) χ2 (df = 8) distribution 
outliers added on both sides.

Table 2: Comparison of calculated reference interval limits on adults.

Test   Stratification 
(gender/age)

  Local RI   n  
total

 
 

BCT  
 

FDB

Outliers 
detected

  Lower 
limit

  Upper 
limit

Outliers 
detected

  Lower 
limit

  Upper 
limit

Alanine transaminase, U/La   Female   10–35   1083   23   9.1   51.9   26   8.3   44.1
  Male   10–50   982   19   12.4   90.8   35   11.4   68.7

Albumin, g/L   18–39   36–48   594   5   33.6   45.6   2   33.6   45.9
  40–70   36–45   788   8   33.9   43.7   6   33.9   43.8
  >70   34–45   162   3   31.3   42.1   3   31.3   42.1

Pancreatic, aamylase, U/L     10–65   730   14   12.2   50.4   4   10.8   50.7
Alkaline phosphatase, U/L     35–105   1524   35   38.5   114.4   13   35.0   115.1
Bilirubin, mmol/L     5–25   962   7   3   22.2   15   3.0   19.9
Calcium, mmol/Lb     2.20–2.55   1254   21   2.24   2.56   12   2.23   2.57
Creatine kinase, U/Lc   Female   50–150   235   9   32.91   207.1   7   26.5   182.3

  Male, 18–60   50–270   165   6   59.8   501.2   13   45.6   311.4
  Male, >60   50–200   54   0   27.91   280   0   27.9   280

Creatinine, μmol/L   Female   45–90   1182   29   47.8   88.8   5   46.5   93.7
  Male   60–105   1052   22   62.7   110.2   7   61.4   112.8

Iron, μmol/L     9–34   598   28   6.4   29.7   0   4   33.0
γ-Glutamyl-transferase, U/L  Female, 18–40   10–45   96   0   9.3   49.5   1   9.2   44.6

  Female, >40   10–75   116   0   8.9   107.4   4   8.8   83.0
  Male, 18–40   10–80   96   0   10.9   99.0   3   10.8   62.4
  Male, >40   15–115   105   0   13.4   385.8   6   13.1   123.1

Potassium, mmol/Ld     3.5–4.6   2125   42   3.41   4.61   3   3.35   4.68
Sodium, mmol/Le     137–145   2102   51   137   144.4   13   136.3   144.6
Urate, μmol/L   Female, 18–50   0.16–0.35   119   2   0.14   0.38   0   0.14   0.39

  Female, >50   0.16–0.40   89   3   0.17   0.49   2   0.15   0.44
  Male   0.23–0.48   197   1   0.22   0.55   1   0.22   0.55

Differences between local and NORIP reference intervals. aFemale, 10–45 U/L; male, 10–70 U/L. b2.15–2.51 mmol/L. cFemale, 35–210 U/L; 
male, age 18–49, 50–400 U/L; male, age ≥50, 40–280 U/L. d3.5–4.4 mmol/L. e137–144 mmol/L. Outliers are defined by the BCT or FDB 
methods. Local reference intervals (RI) are given in column 2. These RIs are based on NORIP RIs [8]. BCT, Box-Cox transformation; FDB, 
Freedman-Diaconis binning.
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Discussion
We have presented a simple transformation independ-
ent method for outlier definition. The method uses the 
concept of drawing a histogram of the data and defines 
the outlier fences as the first bins above and below the 
median not containing any data. The bin sizes are defined 
using a modified Freedman-Diaconis rule. The modifica-
tion allows for defining individual bin sizes above and 
below the median. This method is simple, reproducible, 
and intuitively understandable; it gives results resem-
bling what a clinical biochemistry professional would 
reach after inspecting a histogram. Evaluation of simula-
tion experiments comparing the FDB method to the BCT 
method show that the FDB method, in most cases, is 
better at defining outliers when added on one side. In this 
case reference limits are more precise both at the upper 
and lower limit. When outliers are added on both sides, 
the BCT method is better at the lower side, whereas the 
methods are approximately equally good at the upper 
side. However, the results indicate that the BCT elimina-
tion of outliers at the lower side is a result of addition 
of outliers on the upper side. In simulation experiments 
without outliers added, the FDB method seems to define a 
few more outliers resulting in a smaller deviation from the 
theoretical limits. Using smaller samples similar results 
are found, only in very small samples the FDB method 
seems to be better at including true points when outliers 
are not added.

The results from the evaluation of laboratory data 
confirms several of the results from the simulation 

experiments. When clinically significant differences are 
found, the limits determined with the FDB method are 
numerically closer to the NORIP limits. Similarly, the BCT 
method influences the level of the lower limit when used 
on skewed distribution. Though an indirect datasets can 
be influence by selection bias it is found useful, as it is a 
dataset of actual measured values. The difficulties, which 
the FDB method has in detecting outliers on the lower 
side, does not influence the clinical evaluation. At least 
not to the same extent as the BCT method influence on the 
lower limit.

The apparent advantage of the FDB method may be 
explained by the fact that the IQR is essentially insensitive 
to extremes, whereas a transformation of data is influence 
by outliers. This is especially seen in skewed distributions 
(like Figure 3A and general statistics of the datasets). 
The evaluation of the transformation for this distribu-
tion (Supplementary Figure 6) shows that the results in 
this case is not due to bad transformation or remaining 
kurtosis. The remaining kurtosis has in other simulation 
experiments been described as the reason for suboptimal 
results [1]. Furthermore, the FDB method is dependent on 
the sample size, as the bin size is dependent on sample 
size. This and the evaluation of simulation experiments 
with low sample number and of the laboratory data shows 
that the FDB method seems to perform equally well at dif-
ferent sample sizes.

The FDB method has the statistical limitation that 
it is not applicable when the underlying distribution 
is uniform [16]. However, this is not a distribution often 
found in clinical biochemistry. Additionally, multimodal 
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Figure 4: Histograms of laboratory data containing outliers.
The arrows in the top of the histograms indicates outlier fences as defined with the BCT method. The arrows in the bottom of the histogram 
indicate the first empty bin smaller or larger than the median, defining the proposed transformation independent outlier fences. (A) Histo-
gram of γ-glutamyltransferase results (n = 105); and (B) histogram of albumin results (n = 788).
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densities are problematic for the BCT method as well as 
for the FDB method [21]. However, as the method are to be 
used in the tails of distributions this will in most cases be 
a minor problem. At very large sample sizes, the bin size 
can become smaller than the test resolution resulting in a 
fragmented histogram. The solution here is to use the test 
resolution as the bin size. Finally, the proposed method 
was only tested on indirect datasets, which do not repre-
sent a true random sample. The selection relies on the req-
uisition pattern as an acceptable surrogate for good health 
status [20].

In conclusion, we find our simple transformation 
independent outlier detection method as good as or better 
than the currently recommended methods. It allows for a 
complete non-parametric and transformation independ-
ent calculation of RIs. The method is easy to perform 
manually in Microsoft Excel®. It can be done by building 
a frequency table from the median using the bin sizes 
described in formulas (3) and (4). The first empty bin on 
each side of the median defines the outlier fences. We 
therefore propose to use this new method once to get a 
transformation independent outlier definition.

Author contributions: PAC conceived the idea and study. 
PAC performed calculation and simulations. MBJ and PAC 
refined the idea and simulations. PAC reviewed the litera-
ture and wrote the first draft. Both authors contributed to 
subsequent drafts and approval of the final version. All the 
authors have accepted responsibility for the entire content 
of this submitted manuscript and approved submission.
Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
Competing interests: The funding organization(s) played 
no role in the study design; in the collection, analysis, and 
interpretation of data; in the writing of the report; or in the 
decision to submit the report for publication.

References
1.	 Solberg HE, Lahti A. Detection of outliers in reference dis-

tributions: performance of Horn’s algorithm. Clin Chem 
2005;51:2326–32.

2.	 Dixon WJ. Analysis of extreme values. Ann Math Stat 
1950;21:488–506.

3.	 Grubbs FE. Sample criteria for testing outlying observations. Ann 
Math Stat 1950;21:27–58.

4.	Stromme JH, Rustad P, Steensland H, Theodorsen L, Urdal P. 
Reference intervals for eight enzymes in blood of adult females 

	 and males measured in accordance with the International 
Federation of Clinical Chemistry reference system at 37 degrees 
C: part of the Nordic Reference Interval Project. Scand J Clin Lab 
Invest 2004;64:371–84.

5.	 Tozzoli R, Giavarina D, Villalta D, Soffiati G, Bizzaro N. Defini-
tion of reference limits for autoantibodies to thyroid peroxidase 
and thyroglobulin in a large population of outpatients using an 
indirect method based on current data. Arch Pathol Lab Med 
2008;132:1924–8.

6.	Erasmus RT, Ray U, Nathaniel K, Dowse G. Reference ranges for 
serum creatinine and urea in elderly coastal Melanesians. P N G 
Med J 1997;40:89–91.

7.	 Eskelinen S, Suominen P, Vahlberg T, Lopponen M, Isoaho R, 
Kivela SL, et al. The effect of thyroid antibody positivity on 
reference intervals for thyroid stimulating hormone (TSH) and 
free thyroxine (FT4) in an aged population. Clin Chem Lab Med 
2005;43:1380–5.

8.	Rustad P, Felding P, Franzson L, Kairisto V, Lahti A, Martensson 
A, et al. The Nordic Reference Interval Project 2000: recom-
mended reference intervals for 25 common biochemical proper-
ties. Scand J Clin Lab Invest 2004;64:271–84.

9.	Tukey JW. Exploratory data analysis. Reading, MA: Addison-
Wesley, 1977:688.

10.	 Bjerner J, Theodorsson E, Hovig E, Kallner A. Non-parametric 
estimation of reference intervals in small non-Gaussian sample 
sets. Accred Qual Assur 2009;14:185–92.

11.	 Hoaglin DC, Iglewicz B, Tukey JW. Performance of some resistant 
rules for outlier labeling. J Am Stat Assoc 1986;81:991–9.

12.	 Solberg HE. The theory of reference values Part 5. Statistical 
treatment of collected reference values. Determination of refer-
ence limits. J Clin Chem Clin Biochem 1983;21:749–60.

13.	 Box GE, Cox DR. An analysis of transformations. J R Stat Soc 
Series B (Methodological) 1964;26:211–52.

14.	 Harris EK, Boyd JC. Statistical bases of reference values in labo-
ratory medicine. New York: M. Dekker, 1995:xiv, 361.

15.	 Horn PS, Pesce AJ, Copeland BE. A robust approach to reference 
interval estimation and evaluation. Clin Chem 1998;44:622–31.

16.	 Freedman D, Diaconis P. On the histogram as a density estimator 
– L2 theory. Z Wahrscheinlichkeit 1981;57:453–76.

17.	 CLSI. Defining, establishing, and verifying reference intervals in 
the clinical laboratory; approved guideline – third edition. CLSI 
document EP28 – A3c ed. Wayne, PA, USA: CLSI (Clinical Labora-
tory Standards Institute), 2010.

18.	 Horn PS, Feng L, Li Y, Pesce AJ. Effect of outliers and non-
healthy individuals on reference interval estimation. Clin Chem 
2001;47:2137–45.

19.	 Patterson N. A robust, non-parametric method to identify outliers 
and improve final yield and quality. CS MANTECH Conference; 
April 23rd–26th, 2012; Boston, MA, USA, 2012.

20.	Lykkeboe S, Nielsen CG, Christensen PA. Indirect method for 
validating transference of reference intervals. Clin Chem Lab 
Med 2018;56:463–70.

21.	 Knuth KH. Optimal data-based binning for histograms, 2006. 
arXiv:physics/0605197 [physicsdata-an].

Supplementary Material: The online version of this article offers 
supplementary material (https://doi.org/10.1515/cclm-2018-0025).

Brought to you by | Aalborg University Library
Authenticated

Download Date | 7/5/19 9:51 AM

https://doi.org/10.1515/cclm-2018-0025

